Skip to main content
Log in

GluN2B Subunit of the NMDA Receptor: The Keystone of the Effects of Alcohol During Neurodevelopment

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The glutamatergic system plays a central role in both the acute and chronic effects of ethanol. Among all the glutamate receptors the ionotropic NMDA receptors are crucial because of their role in synaptic plasticity. A large body of evidences suggests that short-term and long-term effects of ethanol may change synaptic plasticity via an alteration of the expression of the GluN2B subunit, one constitutive element of the NMDA receptor. The present review is focusing on the role of the GluN2B subunit after ethanol exposure during early life (in utero and adolescence) and also at adulthood. The roles of other NMDA subunits are also discussed in the context of the increasing evidence that the ratio of the different subunits, such as GluN2A-to-GluN2B, seems to better reflect the effects of ethanol and to explain how ethanol exposure can have short lasting and long lasting effects on synaptic plasticity, cognitive processes and some of the ethanol-related behaviors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Roth S, Seeman P (1972) Meyer-Overton rule of anesthesia; negative narcotics do not. Biochim Biophys Acta 255:207–219

    Article  CAS  PubMed  Google Scholar 

  2. Lovinger DM, White G, Weight FF (1989) Ethanol inhibits NMDA-activated ion current in hippocampal neurons. Science 243(4899):1721–1724

    Article  CAS  PubMed  Google Scholar 

  3. Chen X, Michaelis ML, Michaelis EK (1997) Effects of chronic ethanol treatment on the expression of calcium transport carriers and NMDA/glutamate receptor proteins in brain synaptic membranes. J Neurochem 69:1559–1569

    Article  CAS  PubMed  Google Scholar 

  4. Michaelis EK (1997) L-glutamate and N-methyl-D-aspartate receptors: learning, growth, and death in the mammalian brain. Nutrition 13:696–697

    Article  CAS  PubMed  Google Scholar 

  5. Paoletti P, Bellone C, Zhou Q (2013) NMDA receptor subunit diversity: impact on receptor properties, synaptic plasticity and disease. Nat Rev Neurosci 14:383–400

    Article  CAS  PubMed  Google Scholar 

  6. Lau CG, Zukin RS (2007) NMDA receptor trafficking in synaptic plasticity and neuropsychiatric disorders. Nat Rev Neurosci 8:413–426

    Article  CAS  PubMed  Google Scholar 

  7. Lüscher C (2013) Drug-evoked synaptic plasticity causing addictive behavior. J Neurosci 33:17641–17646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Holmes A, Spanagel R, Krystal JH (2013) Glutamatergic targets for new alcohol medications. Psychopharmacology 229:539–554

    Article  CAS  PubMed  Google Scholar 

  9. Hopf FW (2017) Do specific NMDA receptor subunits act as gateways for addictive behaviors? Genes Brain Behav 16(1):118–138

    Article  CAS  PubMed  Google Scholar 

  10. Nagy J (2004) The NR2B subtype of NMDA receptor: a potential target for the treatment of alcohol dependence. Curr Drug Targets CNS Neurol Disord 3:169–179

    Article  CAS  PubMed  Google Scholar 

  11. Cavara NA, Hollmann M (2008) Shuffling the deck anew: how NR3 tweaks NMDA receptor function. Mol Neurobiol 38:16–26

    Article  CAS  PubMed  Google Scholar 

  12. Hoffman PL, Bhave SV, Kumar KN, Iorio KR, Snell LD, Tabakoff B, Michaelis EK (1996) The 71 kDa glutamate-binding protein is increased in cerebellar granule cells after chronic ethanol treatment. Brain Res Mol Brain Res 39:167–176

    Article  CAS  PubMed  Google Scholar 

  13. Gonda X (2012) Basic pharmacology of NMDA receptors. Curr Pharm Des 18:1558–1567

    Article  CAS  PubMed  Google Scholar 

  14. Barondes SH, Traynor ME, Schlapfer WT, Woodson PB (1979) Rapid adaptation to neuronal membrane effects of ethanol and low temperature: some speculations on mechanism. Drug Alcohol Depend 4:155–166

