Skip to main content
Log in

The Neuronal Kv4 Channel Complex

Neurochemical Research Aims and scope Submit manuscript

Abstract

Kv4 channel complexes mediate the neuronal somatodendritic A-type K+ current (ISA), which plays pivotal roles in dendritic signal integration. These complexes are composed of pore-forming voltage-gated α-subunits (Shal/Kv4) and at least two classes of auxiliary β-subunits: KChIPs (K +-Channel-Interacting-Proteins) and DPLPs (Dipeptidyl-Peptidase-Like-Proteins). Here, we review our investigations of Kv4 gating mechanisms and functional remodeling by specific auxiliary β-subunits. Namely, we have concluded that: (1) the Kv4 channel complex employs novel alternative mechanisms of closed-state inactivation; (2) the intracellular Zn2+ site in the T1 domain undergoes a conformational change tightly coupled to voltage-dependent gating and is targeted by nitrosative modulation; and (3) discrete and specific interactions mediate the effects of KChIPs and DPLPs on activation, inactivation and permeation of Kv4 channels. These studies are shedding new light on the molecular bases of ISA function and regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Amberg GC, Koh SD, Imaizumi Y, Ohya S, Sanders KM (2003) A-type potassium currents in smooth muscle. Am J Physiol Cell Physiol 284:C583–C595

    PubMed  CAS  Google Scholar 

  2. An WF, Bowlby MR, Betty M, Cao J, Ling HP, Mendoza G, Hinson JW, Mattsson KI, Strassle BW, Trimmer JS, Rhodes KJ (2000) Modulation of A-type potassium channels by a family of calcium sensors. Nature 403:553–556

    PubMed  CAS  Google Scholar 

  3. Bahring R, Boland LM, Varghese A, Gebauer M, Pongs O (2001) Kinetic analysis of open- and closed-state inactivation transitions in human Kv4.2 A-type potassium channels. J Physiol 535:65–81

    PubMed  CAS  Google Scholar 

  4. Bahring R, Dannenberg J, Peters HC, Leicher T, Pongs O, Isbrandt D (2001) Conserved Kv4 N-terminal domain critical for effects of Kv channel-interacting protein 2.2 on channel expression and gating. J Biol Chem 276:23888–23894

    PubMed  CAS  Google Scholar 

  5. Baldwin TJ, Tsaur ML, Lopez GA, Jan YN, Jan LY (1991) Characterization of a mammalian cDNA for an inactivating voltage-sensitive K+ channel. Neuron 7:471–483

    PubMed  CAS  Google Scholar 

  6. Barghaan J, Tozakidou M, Ehmke H, Bahring R (2007) Role of N-terminal domain and accessory subunits in controlling deactivation-inactivation coupling of Kv4.2 channels. Biophys J

  7. Barghaan J, Tozakidou M, Ehmke H, Bahring R (2008) Role of N-terminal domain and accessory subunits in controlling deactivation–inactivation coupling of Kv4.2 channels. Biophys J 94:1276–1294

    PubMed  CAS  Google Scholar 

  8. Baro DJ, Coniglio LM, Cole CL, Rodriguez HE, Lubell JK, Kim MT, Harris-Warrick RM (1996) Lobster shal: comparison with Drosophila shal and native potassium currents in identified neurons. J Neurosci 16:1689–1701

    PubMed  CAS  Google Scholar 

  9. Beck EJ, Bowlby M, An WF, Rhodes KJ, Covarrubias M (2002) Remodelling inactivation gating of Kv4 channels by KChIP-1, a small-molecular-weight calcium binding protein. J Physiol 538:691–706

    PubMed  CAS  Google Scholar 

  10. Beck EJ, Covarrubias M (2001) Kv4 channels exhibit modulation of closed-state inactivation in inside-out patches. Biophys J 81: 867–883

    PubMed  CAS  Google Scholar 

  11. Bekkers JM (2000) Distribution and activation of voltage-gated potassium channels in cell-attached and outside-out patches from large layer 5 cortical pyramidal neurons of the rat. J Physiol 525 Pt 3:611–620

    Google Scholar 

  12. Bernard C, Anderson A, Becker A, Poolos NP, Beck H, Johnston D (2004) Acquired dendritic channelopathy in temporal lobe epilepsy. Science 305:532–535

    PubMed  CAS  Google Scholar 

  13. Bezanilla F (2005) The voltage-sensor structure in a voltage-gated channel. Trends Biochem Sci 30:166–168

    PubMed  CAS  Google Scholar 

  14. Birnbaum SG, Varga AW, Yuan LL, Anderson AE, Sweatt JD, Schrader LA (2004) Structure and function of Kv4-family transient potassium channels. Physiol Rev 84:803–833

