Skip to main content
Log in

d-Serine, the Shape-Shifting NMDA Receptor Co-agonist

  • Review
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Shape-shifting, a phenomenon wide-spread in folklore, refers to the ability to physically change from one identity to another, typically from an innocuous entity to a destructive one. The amino acid d-serine over the last 25 years has “shape-shifted” into several identities: a purported glial transmitter activating N-methyl-d-aspartate receptors (NMDARs), a co-transmitter concentrated in excitatory glutamatergic neurons, an autocrine that is released at dendritic spines to prime their post-synaptic NMDARs for an instantaneous response to glutamate and an excitotoxic moiety released from inflammatory (A1) astrocytes. This article will review evidence in support of these scenarios and the artifacts that misled investigators of the true identity of d-serine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Corrigan JJ (1969) D-Amino acids in animals. Science 164:142–148

    Article  CAS  PubMed  Google Scholar 

  2. Reitz RH, Slade HD, Neuhaus FC (1967) The biochemical mechanisms of resistance by streptococci to the antibiotics D-cycloserine and O-carbamyl-D-serine. Biochemistry 6(8):2561–2570

    Article  CAS  PubMed  Google Scholar 

  3. Hashimoto A, Nishikawa T, Hayashi T, Fujii N, Harada K, Oka T, Takahashi K (1992) The presence of free D-serine in rat brain. FEBS Lett 296(1):33–36

    Article  CAS  PubMed  Google Scholar 

  4. Hashimoto A, Nishikawa T, Oka T, Takahashi K (1993) Endogenous D-serine in rat brain: N-methyl-D-aspartate receptor-related distribution and aging. J Neurochem 60(2):783–786

    Article  CAS  PubMed  Google Scholar 

  5. Neims AH, Zieverink WD, Smilack JD (1966) Distribution of D-amino acid oxidase in bovine and human nervous tissues. J Neurochem 13(3):163–168

    Article  CAS  PubMed  Google Scholar 

  6. Johnson JW, Ascher P (1987) Glycine potentiates the NMDA response in cultured mouse brain neurons. Nature 325(6104):529–531

    Article  CAS  PubMed  Google Scholar 

  7. Kleckner NW, Dingledine R (1988) Requirement for glycine in activation of NMDA-receptors expressed in Xenopus oocytes. Science 241(4867):835–837

    Article  CAS  PubMed  Google Scholar 

  8. Snyder SH, Jaffrey SR, Zakhary R (1998) Nitric oxide and carbon monoxide: parallel roles as neural messengers. Brain Res Brain Res Rev 26(2–3):167–175

    Article  CAS  PubMed  Google Scholar 

  9. Verma A, Hirsch DJ, Glatt CE, Ronnett GV, Snyder SH (1993) Carbon monoxide: a putative neural messenger. Science 259(5093):381–384

    Article  CAS  PubMed  Google Scholar 

  10. Schell MJ, Molliver ME, Snyder SH (1995) D-serine, an endogenous synaptic modulator: localization to astrocytes and glutamate-stimulated release. Proc Natl Acad Sci USA 92(9):3948–3952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Williams SM, Diaz CM, Macnab LT, Sullivan RK, Pow DV (2006) Immunocytochemical analysis of D-serine distribution in the mammalian brain reveals novel anatomical compartmentalizations in glia and neurons. Glia 53(4):401–411

    Article  PubMed  Google Scholar 

  12. Mothet JP, Pollegioni L, Ouanounou G, Martineau M, Fossier P, Baux G (2005) Glutamate receptor activation triggers a calcium-dependent and SNARE protein-dependent release of the gliotransmitter D-serine. Proc Natl Acad Sci USA 102(15):5606–5611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wolosker H, Sheth KN, Takahashi M, Mothet JP, Brady RO Jr, Ferris CD, Snyder SH (1999) Purification of serine racemase: biosynthesis of the neuromodulator D-serine. Proc Natl Acad Sci USA 96(2):721–725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wolosker H, Blackshaw S, Snyder SH (1999) Serine racemase: a glial enzyme synthesizing D-serine to regulate glutamate-N-methyl-D-aspartate neurotransmission. Proc Natl Acad Sci USA 96(23):13409–13414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mothet JP, Parent AT, Wolosker H, Brady RO Jr, Linden DJ, Ferris CD, Rogawski MA, Snyder SH (2000) D-serine is an endogenous ligand for the glycine site of the N-methyl-D-aspartate receptor. Proc Natl Acad Sci USA 97(9):4926–4931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lodge D, Watkins JC, Bortolotto ZA, Jane DE, Volianskis A (1980s) The 1980s: D-AP5, LTP and a decade of NMDA receptor discoveries. Neurochem Res 44(3):516–530

    Article  CAS  PubMed  Google Scholar 

  17. Liddelow SA, Barres BA (2017) (2017) Reactive astrocytes: production, function, and therapeutic potential. Immunity 46(6):957–967

    Article  CAS  PubMed  Google Scholar 

  18. Kim PM, Aizawa H, Kim PS, Huang AS, Wickramasinghe SR, Kashani AH, Barrow RK, Huganir RL, Ghosh A, Snyder SH (2005) Serine racemase: activation by glutamate neurotransmission via glutamate receptor interacting protein and mediation of neuronal migration. Proc Natl Acad Sci USA 102(6):2105–2110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Fujii K, Maeda K, Hikida T, Mustafa AK, Balkissoon R, Xia J, Yamada T, Ozeki Y, Kawahara R, Okawa M, Huganir RL, Ujike H, Snyder SH, Sawa A (2006) Serine racemase binds to PICK1: potential relevance to schizophrenia. Mol Psychiatry 11(2):150–157