    Article  CAS  PubMed  Google Scholar 

  15. Alling C, Liljequist S, Engel J (1982) The effect of chronic ethanol administration on lipids and fatty acids in subcellular fractions of rat brain. Med Biol 60:149–154

    CAS  PubMed  Google Scholar 

  16. Smith TL, Gerhart MJ (1982) Alterations in brain lipid composition of mice made physically dependent to ethanol. Life Sci 31:1419–1425

    Article  CAS  PubMed  Google Scholar 

  17. Wing DR, Harvey DJ, Hughes J, Dunbar PG, McPherson KA, Paton WD (1982) Effects of chronic ethanol administration on the composition of membrane lipids in the mouse. Biochem Pharmacol 31:3431–3439

    Article  CAS  PubMed  Google Scholar 

  18. Michaelis EK, Michaelis ML, Freed WJ (1980) Chronic ethanol intake and synaptosomal glutamate binding activity. Adv Exp Med Biol 126:43–56

    Article  CAS  PubMed  Google Scholar 

  19. Michaelis EK, Chang HH, Roy S, McFaul JA, Zimbrick JD (1983) Ethanol effects on synaptic glutamate receptor function and on membrane lipid organization. Pharmacol Biochem Behav 18(Suppl 1):1–6

    Article  CAS  PubMed  Google Scholar 

  20. Reddy VD, Padmavathi P, Bulle S, Hebbani AV, Marthadu SB, Venugopalacharyulu NC, Maturu P, Varadacharyulu NC (2017) Association between alcohol-induced oxidative stress and membrane properties in synaptosomes: a protective role of vitamin E. Neurotoxicol Teratol 63:60–65

    Article  CAS  PubMed  Google Scholar 

  21. Le Bail M, Martineau M, Sacchi S, Yatsenko N, Radzishevsky I, Conrod S, Ait Ouares K, Wolosker H, Pollegioni L, Billard JM, Mothet JP (2015) Identity of the NMDA receptor coagonist is synapse specific and developmentally regulated in the hippocampus. Proc Natl Acad Sci USA 112:E204–E213

    Article  CAS  PubMed  Google Scholar 

  22. Freed WJ, Michaelis EK (1978) Glutamic acid and ethanol dependence. Pharmacol Biochem Behav 8:509–514

    Article  CAS  PubMed  Google Scholar 

  23. Michaelis EK, Zimbrick JD, McFaul JA, Lampe RA, Michaelis ML (1980) Ethanol effects on synaptic glutamate receptors and on liposomal membrane structure. Pharmacol Biochem Behav 13(Suppl 1):197–202

    Article  CAS  PubMed  Google Scholar 

  24. Woodward JJ (2000) Ethanol and NMDA receptor signaling. Crit Rev Neurobiol 14:69–89

    Article  CAS  PubMed  Google Scholar 

  25. Ronald KM, Mirshahi T, Woodward JJ (2001) Ethanol inhibition of N-methyl-D-aspartate receptors is reduced by site-directed mutagenesis of a transmembrane domain phenylalanine residue. J Biol Chem 276:44729–44735

    Article  CAS  PubMed  Google Scholar 

  26. Smothers CT, Woodward JJ (2006) Effects of amino acid substitutions in transmembrane domains of the NR1 subunit on the ethanol inhibition of recombinant N-methyl-D-aspartate receptors. Alcohol Clin Exp Res 30:523–530

    Article  CAS  PubMed  Google Scholar 

  27. Salous AK, Ren H, Lamb KA, Hu XQ, Lipsky RH, Peoples RW (2009) Differential actions of ethanol and trichloroethanol at sites in the M3 and M4 domains of the NMDA receptor GluN2A (NR2A) subunit. Br J Pharmacol 158:1395–1404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Xu M, Smothers CT, Trudell J, Woodward JJ (2012) Ethanol inhibition of constitutively open N-methyl-D-aspartate receptors. J Pharmacol Exp Ther 340:218–226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ren H, Zhao Y, Wu M, Peoples RW (2013) A novel alcohol-sensitive position in the N-methyl-D-aspartate receptor GluN2A subunit M3 domain regulates agonist affinity and ion channel gating. Mol Pharmacol 84:501–510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Honse Y, Ren H, Lipsky RH, Peoples RW (2004) Sites in the fourth membrane-associated domain regulate alcohol sensitivity of the NMDA receptor. Neuropharmacology 46:647–654

