Skip to main content
Log in

Attenuation of Rotenone-Induced Mitochondrial Oxidative Damage and Neurotoxicty in Drosophila melanogaster Supplemented with Creatine

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Creatine (Cr), an ergogenic nutritional supplement is demonstrated to possess bioenergetic, antiexcitotoxic and antioxidant properties. This study investigated the neuroprotective effects of Cr against rotenone induced oxidative stress, mortality and neurotoxicty in Drosophila melanogaster. We found significant diminution in the endogenous levels of oxidative markers in whole body homogenates of flies exposed to Cr (2–10 mM). Cr supplementation resulted in reduced mortality in flies exposed to rotenone (500 μM) and better performance in a negative geotaxis assay. Further Cr (10 mM) markedly offset rotenone induced mitochondrial oxidative stress, completely restored the GSH levels, nitric oxide levels, activity of Mn-SOD and dopamine depletion. In an oxidative stress bioassay, flies given Cr prophylaxis exhibited marked resistance to paraquat exposure. These data allow us to hypothesize that the neuroprotective action of Cr in Drosophila may be related to its direct antioxidant activity and ability to abrogate rotenone induced mitochondrial oxidative stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Gualano B, Artioli GG, Poortmans JR et al (2010) Exploring therapeutic role of creatine supplementation. Amino acids 38:31–44

    Article  CAS  PubMed  Google Scholar 

  2. Wyss M, Kaddurah-Daouk R (2000) Creatine and creatine metabolism. Physiol Rev 80:1107–1213

    CAS  PubMed  Google Scholar 

  3. Greenhalf PL (2001) The creatine phospho creatine system: there’s more than one song in its repertoire. J Physiol 537:657

    Article  Google Scholar 

  4. Froiland K, Koszewski W, Hingst J et al (2004) Nutritional supplement use among college athletes and their sources of information. Intl J Sport Nutr Exerc Metab 14:104–120

    Google Scholar 

  5. Watanabe A, Kato N, Kato T (2002) Effects of creatine on mental fatigue and cerebral haemoglobin oxygenation. Neurosci Res 42:279–285

    Article  CAS  PubMed  Google Scholar 

  6. Mc Moris T, Harris RC, Howard AN et al (2007) Creatine supplementation, sleep deprivation, cortisol, melatonin and behaviour. Physiol Behav 90:21–28

    Article  Google Scholar 

  7. Baker SK, Tornopolsky MA (2003) Targeting cellular energy production in neurological disorders. Expert Opin Investig Drugs 12:1655–1679

    Article  CAS  PubMed  Google Scholar 

  8. Bender A, Koch W, Elstner M et al (2006) Creatine supplementation in Parkinson disease: a placebo-controlled randomized pilot trial. Neurology 67:1262–1264

    Article  CAS  PubMed  Google Scholar 

  9. Bender A, Samtleben W, Elstner M et al (2008) Long-term creatine supplemetaion is safe in aged patients with Parkinson’s disease. Nutr Res 28:172–178

    Article  CAS  PubMed  Google Scholar 

  10. Andres RH, Huber W, Pérez-bouza O et al (2005) Effects of creatine treatment on the survival of dopaminergic neurons in cultured fetal ventral mesencephalic tissue. J Neurosci 133:701–713

    Article  CAS  Google Scholar 

  11. Lensman M, Korzhe Vskii DE, Mourovets VO et al (2006) Intracerebroventricular administration of creatine protects against damage by global cerebral ischemia in rat. Brain Res 1114:187–194

    Article  CAS  PubMed  Google Scholar 

  12. Sestili P, Martinelli C, Bravi G et al (2006) Creatine supplementation affords cytoprotection in oxidatively injured cultured mammalian cells via direct antioxidant activity. Free Radic Biol Med 40:837–849

    Article  CAS  PubMed  Google Scholar 

  13. Celotto AM, Palladino MJ (2005) Drosophila, a model system to study neurodegeneration. Molecular Interventions 5:292–303

    Article  CAS  PubMed  Google Scholar 

  14. Reiter RJ, Acuna-Castrviej OD, Tan DX et al (2001) Free radical mediated molecular damage, mechanisms for the protective actions of melatonin in the central nervous system. Ann NY Acad Sci 939:200–215

    Article  CAS  PubMed  Google Scholar 

  15. Francesca C, Drouin-Ouellet J, Robert EG (2009) Environmental toxins and Parkinson’s disease: what have we learned from pesticide-induced animal models? Trends Pharmacol Sci 30:475–483

    Article  Google Scholar 

  16. Dinis-Oliveira RJ, Remia F, Carmo H et al (2005) Paraquat exposure as an etiological factor of Parkinson’s disease. NeuroToxicology 27:1110–1122