    PubMed  CAS  Google Scholar 

  15. Bixby KA, Nanao MH, Shen NV, Kreusch A, Bellamy H, Pfaffinger PJ, Choe S (1999) Zn2+-binding and molecular determinants of tetramerization in voltage-gated K+ channels. Nat Struct Biol 6:38–43

    PubMed  CAS  Google Scholar 

  16. Boland LM, Jiang M, Lee SY, Fahrenkrug SC, Harnett MT, O’Grady SM (2003) Functional properties of a brain-specific NH2-terminally spliced modulator of Kv4 channels. Am J Physiol Cell Physiol 285:C161–C170

    PubMed  CAS  Google Scholar 

  17. Bossy-Wetzel E, Talantova MV, Lee WD, Scholzke MN, Harrop A, Mathews E, Gotz T, Han J, Ellisman MH, Perkins GA, Lipton SA (2004) Crosstalk between nitric oxide and zinc pathways to neuronal cell death involving mitochondrial dysfunction and p38-activated K+ channels. Neuron 41:351–365

    PubMed  CAS  Google Scholar 

  18. Burgoyne RD (2007) Neuronal calcium sensor proteins: generating diversity in neuronal Ca2+ signalling. Nat Rev Neurosci 8:182–193

    PubMed  CAS  Google Scholar 

  19. Burgoyne RD, O’Callaghan DW, Hasdemir B, Haynes LP, Tepikin AV (2004) Neuronal Ca2+-sensor proteins: multitalented regulators of neuronal function. Trends Neurosci 27:203–209

    PubMed  CAS  Google Scholar 

  20. Cai X, Liang CW, Muralidharan S, Kao JP, Tang CM, Thompson SM (2004) Unique roles of SK and Kv4.2 potassium channels in dendritic integration. Neuron 44:351–364

    PubMed  CAS  Google Scholar 

  21. Callsen B, Isbrandt D, Sauter K, Hartmann LS, Pongs O, Bahring R (2005) Contribution of N- and C-terminal channel domains to Kv channel interacting proteins in a mammalian cell line. J Physiol 568:397–412

    PubMed  CAS  Google Scholar 

  22. Chabala LD, Bakry N, Covarrubias M (1993) Low molecular weight poly(A)+ mRNA species encode factors that modulate gating of a non-Shaker A-type K+ channel. J Gen Physiol 102:713–728

    PubMed  CAS  Google Scholar 

  23. Chen CP, Lee L, Chang LS (2006) Effects of metal-binding properties of human Kv channel-interacting proteins on their molecular structure and binding with Kv4.2 channel. Protein J 25:345–351

    PubMed  CAS  Google Scholar 

  24. Chen X, Johnston D (2004) Properties of single voltage-dependent K+ channels in dendrites of CA1 pyramidal neurones of rat hippocampus. J Physiol 559:187–203

    PubMed  CAS  Google Scholar 

  25. Chen X, Yuan LL, Zhao C, Birnbaum SG, Frick A, Jung WE, Schwarz TL, Sweatt JD, Johnston D (2006) Deletion of Kv4.2 gene eliminates dendritic A-type K+ current and enhances induction of long-term potentiation in hippocampal CA1 pyramidal neurons. J Neurosci 26:12143–12151

    PubMed  CAS  Google Scholar 

  26. Choi KL, Aldrich RW, Yellen G (1991) Tetraethylammonium blockade distinguishes two inactivation mechanisms in voltage-activated K+ channels. Proc Natl Acad Sci USA 88:5092–5095

    PubMed  CAS  Google Scholar 

  27. Christie JM, Westbrook GL (2003) Regulation of backpropagating action potentials in mitral cell lateral dendrites by A-type potassium currents. J Neurophysiol 89:2466–2472

    PubMed  CAS  Google Scholar 

  28. Connor JA, Stevens CF (1971) Voltage clamp studies of a transient outward membrane current in gastropod neural somata. J Physiol 213:21–30

    PubMed  CAS  Google Scholar 

  29. Cordero-Morales JF, Cuello LG, Zhao Y, Jogini V, Cortes DM, Roux B, Perozo E (2006) Molecular determinants of gating at the potassium-channel selectivity filter. Nat Struct Mol Biol 13:311–318

    PubMed  CAS  Google Scholar 

  30. Cordero-Morales JF, Jogini V, Lewis A, Vasquez V, Cortes DM, Roux B, Perozo E (2007) Molecular driving forces determining potassium channel slow inactivation. Nat Struct Mol Biol 14:1062–1069