    Article  CAS  PubMed  Google Scholar 

  31. Ren H, Zhao Y, Wu M, Dwyer DS, Peoples RW (2017) Two adjacent phenylalanines in the NMDA receptor GluN2A subunit M3 domain interactively regulate alcohol sensitivity and ion channel gating. Neuropharmacology 114:20–33

    Article  CAS  PubMed  Google Scholar 

  32. Ren H, Zhao Y, Dwyer DS, Peoples RW (2012) Interactions among positions in the third and fourth membrane-associated domains at the intersubunit interface of the N-methyl-D-aspartate receptor forming sites of alcohol action. J Biol Chem 287:27302–27312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ren H, Salous AK, Paul JM, Lamb KA, Dwyer DS, Peoples RW (2008) Functional interactions of alcohol-sensitive sites in the N-methyl-D-aspartate receptor M3 and M4 domains. J Biol Chem 283:8250–8257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ren H, Salous AK, Paul JM, Lipsky RH, Peoples RW (2007) Mutations at F637 in the NMDA receptor NR2A subunit M3 domain influence agonist potency, ion channel gating and alcohol action. Br J Pharmacol 151:749–757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Smothers CT, Jin C, Woodward JJ (2013) Deletion of the N-terminal domain alters the ethanol inhibition of N-methyl-D-aspartate receptors in a subunit-dependent manner. Alcohol Clin Exp Res 37:1882–1890

    Article  CAS  PubMed  Google Scholar 

  36. Hughes BA, Woodward JJ (2016) Disruption of S2-M4 linker coupling reveals novel subunit-specific contributions to N-methyl-d-aspartate receptor function and ethanol sensitivity. Neuropharmacology 105:96–105

    Article  CAS  PubMed  Google Scholar 

  37. Zhao Y, Ren H, Dwyer DS, Peoples RW (2015) Different sites of alcohol action in the NMDA receptor GluN2A and GluN2B subunits. Neuropharmacology 97:240–250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhao Y, Ren H, Peoples RW (2016) Intersubunit interactions at putative sites of ethanol action in the M3 and M4 domains of the NMDA receptor GluN1 and GluN2B subunits. Br J Pharmacol 173:1950–1965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Colton CA, Colton JS (1977) Depression of glutamate-mediated synaptic transmission by benzyl alcohol. Can J Physiol Pharmacol 55:917–922

    Article  CAS  PubMed  Google Scholar 

  40. Gruol DL (1982) Ethanol alters synaptic activity in cultured spinal cord neurons. Brain Res 243:25–33

    Article  CAS  PubMed  Google Scholar 

  41. Druse MJ (1981) Effects of maternal ethanol consumption of neurotransmitters and lipids in offspring. Neurobehav Toxicol Teratol 3:81–87

    CAS  PubMed  Google Scholar 

  42. Penn PE, McBride WJ, Lumeng L, Gaff TM, Li TK (1978) Neurochemical and operant behavioral studies of a strain of alcohol-preferring rats. Pharmacol Biochem Behav 8:475–481

    Article  CAS  PubMed  Google Scholar 

  43. Lovinger DM, White G, Weight FF (1990) NMDA receptor-mediated synaptic excitation selectively inhibited by ethanol in hippocampal slice from adult rat. J Neurosci 10:1372–1379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Goodwani S, Saternos H, Alasmari F, Sari Y (2017) Metabotropic and ionotropic glutamate receptors as potential targets for the treatment of alcohol use disorder. Neurosci Biobehav Rev 77:14–31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Jin C, Woodward JJ (2006) Effects of 8 different NR1 splice variants on the ethanol inhibition of recombinant NMDA receptors. Alcohol Clin Exp Res 30:673–679