    Article  Google Scholar 

  17. Coulom H, Birman S (2004) Chronic exposure to rotenone models sporadic Parkinson’s disease in Drosophila melanogaster. J Neurosci 24:10993–10998

    Article  CAS  PubMed  Google Scholar 

  18. Sherer TB, Betarbet R, Stout AK et al (2002) An in vitro model of Parkinson’s disease: linking mitochondrial impairment to altered α-synuclein metabolism and oxidative damage. J Neurosci 22:7006–7015

    CAS  PubMed  Google Scholar 

  19. Betarbet R, Sherer TB, Mackenzie G et al (2000) Chronic systemic pesticide exposure reproduces features of Parkinson’s disease. Nat Neurosci 3:1301–1306

    Article  CAS  PubMed  Google Scholar 

  20. Ravikumar H, Muralidhara (2009) Neuroprotective efficacy of Bacopa monnieri against rotenone induced oxidative stress and neurotoxicty in Drosophila melanogaster. NeuroToxicology 30:977–985

    Article  Google Scholar 

  21. Dalpiaz A, Filosa K, de Caprariis P et al (2007) Molecular mechanism involved in the transport of a prodrug dopamine glycosyl conjugate. Intl J Pharm 336:133–139

    Article  CAS  Google Scholar 

  22. Ohakawa H, Ohishi U, Yagi K (1979) Assay of lipid peroxidation in rat tissues by thiobarbituric reaction. Anal Biochem 95:145–149

    Google Scholar 

  23. Wolf SP (1994) Ferrous ion oxidation in presence of ferric ion indicator xylenol orange for measurement of hydroperoxide. Methods Enzymol 233:182–189

    Article  Google Scholar 

  24. Hissin PJ, Hilf R (1976) A flourimetric method for determination of oxidized and reduced glutathione in tissues. Anal Biochem 74:214–216

    Article  CAS  PubMed  Google Scholar 

  25. Ellman A (1959) Tissue sulfhydral groups. Arch Biochem Biophys 82:70–77

    Article  CAS  PubMed  Google Scholar 

  26. Aebi H (1984) Catalase in vitro. Methods Enzymol 05:121–125

    Article  Google Scholar 

  27. Vladimir A, Kostyuk A, Potapovich AI (1989) Superoxide driven oxidation of quercetin and a simple sensitive assay for determination of superoxide dismutase. Biochem Intl 19:117–1124

    Google Scholar 

  28. Ellmann GE, Courtney KD, Anderson V et al (1961) A new calorimetric determination of acetyl cholinesterase activity. Biochem Pharmacol 7:88–95

    Article  Google Scholar 

  29. Navarro A, Sanchez Del Pino MJ, Gomez C et al (2002) Behavioral dysfunction, brain oxidative stress and impaired mitochondrial electron transfer in aging mice. Am J Physiol Regul Integ Comp Physiol 282:985–992

    Google Scholar 

  30. Driver AS, Kodavanti PS, Mundy WR (2000) Age related changes in reactive oxygen species production in rat brain homogenates. Neurotoxicol Teratol 22:175–181

    Article  CAS  PubMed  Google Scholar 

  31. Choi BM, Pae HO, Jang SI et al (2002) Nitric oxide as a proapoptotic as well as antiapoptotic modulator. J Biochem Mol Biol 35:116–126

    CAS  PubMed  Google Scholar 

  32. Feany MB, Bender WW (2000) A Drosophila model of Parkinson’s disease. Nature 404:394–398

    Article  CAS  PubMed  Google Scholar 

  33. Lin A (1998) Extended lifespan and stress resistance in the Drosophila mutant Methuselah. Science 282:943–946

    Article  CAS  PubMed  Google Scholar 

  34. Lowry OH, Rosebrough NJ, Farr AL et al (1951) Protein measurement using Folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  35. Dawson TM, Dawson VL (2003) Molecular pathways of neurodegeneration in Parkinson’s disease. Science 302:819–822

    Article  CAS  PubMed  Google Scholar 

  36. Lin MT, Beal MF (2006) Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 443:787–795

    Article  CAS  PubMed  Google Scholar 

  37. Wyss M, Schulze A (2002) Health implications of creatine: can oral creatine supplementation protect against neurological and atherosclerotic disease? J Neurosci 112:243–260

    Article  CAS  Google Scholar 

  38. Persky AM, Brazeau GA (2001) Critical pharmacology of the dietary supplement creatine monohydrate. Pharmacol Rev 53:161–176

