Skip to main content
Log in

Protein Kinase G Regulates Dopamine Release, ΔFosB Expression, and Locomotor Activity After Repeated Cocaine Administration: Involvement of Dopamine D2 Receptors

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Protein kinase G (PKG) activation has been implicated in the regulation of synaptic plasticity in the brain. This study was conducted to determine the involvement of PKG-associated dopamine D2 (D2) receptors in the regulation of dopamine release, ΔFosB expression and locomotor activity in response to repeated cocaine exposure. Repeated systemic injections of cocaine (20 mg/kg), once a day for seven consecutive days, increased cyclic guanosine monophosphate (cGMP) and extracellular dopamine concentrations in the dorsal striatum. Inhibition of neuronal nitric oxide synthase (nNOS), cGMP or PKG and stimulation of D2 receptors decreased the repeated cocaine-induced increase in dopamine concentrations. Similar results were obtained by the combining nNOS, cGMP or PKG inhibition with stimulation of D2 receptors. Parallel to these data, PKG inhibition, D2 receptor stimulation, and combining PKG inhibition with stimulation of D2 receptors decreased the repeated cocaine-induced increases in ΔFosB expression and locomotor activity. These findings suggest that control of D2 receptors by PKG activation after repeated cocaine is responsible for upregulating dopamine release and sustained long-term changes in gene expression in the dopamine terminals and gamma-aminobutyric acid neurons of the dorsal striatum, respectively. This upregulation may contribute to behavioral changes in response to repeated exposure to cocaine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Di Chiara G, Bassareo V (2007) Reward system and addiction: what dopamine does and doesn’t do. Curr Opin Pharmacol 7:69–76

    Article  PubMed  Google Scholar 

  2. Volkow ND, Wang GJ, Telang F, Fowler JS, Logan J, Childress AR, Jayne M, Ma Y, Wong C (2006) Cocaine cues and dopamine in dorsal striatum: mechanism of craving in cocaine addiction. J Neurosci 26:6583–6588

    Article  PubMed  CAS  Google Scholar 

  3. Balleine BW, Delgado MR, Hikosaka O (2007) The role of the dorsal striatum in reward and decision-making. J Neurosci 27:8161–8165

    Article  PubMed  CAS  Google Scholar 

  4. Beaulieu JM, Gainetdinov RR (2011) The physiology, signaling, and pharmacology of dopamine receptors. Pharmacol Rev 63:182–217

    Article  PubMed  CAS  Google Scholar 

  5. Maina FK, Mathews TA (2010) A functional fast scan cyclic voltammetry assay to characterize dopamine D2 and D3 autoreceptors in the mouse striatum. ACS Chem Neurosci 1:450–462

    Article  PubMed  CAS  Google Scholar 

  6. Liu XY, Mao LM, Zhang GC, Papasian CJ, Fibuch EE, Lan HX, Zhou HF, Xu M, Wang JQ (2009) Activity-dependent modulation of limbic dopamine D3 receptors by CaMKII. Neuron 61:425–438

    Article  PubMed  CAS  Google Scholar 

  7. Lee DK, Koh WC, Shim YB, Shim I, Choe ES (2010) Repeated cocaine administration increases nitric oxide efflux in the rat dorsal striatum. Psychopharmacology 208:245–256

    Article  PubMed  CAS  Google Scholar 

  8. Sammut S, Threlfell S, West AR (2010) Nitric oxide-soluble guanylyl cyclase signaling regulates corticostriatal transmission and short-term synaptic plasticity of striatal projection neurons recorded in vivo. Neuropharmacology 58:624–631

    Article  PubMed  CAS  Google Scholar 

  9. Domek-Łopacińska K, Strosznajder JB (2005) Cyclic GMP metabolism and its role in brain physiology. J Physiol Pharmacol 2:15–34

    Google Scholar 

  10. Chien WL, Liang KC, Teng CM, Kuo SC, Lee FY, Fu WM (2005) Enhancement of learning behaviour by a potent nitric oxide-guanylate cyclase activator YC-1. Eur J Neurosci 21:1679–1688

    Article  PubMed  Google Scholar 

  11. Jouvert P, Revel MO, Lazaris A, Aunis D, Langley K, Zwiller J (2004) Activation of the cGMP pathway in dopaminergic structures reduces cocaine-induced EGR-1 expression and locomotor activity. J Neurosci 24:10716–10725

    Article  PubMed  CAS  Google Scholar 

  12. Abdelwahab AA, Lee HM, Shim YB (2009) Selective determination of dopamine with a cibacron blue/poly-1,5-diaminonaphthalene composite film. Anal Chim Acta 650:247–253

    Article  PubMed  CAS  Google Scholar 

  13. Choe ES, Parelkar NK, Kim JY, Cho HW, Kang HS, Mao L, Wang JQ (2004) The protein phosphatase 1/2A inhibitor okadaic acid increases CREB and Elk-1 phosphorylation and c-fos expression in the rat striatum in vivo. J Neurochem 89:383–390