    Article  CAS  PubMed  Google Scholar 

  46. Lovinger DM (1995) Developmental decrease in ethanol inhibition of N-methyl-D-aspartate receptors in rat neocortical neurons: relation to the actions of ifenprodil. J Pharmacol Exp Ther 274:164–172

    CAS  PubMed  Google Scholar 

  47. Wang J, Lanfranco MF, Gibb SL, Yowell QV, Carnicella S, Ron D (2010) Long-lasting adaptations of the NR2B-containing NMDA receptors in the dorsomedial striatum play a crucial role in alcohol consumption and relapse. J Neurosci 30:10187–10198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wills TA, Klug JR, Silberman Y, Baucum AJ, Weitlauf C, Colbran RJ, Delpire E, Winder DG (2012) GluN2B subunit deletion reveals key role in acute and chronic ethanol sensitivity of glutamate synapses in bed nucleus of the stria terminalis. Proc Natl Acad Sci USA 109:E278–E287

    Article  PubMed  PubMed Central  Google Scholar 

  49. Badanich KA, Mulholland PJ, Beckley JT, Trantham-Davidson H, Woodward JJ (2013) Ethanol reduces neuronal excitability of lateral orbitofrontal cortex neurons via a glycine receptor dependent mechanism. Neuropsychopharmacology 38:1176–1188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Swartzwelder HS, Wilson WA, Tayyeb MI (1995) Differential sensitivity of NMDA receptor-mediated synaptic potentials to ethanol in immature versus mature hippocampus. Alcohol Clin Exp Res 19:320–323

    Article  CAS  PubMed  Google Scholar 

  51. Popp RL, Lickteig RL, Lovinger DM (1999) Factors that enhance ethanol inhibition of N-methyl-D-aspartate receptors in cerebellar granule cells. J Pharmacol Exp Ther 289:1564–1574

    CAS  PubMed  Google Scholar 

  52. Jin C, Smothers C, Woodward JJ (2008) Enhanced ethanol inhibition of recombinant NMDA receptors by magnesium: role of NR3 subunits. Alcohol Clin Exp Res 32:1059–1066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Yaka R, Tang KC, Camarini R, Janak PH, Ron D (3003) Fyn kinase and NR2B-containing NMDA receptors regulate acute ethanol sensitivity but not ethanol intake or conditioned reward. Alcohol Clin Exp Res 27:1736–1742

    Article  CAS  Google Scholar 

  54. Michaelis EK, Chen X, Joseph DB, Hurlbert M, Kumar KN, Michaelis ML (1996) Ethanol-induced inhibition of [3H]thienylcyclohexylpiperidine (TCP) binding to NMDA receptors in brain synaptic membranes and to a purified protein complex. J Neurochem 67:201–211

    Article  CAS  PubMed  Google Scholar 

  55. Bao X, Hui D, Naassila M, Michaelis EK (2001) Chronic ethanol exposure increases gene transcription of subunits of an N-methyl-D-aspartate receptor-like complex in cortical neurons in culture. Neurosci Lett 315:5–8

    Article  CAS  PubMed  Google Scholar 

  56. Kumari M, Ticku MK (2000) Regulation of NMDA receptors by ethanol. Prog Drug Res 54:152–189

    CAS  PubMed  Google Scholar 

  57. Nona CN, Li R, Nobrega JN (2014) Altered NMDA receptor subunit gene expression in brains of mice showing high vs. low sensitization to ethanol. Behav Brain Res 260:58–66

    Article  CAS  PubMed  Google Scholar 

  58. Coune F, Silvestre de Ferron B, González-Marín MC, Antol J, Naassila M, Pierrefiche O (2017) Resistance to ethanol sensitization is associated with a loss of synaptic plasticity in the hippocampus. Synapse. https://doi.org/10.1002/syn.21899