    PubMed  CAS  Google Scholar 

  31. Covarrubias M, Wei AA, Salkoff L (1991) Shaker, Shal, Shab, and Shaw express independent K+ current systems. Neuron 7:763–773

    PubMed  CAS  Google Scholar 

  32. Cushman SJ, Nanao MH, Jahng AW, DeRubeis D, Choe S, Pfaffinger PJ (2000) Voltage dependent activation of potassium channels is coupled to T1 domain structure. Nat Struct Biol 7:403–407

    PubMed  CAS  Google Scholar 

  33. Dougherty K, Covarrubias M (2006) A dipeptidyl aminopeptidase-like protein remodels gating charge dynamics in Kv4.2 channels. J Gen Physiol 128:745–753

    PubMed  CAS  Google Scholar 

  34. Eghbali M, Olcese R, Zarei MM, Toro L, Stefani E (2002) External pore collapse as an inactivation mechanism for Kv4.3 K+ channels. J Membr Biol 188:73–86

    PubMed  CAS  Google Scholar 

  35. Fawcett GL, Santi CM, Butler A, Harris T, Covarrubias M, Salkoff L (2006) Mutant analysis of the Shal (Kv4) voltage-gated fast transient K+ channel in Caenorhabditis elegans. J Biol Chem 281:30725–30735

    PubMed  CAS  Google Scholar 

  36. Gebauer M, Isbrandt D, Sauter K, Callsen B, Nolting A, Pongs O, Bahring R (2004) N-type inactivation features of Kv4.2 channel gating. Biophys J 86:210–223

    PubMed  CAS  Google Scholar 

  37. Gu C, Jan YN, Jan LY (2003) A conserved domain in axonal targeting of Kv1 (Shaker) voltage-gated potassium channels. Science 301:646–649

    PubMed  CAS  Google Scholar 

  38. Gulbis JM, Zhou M, Mann S, MacKinnon R (2000) Structure of the cytoplasmic beta subunit-T1 assembly of voltage-dependent K+ channels. Science 289:123–127

    PubMed  CAS  Google Scholar 

  39. Hagiwara S, Kusano K, Saito N (1961) Membrane changes of onchidium nerve cell in potassium-rich media. J Physiol 155:470–489

    PubMed  CAS  Google Scholar 

  40. Hanlon MR, Wallace BA (2002) Structure and function of voltage-dependent ion channel regulatory beta subunits. Biochemistry 41:2886–2894

    PubMed  CAS  Google Scholar 

  41. Hille B (2001) Ionic channels of excitable membranes. Sinauer Associates, Sunderland, Mass

    Google Scholar 

  42. Hoffman DA, Magee JC, Colbert CM, Johnston D (1997) K+ channel regulation of signal propagation in dendrites of hippocampal pyramidal neurons [see comments]. Nature 387:869–875

    PubMed  CAS  Google Scholar 

  43. Holmqvist MH, Cao J, Hernandez-Pineda R, Jacobson MD, Carroll KI, Sung MA, Betty M, Ge P, Gilbride KJ, Brown ME, Jurman ME, Lawson D, Silos-Santiago I, Xie Y, Covarrubias M, Rhodes KJ, Distefano PS, An WF (2002) Elimination of fast inactivation in Kv4 A-type potassium channels by an auxiliary subunit domain. Proc Natl Acad Sci USA 99:1035–1040

    PubMed  CAS  Google Scholar 

  44. Hoshi T, Zagotta WN, Aldrich RW (1990) Biophysical and molecular mechanisms of Shaker potassium channel inactivation. Science 250:533–538

    PubMed  CAS  Google Scholar 

  45. Hoshi T, Zagotta WN, Aldrich RW (1991) Two types of inactivation in Shaker K+ channels: effects of alterations in the carboxy-terminal region. Neuron 7:547–556

    PubMed  CAS  Google Scholar 

  46. Hu HJ, Carrasquillo Y, Karim F, Jung WE, Nerbonne JM, Schwarz TL, Gereau RW (2006) The kv4.2 potassium channel subunit is required for pain plasticity. Neuron 50:89–100

    PubMed  CAS  Google Scholar 

  47. Ilbert M, Graf PC, Jakob U (2006) Zinc center as redox switch–new function for an old motif. Antioxid Redox Signal 8:835–846

    PubMed  CAS  Google Scholar 

  48. Jahng AW, Strang C, Kaiser D, Pollard T, Pfaffinger P, Choe S (2002) Zinc mediates assembly of the T1 domain of the voltage-gated K+ channel 4.2. J Biol Chem 277:47885–47890