    CAS  PubMed  Google Scholar 

  39. Andres RH, Ducry AD, Schlattner U et al (2008) Functions and effects of creatine the central nervous system. Brain Res Bull 76:329–343

    Article  CAS  PubMed  Google Scholar 

  40. Lawler JM, Barnes WS, Wu G et al (2002) Direct antioxidant properties of creatine. Biochem Biophysic Res Commun 290:47–52

    Article  CAS  Google Scholar 

  41. Guidi C, Potenza L, Sestili P et al (2008) Differential effect of creatine on oxidatively injured mitochondrial and nuclear DNA. Biochem Biophys Acta 1780:16–26

    CAS  PubMed  Google Scholar 

  42. Azzi A, Davies KJ, Kelly F (2004) Free radical biology-terminology and critical thinking. FEBS Lett 558:3–6

    Article  CAS  PubMed  Google Scholar 

  43. Bender A, Beckers J, Schneider I et al (2008) Creatine improves health and survival of mice. Neurobiol Aging 29:1404–1411

    Article  CAS  PubMed  Google Scholar 

  44. Deminice R, Portari GV, Vannuchi H et al. (2009) Effects of creatine supplementation on Homocysteine levels and lipid peroxidation in rats. British J Nutr 102:110–116

    Google Scholar 

  45. Sherer TB, Betarbet R, Testa CM et al (2003) Mechanism of toxicity in rotenone models of Parkinson’s disease. J Neurosci 23:10756–10764

    CAS  PubMed  Google Scholar 

  46. Chowdhary A, Bowling K, Funderburk C et al (2007) Interaction of genetic and environmental factors in a Drosophila Parkinsonism model. J Neurosci 27:2457–2467

    Article  Google Scholar 

  47. Tan DX, Reiter RJ, Manchester LC (2002) Chemical physical properties and potential mechanisms: melatonin as a broad-spectrum antioxidant and free radical scavenger. Curr Top Med Chem 2:181–198

    Article  CAS  PubMed  Google Scholar 

  48. Coto-montes A, Hardeland R (1999) Antioxidant effects of melatonin in Drosophila melanogaster: antagonization of damage induced by the inhibition of catalase. J Pineal Res 27:154–158

    Article  CAS  PubMed  Google Scholar 

  49. Beal MF (2003) Mitochondria, oxidative damage and inflammation in Parkinson’s disease. Ann NY Acad Sci 991:120–131

    Article  CAS  PubMed  Google Scholar 

  50. Jennar P (2003) Oxidative stress in Parkinson’s disease. Ann Neurol 53:S26–S38

    Article  Google Scholar 

  51. Bove J, Prou D, Perier C et al (2005) Toxin-induced models of Parkinson’s disease. J Am Exptl Therpeutic 2:484–494

    Google Scholar 

  52. Mccling JM, Gand GA, Davis JM et al (2003) Effect of creatine supplementation on cardiac muscle of exercise stress rats. Europ J Appl Physiol 89:26–33

    Article  Google Scholar 

  53. Dupuis L, Oudart H, Rene E et al (2004) Evidence for defective energy homeostasis in amyotrophic lateral sclerosis; benefit of high energy diet in transgenic mouse model. Proc Natl Acad Sci US 101:11159–11164

    Article  CAS  Google Scholar 

  54. Peng J, Peng L, Stevenson FF et al (2007) Iron and paraquat as synergistic environmental risk factors in sporadic Parkinson’s disease accelerates age-related neurodegeneration. J Neurosci 27:6914–6922

    Article  CAS  PubMed  Google Scholar 

  55. Cocheme HM, Murphy MP (2008) Complex I is the major site of mitochondrial superoxide production by paraquat. J Biol Chem 283:1786–1798

    Article  CAS  PubMed  Google Scholar 

  56. Ravikumar H, Muralidhara (2010) Paraquat induced oxidative perturbations and lethality in Drosophila melanogaster are mitigated by prophylactic treatment with Bacopa monnieri. Indian J Biochem Biophys 47:75–82

    Google Scholar 

Download references

Acknowledgments

We wish to thank the Director, CFTRI for his encouragement in this study. The first author (RKH) thanks the University Grant Commission (UGC), New Delhi, India for the award of Junior/Senior Research Fellowships.

Declaration of Interest

The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muralidhara.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hosamani, R., Ramesh, S.R. & Muralidhara Attenuation of Rotenone-Induced Mitochondrial Oxidative Damage and Neurotoxicty in Drosophila melanogaster Supplemented with Creatine. Neurochem Res 35, 1402–1412 (2010). https://doi.org/10.1007/s11064-010-0198-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-010-0198-z

Keywords

Navigation