    Article  PubMed  CAS  Google Scholar 

  14. Liu XY, Chu XP, Mao LM, Wang M, Lan HX, Li MH, Zhang GC, Parelkar NK, Fibuch EE, Haines M, Neve KA, Liu F, Xiong ZG, Wang JQ (2006) Modulation of D2R-NR2B interactions in response to cocaine. Neuron 52:897–909

    Article  PubMed  CAS  Google Scholar 

  15. Hong SK, Jung IS, Bang SA, Kim SE (2006) Effect of nitric oxide synthase inhibitor and NMDA receptor antagonist on the development of nicotine sensitization of nucleus accumbens dopamine release: an in vivo microdialysis study. Neurosci Lett 409:220–223

    Article  PubMed  CAS  Google Scholar 

  16. Sato SM, Wersinger SR, Hull EM (2007) The effects of nitric oxide-cGMP pathway stimulation on dopamine in the medial preoptic area and copulation in DHT-treated castrated male rats. Horm Behav 52:177–182

    Article  PubMed  CAS  Google Scholar 

  17. Serra PA, Rocchitta G, Delogu MR, Migheli R, Taras MG, Mura MP, Esposito G, Miele E, Desole MS, Miele M (2003) Role of the nitric oxide/cyclic GMP pathway and extracellular environment in the nitric oxide donor-induced increase in dopamine secretion from PC12 cells: a microdialysis in vitro study. J Neurochem 86:1403–1413

    Article  PubMed  CAS  Google Scholar 

  18. West AR, Galloway MP, Grace AA (2002) Regulation of striatal dopamine neurotransmission by nitric oxide: effector pathways and signaling mechanisms. Synapse 44:227–245

    Article  PubMed  CAS  Google Scholar 

  19. Cai Z, Saugstad JA, Sorensen SD, Ciombor KJ, Zhang C, Schaffhauser H, Hubalek F, Pohl J, Duvoisin RM, Conn PJ (2001) Cyclic AMP-dependent protein kinase phosphorylates group III metabotropic glutamate receptors and inhibits their function as presynaptic receptors. J Neurochem 78:756–766

    Article  PubMed  CAS  Google Scholar 

  20. Mao LM, Guo ML, Jin DZ, Fibuch EE, Choe ES, Wang JQ (2011) Post-translational modification biology of glutamate receptors and drug addiction. Front Neuroanat 5:19

    Article  PubMed  Google Scholar 

  21. Schaffhauser H, Cai Z, Hubalek F, Macek TA, Pohl J, Murphy TJ, Conn PJ (2000) cAMP-dependent protein kinase inhibits mGluR2 coupling to G-proteins by direct receptor phosphorylation. J Neurosci 20:5663–5670

    PubMed  CAS  Google Scholar 

  22. Venton BJ, Seipel AT, Phillips PE, Wetsel WC, Gitler D, Greengard P, Augustine GJ, Wightman RM (2006) Cocaine increases dopamine release by mobilization of a synapsin-dependent reserve pool. J Neurosci 26:3206–3209

    Article  PubMed  CAS  Google Scholar 

  23. Chong VZ, Skoblenick K, Morin F, Xu Y, Mishra RK (2006) Dopamine-D1 and -D2 receptors differentially regulate synapsin II expression in the rat brain. Neuroscience 138:587–599

    Article  PubMed  CAS  Google Scholar 

  24. Anderson SM, Pierce RC (2005) Cocaine-induced alterations in dopamine receptor signaling: implications for reinforcement and reinstatement. Pharmacol Ther 106:389–403

    Article  PubMed  CAS  Google Scholar 

  25. De Mei C, Ramos M, Iitaka C, Borrelli E (2009) Getting specialized: presynaptic and postsynaptic dopamine D2 receptors. Curr Opin Pharmacol 9:53–58

    Article  PubMed  Google Scholar 

  26. Xue Y, Steketee JD, Rebec GV, Sun W (2011) Activation of D2-like receptors in rat ventral tegmental area inhibits cocaine-reinstated drug-seeking behavior. Eur J Neurosci 33:1291–1298

    Article  PubMed  Google Scholar 

  27. Bello EP, Mateo Y, Gelman DM, Noaín D, Shin JH, Low MJ, Alvarez VA, Lovinger DM, Rubinstein M (2011) Cocaine supersensitivity and enhanced motivation for reward in mice lacking dopamine D2 autoreceptors. Nat Neurosci 14:1033–1038

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (20100016867).

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eun Sang Choe.

Additional information

Dong Kun Lee and Jeong Hwan Oh contributed equally.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, D.K., Oh, J.H., Shim, YB. et al. Protein Kinase G Regulates Dopamine Release, ΔFosB Expression, and Locomotor Activity After Repeated Cocaine Administration: Involvement of Dopamine D2 Receptors. Neurochem Res 38, 1424–1433 (2013). https://doi.org/10.1007/s11064-013-1040-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-013-1040-1

Keywords

Navigation