    PubMed  CAS  Google Scholar 

  49. Jan LY, Jan YN (1997) Cloned potassium channels from eukaryotes and prokaryotes. Annu Rev Neurosci 20:91–123

    PubMed  CAS  Google Scholar 

  50. Jegla T, Salkoff L (1997) A novel subunit for Shal K+ channels radically alters activation and inactivation. J Neurosci 17:32–44

    PubMed  CAS  Google Scholar 

  51. Jerng HH, Covarrubias M (1997) K+ channel inactivation mediated by the concerted action of the cytoplasmic N- and C-terminal domains. Biophys J 72:163–174

    Article  PubMed  CAS  Google Scholar 

  52. Jerng HH, Kunjilwar K, Pfaffinger PJ (2005) Multiprotein assembly of Kv4.2, KChIP3 and DPP10 produces ternary channel complexes with ISA-like properties. J Physiol 568:767–788

    PubMed  CAS  Google Scholar 

  53. Jerng HH, Lauver AD, Pfaffinger PJ (2007) DPP10 splice variants are localized in distinct neuronal populations and act to differentially regulate the inactivation properties of Kv4-based ion channels. Mol Cell Neurosci 35:604–624

    PubMed  CAS  Google Scholar 

  54. Jerng HH, Pfaffinger PJ, Covarrubias M (2004) Molecular physiology and modulation of somatodendritic A-type potassium channels. Mol Cell Neurosci 27:343–369

    PubMed  CAS  Google Scholar 

  55. Jerng HH, Qian Y, Pfaffinger PJ (2004) Modulation of Kv4.2 channel expression and gating by dipeptidyl peptidase 10 (DPP10). Biophys J 87:2380–2396

    PubMed  CAS  Google Scholar 

  56. Jerng HH, Shahidullah M, Covarrubias M (1999) Inactivation gating of Kv4 potassium channels: molecular interactions involving the inner vestibule of the pore. J Gen Physiol 113:641–660

    PubMed  CAS  Google Scholar 

  57. Johnston D, Christie BR, Frick A, Gray R, Hoffman DA, Schexnayder LK, Watanabe S, Yuan LL (2003) Active dendrites, potassium channels and synaptic plasticity. Philos Trans R Soc Lond B Biol Sci 358:667–674

    PubMed  CAS  Google Scholar 

  58. Johnston D, Hoffman DA, Magee JC, Poolos NP, Watanabe S, Colbert CM, Migliore M (2000) Dendritic potassium channels in hippocampal pyramidal neurons. J Physiol 525(Pt 1):75–81

    PubMed  CAS  Google Scholar 

  59. Kaulin Y, Santiago-Castillo JA, Rocha C, Covarrubias M (2007) Mechanism of the modulation of Kv4:KChIP-1 channels by external K+. Biophys J 94:1241–1251

    PubMed  Google Scholar 

  60. Kim J, Jung SC, Clemens AM, Petralia RS, Hoffman DA (2007) Regulation of dendritic excitability by activity-dependent trafficking of the A-type K+ channel subunit Kv4.2 in hippocampal neurons. Neuron 54:933–947

    PubMed  CAS  Google Scholar 

  61. Kim J, Wei DS, Hoffman DA (2005) Kv4 potassium channel subunits control action potential repolarization and frequency-dependent broadening in rat hippocampal CA1 pyramidal neurones. J Physiol 569:41–57

    PubMed  CAS  Google Scholar 

  62. Kin Y, Misumi Y, Ikehara Y (2001) Biosynthesis and characterization of the brain-specific membrane protein DPPX, a dipeptidyl peptidase IV-related protein. J Biochem (Tokyo) 129:289–295

    CAS  Google Scholar 

  63. Kirichok YV, Nikolaev AV, Krishtal OA (1998) [K+]out accelerates inactivation of Shal-channels responsible for A-current in rat CA1 neurons. Neuroreport 9:625–629

    PubMed  CAS  Google Scholar 

  64. Klee R, Ficker E, Heinemann U (1995) Comparison of voltage-dependent potassium currents in rat pyramidal neurons acutely isolated from hippocampal regions CA1 and CA3. J Neurophysiol 74:1982–1995

    PubMed  CAS  Google Scholar 

  65. Kobertz WR, Williams C, Miller C (2000) Hanging gondola structure of the T1 domain in a voltage-gated K+ channel. Biochemistry 39:10347–10352

    PubMed  CAS  Google Scholar 

  66. Kreusch A, Pfaffinger PJ, Stevens CF, Choe S (1998) Crystal structure of the tetramerization domain of the Shaker potassium channel. Nature 392:945–948

    PubMed  CAS  Google Scholar 

  67. Lai HC, Jan LY (2006) The distribution and targeting of neuronal voltage-gated ion channels. Nat Rev Neurosci 7:548–562