    Article  PubMed  Google Scholar 

  59. Kervern M, Silvestre de Ferron B, Alaux-Cantin S, Fedorenko O, Antol J, Naassila M, Pierrefiche O (2015) Aberrant NMDA-dependent LTD after perinatal ethanol exposure in young adult rat hippocampus. Hippocampus 25:912–923

    Article  CAS  PubMed  Google Scholar 

  60. Carpenter-Hyland EP, Woodward JJ, Chandler LJ (2004) Chronic ethanol induces synaptic but not extrasynaptic targeting of NMDA receptors. J Neurosci 24:7859–7868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Qiang M, Denny AD, Ticku MK (2007) Chronic intermittent ethanol treatment selectively alters N-methyl-D-aspartate receptor subunit surface expression in cultured cortical neurons. Mol Pharmacol 72:95–102

    Article  CAS  PubMed  Google Scholar 

  62. Sheela Rani CS, Ticku MK (2006) Comparison of chronic ethanol and chronic intermittent ethanol treatments on the expression of GABA(A) and NMDA receptor subunits. Alcohol 38:89–97

    Article  CAS  PubMed  Google Scholar 

  63. McGuier NS, Padula AE, Mulholland PJ, Chandler LJ (2015) Homer2 deletion alters dendritic spine morphology but not alcohol-associated adaptations in GluN2B-containing N-methyl-D-aspartate receptors in the nucleus accumbens. Front Pharmacol 6:28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Renteria R, Maier EY, Buske TR, Morrisett RA (2017) Selective alterations of NMDAR function and plasticity in D1 and D2 medium spiny neurons in the nucleus accumbens shell following chronic intermittent ethanol exposure. Neuropharmacology 112:164–171

    Article  CAS  PubMed  Google Scholar 

  65. Beckley JT, Laguesse S, Phamluong K, Morisot N, Wegner SA, Ron D (2016) The first alcohol drink triggers mTORC1-dependent synaptic plasticity in nucleus accumbens dopamine D1 receptor neurons. J Neurosci 36:701–713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Silvestre de Ferron B, Bennouar KE, Kervern M, Alaux-Cantin S, Robert A, Rabiant K, Antol J, Naassila M, Pierrefiche O (2015) Two binges of ethanol a day keep the memory away in adolescent rats: key role for GLUN2B subunit. Int J Neuropsychopharmacol. https://doi.org/10.1093/ijnp/pyv087

    Article  PubMed  PubMed Central  Google Scholar 

  67. Kalluri HS, Mehta AK, Ticku MK (1998) Up-regulation of NMDA receptor subunits in rat brain following chronic ethanol treatment. Brain Res Mol Brain Res 58:221–224

    Article  CAS  PubMed  Google Scholar 

  68. Radke AK, Jury NJ, Kocharian A, Marcinkiewcz CA, Lowery-Gionta EG, Pleil KE, McElligott ZA, McKlveen JM, Kash TL, Holmes A (2017) Chronic EtOH effects on putative measures of compulsive behavior in mice. Addict Biol 22:423–434

    Article  CAS  PubMed  Google Scholar 

  69. Radke AK, Nakazawa K, Holmes A (2015) Cortical GluN2B deletion attenuates punished suppression of food reward-seeking. Psychopharmacology 232:3753–3761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Nimitvilai S, Lopez MF, Mulholland PJ, Woodward JJ (2016) Chronic intermittent ethanol exposure enhances the excitability and synaptic plasticity of lateral orbitofrontal cortex neurons and induces a tolerance to the acute inhibitory actions of ethanol. Neuropsychopharmacology 41:1112–1127

    Article  CAS  PubMed  Google Scholar 

  71. Kash TL, Matthews RT, Winder DG (2008) Alcohol inhibits NR2B-containing NMDA receptors in the ventral bed nucleus of the stria terminalis. Neuropsychopharmacology 33:1379–1390

