Skip to main content

Advertisement

Log in

Enhanced Expression of the Sweet Taste Receptors and Alpha-gustducin in Reactive Astrocytes of the Rat Hippocampus Following Ischemic Injury

  • ORIGINAL PAPER
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The heterodimeric sweet taste receptors, T1R2 and T1R3, have recently been proposed to be associated with the brain glucose sensor. To identify whether sweet taste signaling is regulated in response to an ischemic injury inducing acute impairment of glucose metabolism, we investigated the spatiotemporal expression of the sweet taste receptors and their associated taste-specific G-protein α-gustducin in the rat hippocampus after ischemia. The expression profiles of both receptor subunits and α-gustducin shared overlapping expression patterns in sham-operated and ischemic hippocampi. Constitutive expression of both receptors and α-gustducin was localized in neurons of the pyramidal cell and granule cell layers, but their upregulation was detected in reactive astrocytes in ischemic hippocampi. Immunoblot analysis confirmed the immmunohistochemically determined temporal patterns of sweet-taste signaling proteins. These results suggest that the expression of sweet taste signaling proteins in astrocytes might be regulated in response to altered extracellular levels of glucose following an ischemic insult.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Cui M, Jiang P, Maillet E et al (2006) The heterodimeric sweet taste receptor has multiple potential ligand binding sites. Curr Pharm Des 12:4591–4600

    Article  CAS  PubMed  Google Scholar 

  2. Bachmanov AA, Beauchamp GK (2007) Taste receptor genes. Annu Rev Nutr 27:389–414

    Article  CAS  PubMed  Google Scholar 

  3. Meyers B, Brewer MS (2008) Sweet taste in man: a review. J Food Sci 73:R81–R90

    Article  CAS  PubMed  Google Scholar 

  4. Jang HJ, Kokrashvili Z, Theodorakis MJ et al (2007) Gut-expressed gustducin and taste receptors regulate secretion of glucagon-like peptide-1. Proc Natl Acad Sci USA 104:15069–15074

    Article  CAS  PubMed  Google Scholar 

  5. Le Gall M, Tobin V, Stolarczyk E et al (2007) Sugar sensing by enterocytes combines polarity, membrane bound detectors and sugar metabolism. J Cell Physiol 213:834–843

    Article  CAS  PubMed  Google Scholar 

  6. Mace OJ, Affleck J, Patel N et al (2007) Sweet taste receptors in rat small intestine stimulate glucose absorption through apical GLUT2. J Physiol 582:379–392

    Article  CAS  PubMed  Google Scholar 

  7. Margolskee RF, Dyer J, Kokrashvili Z et al (2007) T1R3 and gustducin in gut sense sugars to regulate expression of Na+-glucose cotransporter 1. Proc Natl Acad Sci USA 104:15075–15080

    Article  CAS  PubMed  Google Scholar 

  8. Nakagawa Y, Nagasawa M, Yamada S et al (2009) Sweet taste receptor expressed in pancreatic beta-cells activates the calcium and cyclic AMP signaling systems and stimulates insulin secretion. PLoS One 4:e5106

    Article  PubMed  Google Scholar 

  9. Ren X, Zhou L, Terwilliger R et al (2009) Sweet taste signaling functions as a hypothalamic glucose sensor. Front Integr Neurosci 3:12

    Article  PubMed  Google Scholar 

  10. Tsacopoulos M, Magistretti PJ (1996) Metabolic coupling between glia and neurons. J Neurosci 16:877–885

    CAS  PubMed  Google Scholar 

  11. Vannucci RC, Vannucci SJ (2000) Glucose metabolism in the developing brain. Semin Perinatol 24:107–115

    Article  CAS  PubMed  Google Scholar 

  12. Guo X, Geng M, Du G (2005) Glucose transporter 1, distribution in the brain and in neural disorders: its relationship with transport of neuroactive drugs through the blood-brain barrier. Biochem Genet 43:175–187

    Article  CAS  PubMed  Google Scholar 

  13. Pulsinelli WA, Brierley JB (1979) A new model of bilateral hemispheric ischemia in the unanesthetized rat. Stroke 10:267–272

    CAS  PubMed  Google Scholar 

  14. Lee MY, Shin SL, Choi YS et al (1999) Transient upregulation of osteopontin mRNA in hippocampus and striatum following global forebrain ischemia in rats. Neurosci Lett 271:81–84

    Article  CAS  PubMed  Google Scholar 

  15. Schmidt-Kastner R, Szymas J, Hossmann KA (1990) Immunohistochemical study of glial reaction and serum-protein extravasation in relation to neuronal damage in rat hippocampus after ischemia. Neuroscience 38:527–540

    Article  CAS  PubMed  Google Scholar 

  16. Jørgensen MB, Finsen BR, Jensen MB et al (1993) Microglial and astroglial reactions to ischemic and kainic acid-induced lesions of the adult rat hippocampus. Exp Neurol 120:70–88

    Article  PubMed  Google Scholar 

  17. Vigues S, Dotson CD, Munger SD (2009) The receptor basis of sweet taste in mammals. Results Probl Cell Differ 47:187–202