    PubMed  CAS  Google Scholar 

  68. Lauver A, Yuan LL, Jeromin A, Nadin BM, Rodriguez JJ, Davies HA, Stewart MG, Wu GY, Pfaffinger PJ (2006) Manipulating Kv4.2 identifies a specific component of hippocampal pyramidal neuron A-current that depends upon Kv4.2 expression. J Neurochem 99:1207–1223

    PubMed  CAS  Google Scholar 

  69. Levitan IB (2006) Signaling protein complexes associated with neuronal ion channels. Nat Neurosci 9:305–310

    PubMed  CAS  Google Scholar 

  70. Levy DI, Deutsch C (1996) Recovery from C-type inactivation is modulated by extracellular potassium. Biophys J 70:798–805

    PubMed  CAS  Google Scholar 

  71. Li M, Jan YN, Jan LY (1992) Specification of subunit assembly by the hydrophilic amino-terminal domain of the Shaker potassium channel. Science 257:1225–1230

    PubMed  CAS  Google Scholar 

  72. Li YV, Hough CJ, Sarvey JM (2003) Do we need zinc to think? Sci STKE 2003:e19

    Google Scholar 

  73. Lien CC, Martina M, Schultz JH, Ehmke H, Jonas P (2002) Gating, modulation and subunit composition of voltage-gated K+ channels in dendritic inhibitory interneurones of rat hippocampus. J Physiol 538:405–419

    PubMed  CAS  Google Scholar 

  74. Liss B, Franz O, Sewing S, Bruns R, Neuhoff H, Roeper J (2001) Tuning pacemaker frequency of individual dopaminergic neurons by Kv4.3L and KChIP3.1 transcription. EMBO J 20:5715–5724

    PubMed  CAS  Google Scholar 

  75. Long SB, Campbell EB, MacKinnon R (2005) Crystal structure of a mammalian voltage-dependent shaker family K+ channel. Science 309:897–902

    PubMed  CAS  Google Scholar 

  76. Long SB, Campbell EB, MacKinnon R (2005) Voltage sensor of Kv1.2: structural basis of electromechanical coupling. Science 309:903–908

    PubMed  CAS  Google Scholar 

  77. Long SB, Tao X, Campbell EB, MacKinnon R (2007) Atomic structure of a voltage-dependent K+ channel in a lipid membrane-like environment. Nature 450:376–382

    PubMed  CAS  Google Scholar 

  78. Lopez-Barneo J, Hoshi T, Heinemann SH, Aldrich RW (1993) Effects of external cations and mutations in the pore region on C-type inactivation of Shaker potassium channels. Receptors Channels 1:61–71

    PubMed  CAS  Google Scholar 

  79. MacKinnon R (2004) Potassium channels and the atomic basis of selective ion conduction (Nobel lecture). Angew Chem Int Ed Engl 43:4265–4277

    PubMed  CAS  Google Scholar 

  80. Malin SA, Nerbonne JM (2000) Elimination of the fast transient in superior cervical ganglion neurons with expression of Kv4.2W362F: molecular dissection of IA. J Neurosci 20:5191–5199

    PubMed  CAS  Google Scholar 

  81. Malin SA, Nerbonne JM (2001) Molecular heterogeneity of the voltage-gated fast transient outward K+ current, I(Af), in mammalian neurons. J Neurosci 21:8004–8014

    PubMed  CAS  Google Scholar 

  82. Maret W (2006) Zinc coordination environments in proteins as redox sensors and signal transducers. Antioxid Redox Signal 8:1419–1441

    PubMed  CAS  Google Scholar 

  83. Martina M, Schultz JH, Ehmke H, Monyer H, Jonas P (1998) Functional and molecular differences between voltage-gated K+ channels of fast-spiking interneurons and pyramidal neurons of rat hippocampus. J Neurosci 18:8111–8125

    PubMed  CAS  Google Scholar 

  84. Migliore M, Hoffman DA, Magee JC, Johnston D (1999) Role of an A-type K+ conductance in the back-propagation of action potentials in the dendrites of hippocampal pyramidal neurons. J Comput Neurosci 7:5–15

    PubMed  CAS  Google Scholar 

  85. Minor DL, Lin YF, Mobley BC, Avelar A, Jan YN, Jan LY, Berger JM (2000) The polar T1 interface is linked to conformational changes that open the voltage-gated potassium channel. Cell 102:657–670

    PubMed  CAS  Google Scholar 

  86. Nadal MS, Amarillo Y, Vega-Saenz dM, Rudy B (2006) Differential characterization of three alternative spliced isoforms of DPPX. Brain Res 1094:1–12