    Article  CAS  PubMed  Google Scholar 

  72. Hsieh WK, Lin HH, Lai CC (2009) Involvement of protein kinase C and Src tyrosine kinase in acute tolerance to ethanol inhibition of spinal NMDA-induced pressor responses in rats. Br J Pharmacol 158:806–818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Enoch MA, Rosser AA, Zhou Z, Mash DC, Yuan Q, Goldman D (2014) Expression of glutamatergic genes in healthy humans across 16 brain regions; altered expression in the hippocampus after chronic exposure to alcohol or cocaine. Genes Brain Behav 13:758–768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Krystal JH, Petrakis IL, Limoncelli D, Nappi SK, Trevisan L, Pittman B, D’Souza DC, Suckow RF (2011) Characterization of the interactive effects of glycine and D-cycloserine in men: further evidence for enhanced NMDA receptor function associated with human alcohol dependence. Neuropsychopharmacology 36:701–710

    Article  CAS  PubMed  Google Scholar 

  75. Iqbal U, Brien JF, Kapoor A, Matthews SG, Reynolds JN (2006) Chronic prenatal ethanol exposure increases glucocorticoid-induced glutamate release in the hippocampus of the near-term foetal guinea pig. J Neuroendocrinol 18:826–834

    Article  CAS  PubMed  Google Scholar 

  76. Naassila M, Daoust M (2002) Effect of prenatal and postnatal ethanol exposure on the developmental profile of mRNAs encoding NMDA receptor subunits in rat hippocampus. J Neurochem 80:850–860

    Article  CAS  PubMed  Google Scholar 

  77. Barbier E, Pierrefiche O, Vaudry D, Vaudry H, Daoust M, Naassila M (2008) Long-term alterations in vulnerability to addiction to drugs of abuse and in brain gene expression after early life ethanol exposure. Neuropharmacology 55:1199–1211

    Article  CAS  PubMed  Google Scholar 

  78. Dubois C, Houchi H, Naassila M, Daoust M, Pierrefiche O (2008) Blunted response to low oxygen of rat respiratory network after perinatal ethanol exposure: involvement of inhibitory control. J Physiol 586:1413–1427

    Article  CAS  PubMed  Google Scholar 

  79. Kervern M, Dubois C, Naassila M, Daoust M, Pierrefiche O (2009) Perinatal alcohol exposure in rat induces long-term depression of respiration after episodic hypoxia. Am J Respir Crit Care Med 179:608–614

    Article  CAS  PubMed  Google Scholar 

  80. Brolese G, Lunardi P, Broetto N, Engelke DS, Lírio F, Batassini C, Tramontina AC, Gonçalves CA (2014) Moderate prenatal alcohol exposure alters behavior and neuroglial parameters in adolescent rats. Behav Brain Res 269:175–184

    Article  CAS  PubMed  Google Scholar 

  81. Sickmann HM, Patten AR, Morch K, Sawchuk S, Zhang C, Parton R, Szlavik L, Christie BR (2014) Prenatal ethanol exposure has sex-specific effects on hippocampal long-term potentiation. Hippocampus 24:54–64

    Article  CAS  PubMed  Google Scholar 

  82. Nixon K, Hughes PD, Amsel A, Leslie SW (2004) NMDA receptor subunit expression after combined prenatal and postnatal exposure to ethanol. Alcohol Clin Exp Res 28:105–112

    Article  CAS  PubMed  Google Scholar 

  83. Nixon K, Hughes PD, Amsel A, Leslie SW (2002) NMDA receptor subunit expression following early postnatal exposure to ethanol. Brain Res Dev Brain Res 139:295–299

    Article  CAS  PubMed  Google Scholar 

  84. Samudio-Ruiz SL, Allan AM, Sheema S, Caldwell KK (2010) Hippocampal N-methyl-D-aspartate receptor subunit expression profiles in a mouse model of prenatal alcohol exposure. Alcohol Clin Exp Res 34:342–353