    CAS  PubMed  Google Scholar 

  18. Sternini C, Anselmi L, Rozengurt E (2008) Enteroendocrine cells: a site of ‘taste’ in gastrointestinal chemosensing. Curr Opin Endocrinol Diabetes Obes 15:73–78

    CAS  PubMed  Google Scholar 

  19. McKenna MC, Bezold LI, Kimatian SJ et al (1986) Competition of glycerol with other oxidizable substrates in rat brain. Biochem J 237:47–51

    CAS  PubMed  Google Scholar 

  20. Magistretti PJ, Pellerin L (1999) Cellular mechanisms of brain energy metabolism and their relevance to functional brain imaging. Philos Trans R Soc Lond B Biol Sci 354:1155–1163

    Article  CAS  PubMed  Google Scholar 

  21. Rotta LN, Valle SC, Schweigert I et al (2002) Utilization of energy nutrients by cerebellar slices. Neurochem Res 27:201–206

    Article  CAS  PubMed  Google Scholar 

  22. Nguyen NH, Bråthe A, Hassel B (2003) Neuronal uptake and metabolism of glycerol and the neuronal expression of mitochondrial glycerol-3-phosphate dehydrogenase. J Neurochem 85:831–842

    Article  CAS  PubMed  Google Scholar 

  23. Deitmer JW (2001) Strategies for metabolic exchange between glial cells and neurons. Respir Physiol 129:71–81

    Article  CAS  PubMed  Google Scholar 

  24. Pellerin L, Bouzier-Sore AK, Aubert A et al (2007) Activity-dependent regulation of energy metabolism by astrocytes: an update. Glia 55:1251–1262

    Article  PubMed  Google Scholar 

  25. Sims NR (1992) Energy metabolism and selective neuronal vulnerability following global cerebral ischemia. Neurochem Res 17:923–931

    Article  CAS  PubMed  Google Scholar 

  26. Hertz L (2008) Bioenergetics of cerebral ischemia: a cellular perspective. Neuropharmacology 55:289–309

    Article  CAS  PubMed  Google Scholar 

  27. Marrif H, Juurlink BH (1999) Astrocytes respond to hypoxia by increasing glycolytic capacity. J Neurosci Res 57:255–260

    Article  CAS  PubMed  Google Scholar 

  28. Kahlert S, Reiser G (2004) Glial perspectives of metabolic states during cerebral hypoxia–calcium regulation and metabolic energy. Cell Calcium 36:295–302

    Article  CAS  PubMed  Google Scholar 

  29. Lee WH, Bondy CA (1993) Ischemic injury induces brain glucose transporter gene expression. Endocrinology 133:2540–2544

    Article  CAS  PubMed  Google Scholar 

  30. Harik SI, Behmand RA, LaManna JC (1994) Hypoxia increases glucose transport at blood-brain barrier in rats. J Appl Physiol 77:896–901

    CAS  PubMed  Google Scholar 

  31. Vannucci SJ, Maher F, Koehler E et al (1994) Altered expression of GLUT-1 and GLUT-3 glucose transporters in neurohypophysis of water-deprived or diabetic rats. Am J Physiol 267:E605–E611

    CAS  PubMed  Google Scholar 

  32. Gerhart DZ, Leino RL, Taylor WE et al (1994) GLUT1 and GLUT3 gene expression in gerbil brain following brief ischemia: an in situ hybridization study. Brain Res Mol Brain Res 25:313–322

    Article  CAS  PubMed  Google Scholar 

  33. McCall AL, Van Bueren AM, Nipper V et al (1996) Forebrain ischemia increases GLUT1 protein in brain microvessels and parenchyma. J Cereb Blood Flow Metab 16:69–76

    Article  CAS  PubMed  Google Scholar 

  34. Zovein A, Flowers-Ziegler J, Thamotharan S et al (2004) Postnatal hypoxic-ischemic brain injury alters mechanisms mediating neuronal glucose transport. Am J Physiol Regul Integr Comp Physiol 286:R273–R282

    CAS  PubMed  Google Scholar 

  35. Marty N, Dallaporta M, Foretz M et al (2005) Regulation of glucagon secretion by glucose transporter type 2 (glut2) and astrocyte-dependent glucose sensors. J Clin Invest 115:3545–3553

    Article  CAS  PubMed  Google Scholar 

  36. Véga C, Sachleben LR, Gozal D Jr et al (2006) Differential metabolic adaptation to acute and long-term hypoxia in rat primary cortical astrocytes. J Neurochem 97:872–883

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Mid-career Researcher Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (No. 2010-0000333) and by a scholarship from Seoul Science Fellowship, Seoul City (Shin, Y-J).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mun-Yong Lee.

Additional information

Mun-Yong Lee and Young Wha Moon contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shin, YJ., Park, JH., Choi, JS. et al. Enhanced Expression of the Sweet Taste Receptors and Alpha-gustducin in Reactive Astrocytes of the Rat Hippocampus Following Ischemic Injury. Neurochem Res 35, 1628–1634 (2010). https://doi.org/10.1007/s11064-010-0223-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-010-0223-2

Keywords

Navigation