    PubMed  CAS  Google Scholar 

  87. Nadal MS, Ozaita A, Amarillo Y, de Miera EV, Ma Y, Mo W, Goldberg EM, Misumi Y, Ikehara Y, Neubert TA, Rudy B (2003) The CD26-related dipeptidyl aminopeptidase-like protein DPPX is a critical component of neuronal A-type K+ channels. Neuron 37:449–461

    PubMed  CAS  Google Scholar 

  88. Nanao MH, Zhou W, Pfaffinger PJ, Choe S (2003) Determining the basis of channel-tetramerization specificity by X-ray crystallography and a sequence-comparison algorithm: family values (FamVal). Proc Natl Acad Sci USA 100:8670–8675

    PubMed  CAS  Google Scholar 

  89. Neher E. 1971 Two fast transient current components during voltage clamp on snail neurons. J Gen Physiol 58: 36–53

    PubMed  CAS  Google Scholar 

  90. Nerbonne JM (2000) Molecular basis of functional voltage-gated K+ channel diversity in the mammalian myocardium. J Physiol 525(Pt 2):285–298

    PubMed  CAS  Google Scholar 

  91. Ogielska EM, Zagotta WN, Hoshi T, Heinemann SH, Haab J, Aldrich RW (1995) Cooperative subunit interactions in C-type inactivation of K+ channels. Biophys J 69:2449–2457

    PubMed  CAS  Google Scholar 

  92. Pak MD, Baker K, Covarrubias M, Butler A, Ratcliffe A, Salkoff L (1991) mShal, a subfamily of A-type K+ channel cloned from mammalian brain. Proc Natl Acad Sci USA 88:4386–4390

    PubMed  CAS  Google Scholar 

  93. Panyi G, Deutsch C (2006) Cross talk between activation and slow inactivation gates of Shaker potassium channels. J Gen Physiol 128:547–559

    PubMed  CAS  Google Scholar 

  94. Panyi G, Sheng Z, Deutsch C (1995) C-type inactivation of a voltage-gated K+ channel occurs by a cooperative mechanism. Biophys J 69:896–903

    PubMed  CAS  Google Scholar 

  95. Patel SP, Campbell DL (2005) Transient outward potassium current, ‘Ito’, phenotypes in the mammalian left ventricle: underlying molecular, cellular and biophysical mechanisms. J Physiol 569:7–39

    PubMed  CAS  Google Scholar 

  96. Patel SP, Campbell DL, Strauss HC (2002) Elucidating KChIP effects on Kv4.3 inactivation and recovery kinetics with a minimal KChIP2 isoform. J Physiol 545:5–11

    PubMed  CAS  Google Scholar 

  97. Pathak MM, Yarov-Yarovoy V, Agarwal G, Roux B, Barth P, Kohout S, Tombola F, Isacoff EY (2007) Closing in on the resting state of the shaker K+ channel. Neuron 56:124–140

    PubMed  CAS  Google Scholar 

  98. Pioletti M, Findeisen F, Hura GL, Minor DL Jr (2006) Three-dimensional structure of the KChIP1-Kv4.3 T1 complex reveals a cross-shaped octamer. Nat Struct Mol Biol 13:987–995

    PubMed  CAS  Google Scholar 

  99. Pongs O, Leicher T, Berger M, Roeper J, Bahring R, Wray D, Giese KP, Silva AJ, Storm JF (1999) Functional and molecular aspects of voltage-gated K+ channel beta subunits. Ann N Y Acad Sci 868:344–355

    PubMed  CAS  Google Scholar 

  100. Ren X, Hayashi Y, Yoshimura N, Takimoto K (2005) Transmembrane interaction mediates complex formation between peptidase homologues and Kv4 channels. Mol Cell Neurosci 29:320–332

    PubMed  CAS  Google Scholar 

  101. Ren X, Shand SH, Takimoto K (2003) Effective association of Kv channel-interacting proteins with Kv4 channel is mediated with their unique core peptide. J Biol Chem 278:43564–43570

    PubMed  CAS  Google Scholar 

  102. Ridnour LA, Thomas DD, Mancardi D, Espey MG, Miranda KM, Paolocci N, Feelisch M, Fukuto J, Wink DA (2004) The chemistry of nitrosative stress induced by nitric oxide and reactive nitrogen oxide species. Putting perspective on stressful biological situations. Biol Chem 385:1–10

    PubMed  CAS  Google Scholar 

  103. Rivera JF, Ahmad S, Quick MW, Liman ER, Arnold DB (2003) An evolutionarily conserved dileucine motif in Shal K+ channels mediates dendritic targeting. Nat Neurosci 6:243–250

    PubMed  CAS  Google Scholar 

  104. Rivera JF, Chu PJ, Arnold DB (2005) The T1 domain of Kv1.3 mediates intracellular targeting to axons. Eur J Neurosci 22:1853–1862