    Article  CAS  PubMed  Google Scholar 

  85. Bird CW, Candelaria-Cook FT, Magcalas CM, Davies S, Valenzuela CF, Savage DD, Hamilton DA (2015) Moderate prenatal alcohol exposure enhances GluN2B containing NMDA receptor binding and ifenprodil sensitivity in rat agranular insular cortex. PLoS ONE 10(3):e0118721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Brady ML, Diaz MR, Iuso A, Everett JC, Valenzuela CF, Caldwell KK (2013) Moderate prenatal alcohol exposure reduces plasticity and alters NMDA receptor subunit composition in the dentate gyrus. J Neurosci 33:1062–1067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Zink M, Ferbert T, Frank ST, Seufert P, Gebicke-Haerter PJ, Spanagel R (2011) Perinatal exposure to alcohol disturbs spatial learning and glutamate transmission-related gene expression in the adult hippocampus. Eur J Neurosci 34:457–468

    Article  PubMed  Google Scholar 

  88. Hughes PD, Kim YN, Randall PK, Leslie SW (1998) Effect of prenatal ethanol exposure on the developmental profile of the NMDA receptor subunits in rat forebrain and hippocampus. Alcohol Clin Exp Res 22:1255–1261

    Article  CAS  PubMed  Google Scholar 

  89. Schlegel RN, Spiers JG, Moritz KM, Cullen CL, Björkman ST, Paravicini TM (2017) Maternal hypomagnesemia alters hippocampal NMDAR subunit expression and programs anxiety-like behaviour in adult offspring. Behav Brain Res 328:39–47

    Article  CAS  PubMed  Google Scholar 

  90. Huang Y, Shen W, Su J, Cheng B, Li D, Liu G, Zhou WX, Zhang YX (2017) Modulating the balance of synaptic and extrasynaptic NMDA receptors shows positive effects against amyloid-β-induced neurotoxicity. J Alzheimers Dis 57:885–897

    Article  CAS  PubMed  Google Scholar 

  91. Loddenkemper T, Talos DM, Cleary RT, Joseph A, Sánchez Fernández I, Alexopoulos A, Kotagal P, Najm I, Jensen FE (2014) Subunit composition of glutamate and gamma-aminobutyric acid receptors in status epilepticus. Epilepsy Res 108:605–615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Holehonnur R, Phensy AJ, Kim LJ, Milivojevic M, Vuong D, Daison DK, Alex S, Tiner M, Jones LE, Kroener S, Ploski JE (2016) Increasing the GluN2A/GluN2B ratio in neurons of the mouse basal and lateral amygdala inhibits the modification of an existing fear memory trace. J Neurosci 36:9490–9504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. den Hartog CR, Beckley JT, Smothers TC, Lench DH, Holseberg ZL, Fedarovich H, Gilstrap MJ, Homanics GE, Woodward JJ (2013) Alterations in ethanol-induced behaviors and consumption in knock-in mice expressing ethanol-resistant NMDA receptors. PLoS ONE 8:e80541

    Article  CAS  Google Scholar 

  94. Mellone M, Stanic J, Hernandez LF, Iglesias E, Zianni E, Longhi A, Prigent A, Picconi B, Calabresi P, Hirsch EC, Obeso JA, Di Luca M, Gardoni F (2015) NMDA receptor GluN2A/GluN2B subunit ratio as synaptic trait of levodopa-induced dyskinesias: from experimental models to patients. Front Cell Neurosci 9:245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Goodfellow MJ, Abdulla KA, Lindquist DH (2016) Neonatal ethanol exposure impairs trace fear conditioning and alters NMDA receptor subunit expression in adult male and female rats. Alcohol Clin Exp Res 40:309–318

    Article  CAS  PubMed  Google Scholar 

  96. Cercato MC, Colettis N, Snitcofsky M, Aguirre AI, Kornisiuk EE, Baez MV, Jerusalinsky DA (2014) Hippocampal NMDA receptors and the previous experience effect on memory. J Physiol Paris 108:263–269

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivier Pierrefiche.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naassila, M., Pierrefiche, O. GluN2B Subunit of the NMDA Receptor: The Keystone of the Effects of Alcohol During Neurodevelopment. Neurochem Res 44, 78–88 (2019). https://doi.org/10.1007/s11064-017-2462-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-017-2462-y

Keywords

Navigation