    PubMed  Google Scholar 

  105. Robinson JM, Deutsch C (2005) Coupled tertiary folding and oligomerization of the T1 domain of Kv channels. Neuron 45:223–232

    PubMed  CAS  Google Scholar 

  106. Rudy B (1998) Diversity and ubiquity of K channels. Neuroscience 25:729–749

    Google Scholar 

  107. Salkoff L, Baker K, Butler A, Covarrubias M, Pak MD, Wei A (1992) An essential ‘set’ of K+ channels conserved in flies, mice and humans. Trends Neurosci 15:161–166

    PubMed  CAS  Google Scholar 

  108. Salvador-Recatala V, Gallin WJ, Abbruzzese J, Ruben PC, Spencer AN (2006) A potassium channel (Kv4) cloned from the heart of the tunicate Ciona intestinalis and its modulation by a KChIP subunit. J Exp Biol 209:731–747

    PubMed  CAS  Google Scholar 

  109. Scannevin RH, Wang K, Jow F, Megules J, Kopsco DC, Edris W, Carroll KC, Lu Q, Xu W, Xu Z, Katz AH, Olland S, Lin L, Taylor M, Stahl M, Malakian K, Somers W, Mosyak L, Bowlby MR, Chanda P, Rhodes KJ (2004) Two N-terminal domains of Kv4 K+ channels regulate binding to and modulation by KChIP1. Neuron 41:587–598

    PubMed  CAS  Google Scholar 

  110. Schoppa NE, Westbrook GL (1999) Regulation of synaptic timing in the olfactory bulb by an A-type potassium current. Nat Neurosci 2:1106–1113

    PubMed  CAS  Google Scholar 

  111. Serodio P, Kentros C, Rudy B (1994) Identification of molecular components of A-type channels activating at subthreshold potentials. J Neurophysiol 72:1516–1529

    PubMed  CAS  Google Scholar 

  112. Serodio P, Vega-Saenz dM, Rudy B (1996) Cloning of a novel component of A-type K+ channels operating at subthreshold potentials with unique expression in heart and brain. J Neurophysiol 75:2174–2179

    PubMed  CAS  Google Scholar 

  113. Sheng M, Tsaur ML, Jan YN, Jan LY (1994) Contrasting subcellular localization of the Kv1.2 K+ channel subunit in different neurons of rat brain. J Neurosci 14:2408–2417

    PubMed  CAS  Google Scholar 

  114. Shibata R, Nakahira K, Shibasaki K, Wakazono Y, Imoto K, Ikenaka K (2000) A-type K+ current mediated by the Kv4 channel regulates the generation of action potential in developing cerebellar granule cells. J Neurosci 20:4145–4155

    PubMed  CAS  Google Scholar 

  115. Shin KS, Maertens C, Proenza C, Rothberg BS, Yellen G (2004) Inactivation in HCN channels results from reclosure of the activation gate: desensitization to voltage. Neuron 41:737–744

    PubMed  CAS  Google Scholar 

  116. Skerritt MR, Campbell DL (2007) Role of S4 positively charged residues in the regulation of Kv4.3 inactivation and recovery. Am J Physiol Cell Physiol 293:C906–C914

    PubMed  CAS  Google Scholar 

  117. Solc CK, Aldrich RW (1988) Voltage-gated potassium channels in larval CNS neurons of Drosophila. J Neurosci 8:2556–2570

    PubMed  CAS  Google Scholar 

  118. Song WJ, Tkatch T, Baranauskas G, Ichinohe N, Kitai ST, Surmeier DJ (1998) Somatodendritic depolarization-activated potassium currents in rat neostriatal cholinergic interneurons are predominantly of the A type and attributable to coexpression of Kv4.2 and Kv4.1 subunits. J Neurosci 18:3124–3137

    PubMed  CAS  Google Scholar 

  119. Strang C, Kunjilwar K, DeRubeis D, Peterson D, Pfaffinger PJ (2003) The role of Zn2+ in Shal voltage-gated potassium channel formation. J Biol Chem 278:31361–31371

    PubMed  CAS  Google Scholar 

  120. Takimoto K, Ren X (2002) KChIPs (Kv channel-interacting proteins)—a few surprises and another. J Physiol 545:3

    PubMed  CAS  Google Scholar 

  121. Tkatch T, Baranauskas G, Surmeier DJ (2000) Kv4.2 mRNA abundance and A-type K+ current amplitude are linearly related in basal ganglia and basal forebrain neurons. J Neurosci 20:579–588

    PubMed  CAS  Google Scholar 

  122. Tsunoda S, Salkoff L (1995) Genetic analysis of Drosophila neurons: Shal, Shaw, and Shab encode most embryonic potassium currents. J Neurosci 15:t–54

    Google Scholar 

  123. Van Hoorick D, Raes A, Keysers W, Mayeur E, Snyders DJ (2003) Differential modulation of Kv4 kinetics by KCHIP1 splice variants. Mol Cell Neurosci 24:357–366

    PubMed  Google Scholar 

  124. Wang G, Covarrubias M (2006) Voltage-dependent gating rearrangements in the intracellular T1–T1 interface of a K+ channel. J Gen Physiol 127:391–400

    PubMed  CAS  Google Scholar 

  125. Wang G, Shahidullah M, Rocha CA, Strang C, Pfaffinger PJ, Covarrubias M (2005) Functionally active T1–T1 interfaces revealed by the accessibility of intracellular thiolate groups in Kv4 channels. J Gen Physiol 126:55–69

    PubMed  CAS  Google Scholar 

  126. Wang G, Strang C, Pfaffinger PJ, Covarrubias M (2007) Zn2+-dependent redox switch in the intracellular T1–T1 interface of a Kv channel. J Biol Chem 282:13637–13647

    PubMed  CAS  Google Scholar 

  127. Wang H, Yan Y, Liu Q, Huang Y, Shen Y, Chen L, Chen Y, Yang Q, Hao Q, Wang K, Chai J (2007) Structural basis for modulation of Kv4 K+ channels by auxiliary KChIP subunits. Nat Neurosci 10:32–39

    PubMed  Google Scholar 

  128. Wang S, Bondarenko VE, Qu YJ, Bett GC, Morales MJ, Rasmusson RL, Strauss HC (2005) Time- and voltage-dependent components of Kv4.3 inactivation. Biophys J 89:3026–3041

    PubMed  CAS  Google Scholar 

  129. Watanabe S, Hoffman DA, Migliore M, Johnston D (2002) Dendritic K+ channels contribute to spike-timing dependent long-term potentiation in hippocampal pyramidal neurons. Proc Natl Acad Sci USA 99:8366–8371

    PubMed  CAS  Google Scholar 

  130. Wei A, Covarrubias M, Butler A, Baker K, Pak M, Salkoff L (1990) K+ current diversity is produced by an extended gene family conserved in Drosophila and mouse. Science 248:599–603

    PubMed  CAS  Google Scholar 

  131. Xu J, Yu W, Jan YN, Jan LY, Li M (1995) Assembly of voltage-gated potassium channels. Conserved hydrophilic motifs determine subfamily-specific interactions between the alpha-subunits. J Biol Chem 270:24761–24768

    PubMed  CAS  Google Scholar 

  132. Yeh JZ, Armstrong CM (1978) Immobilisation of gating charge by a substance that simulates inactivation. Nature 273:387–389

    PubMed  CAS  Google Scholar 

  133. Yellen G (1998) The moving parts of voltage-gated ion channels. Q Rev Biophys 31:239–295

    PubMed  CAS  Google Scholar 

  134. Zagha E, Ozaita A, Chang SY, Nadal MS, Lin U, Saganich MJ, McCormack T, Akinsanya KO, Qi SY, Rudy B (2005) DPP10 modulates Kv4-mediated A-type potassium channels. J Biol Chem 280:18853–18861

    PubMed  CAS  Google Scholar 

  135. Zhou M, Morais-Cabral JH, Mann S, MacKinnon R (2001) Potassium channel receptor site for the inactivation gate and quaternary amine inhibitors. Nature 411:657–661

    PubMed  CAS  Google Scholar 

  136. Zhou W, Qian Y, Kunjilwar K, Pfaffinger PJ, Choe S (2004) Structural insights into the functional interaction of KChIP1 with Shal-Type K+ channels. Neuron 41:573–586

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Drs. Bernardo Rudy and Henry H. Jerng for fruitful discussions, critical comments and suggestions. Our studies have been supported by a research grant from National Institutes of Health (R01 NS032337-12 to M.C.) and, in part, by a Research Enhancement Award (REA to M.C.) from Thomas Jefferson University, Philadelphia. PA. K.D., T.R., and G.W. were supported by a training grant from the National Institutes of Health (T32 AA007463-22).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Covarrubias.

Additional information

Special issue article in honor of Dr. Ricardo Tapia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Covarrubias, M., Bhattacharji, A., De Santiago-Castillo, J.A. et al. The Neuronal Kv4 Channel Complex. Neurochem Res 33, 1558–1567 (2008). https://doi.org/10.1007/s11064-008-9650-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-008-9650-8

Keywords

Navigation