    Article  CAS  PubMed  Google Scholar 

  20. Boehning D, Snyder SH (2003) Novel neural modulators. Annu Rev Neurosci 26:105–131

    Article  CAS  PubMed  Google Scholar 

  21. Papouin T, Ladépêche L, Ruel J, Sacchi S, Labasque M, Hanini M, Groc L, Pollegioni L, Mothet JP, Oliet SH (2012) Synaptic and extrasynaptic NMDA receptors are gated by different endogenous coagonists. Cell 150(3):633–646

    Article  CAS  PubMed  Google Scholar 

  22. Yang Y, Ge W, Chen Y, Zhang Z, Shen W, Wu C, Poo M, Duan S (2003) Contribution of astrocytes to hippocampal long-term potentiation through release of D-serine. Proc Natl Acad Sci USA 100(25):15194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Diamond JS (2006) Astrocytes put down the broom and pick up the baton. Cell 125(4):639–641

    Article  CAS  PubMed  Google Scholar 

  24. Fossat P, Turpin FR, Sacchi S, Dulong J, Shi T, Rivet JM, Sweedler JV, Pollegioni L, Millan MJ, Oliet SH, Mothet JP (2012) Glial D-serine gates NMDA receptors at excitatory synapses in prefrontal cortex. Cereb Cortex 22(3):595–606

    Article  PubMed  Google Scholar 

  25. Henneberger C, Papouin T, Oliet SH, Rusakov DA (2010) Long-term potentiation depends on release of D-serine from astrocytes. Nature 463(7278):232–236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kang N, Peng H, Yu Y, Stanton PK, Guilarte TR, Kang J (2013) Astrocytes release D-serine by a large vesicle. Neuroscience 40:243–257

    Article  CAS  Google Scholar 

  27. Parpura V, Zorec R (2010) Gliotransmission: exocytotic release from astrocytes. Brain Res Rev 63(1–2):83–92

    Article  CAS  PubMed  Google Scholar 

  28. Martineau M, Shi T, Puyal J, Knolhoff AM, Dulong J, Gasnier B, Klingauf J, Sweedler JV, Jahn R, Mothet JP (2013) Storage and uptake of D-serine into astrocytic synaptic-like vesicles specify gliotransmission. J Neurosci 33(8):3413–3423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Martineau M (2013) Gliotransmission: focus on exocytotic release of L-glutamate and D-serine from astrocytes. Biochem Soc Trans 41:1557–1561

    Article  CAS  PubMed  Google Scholar 

  30. Pascual O, Casper KB, Kubera C, Zhang J, Revilla-Sanchez R, Sul JY, Takano H, Moss SJ, McCarthy K, Haydon PG (2005) Astrocytic purinergic signaling coordinates synaptic networks. Science 310(5745):113–116

    Article  CAS  PubMed  Google Scholar 

  31. Sardinha VM, Guerra-Gomes S, Caetano I, Tavares G, Martins M, Reis JS, Correia JS, Teixeira-Castro A, Pinto L, Sousa N, Oliveira JF (2017) Astrocytic signaling supports hippocampal-prefrontal theta synchronization and cognitive function. Glia 65(12):1944–1960

    Article  PubMed  Google Scholar 

  32. Sultan S, Li L, Moss J, Petrelli F, Casse’ F, Gebara E, Lopatar J, Pfrieger F, Bezzi P, Bischofberger J, Toni N (2015) Synaptic integration of adult-born hippocampal neurons is locally controlled by astrocytes. Neuron 88:957–972

    Article  CAS  PubMed  Google Scholar 

  33. Fujita T, Chen MJ, Li B, Smith NA, Peng W, Sun W, Toner MJ, Kress BT, Wang L, Benraiss A, Takano T, Wang S, Nedergaard M (2014) Neuronal transgene expression in dominant-negative SNARE mice. J Neurosci 34(50):16594–16604

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Hines DJ, Haydon PG (2014) Astrocytic adenosine: from synapses to psychiatric disorders. Philos Trans R Soc Lond B 369(1654):20130594

    Article  CAS  Google Scholar 

  35. Wolosker H, Balu DT, Coyle JT (2016) The rise and fall of the d-serine-mediated gliotransmission hypothesis. Trends Neurosci 39(11):712–721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kartvelishvily E, Shleper M, Balan L, Dumin E, Wolosker H (2006) Neuron-derived D-serine release provides a novel means to activate N-methyl-D-aspartate receptors. J Biol Chem 281(20):14151–14162

    Article  CAS  PubMed  Google Scholar 

  37. Miya K, Inoue R, Takata Y, Abe M, Natsume R, Sakimura K, Hongou K, Miyawaki T, Mori H (2008) Serine racemase is predominantly localized in neurons in mouse brain. J Comp Neurol 510(6):641–654

    Article  CAS  PubMed  Google Scholar 

  38. Ishiwata S, Umino A, Balu DT, Coyle JT, Nishikawa T (2015) Neuronal serine racemase regulates extracellular D-serine levels in the adult mouse hippocampus. J Neural Transm (Vienna) 122(8):1099–1103

    Article  CAS  Google Scholar 

  39. Horio M, Kohno M, Fujita Y, Ishima T, Inoue R, Mori H, Hashimoto K (2011) Levels of D-serine in the brain and peripheral organs of serine racemase (Srr) knock-out mice. Neurochem Int 59(6):853–859

    Article  CAS  PubMed  Google Scholar 

  40. Benneyworth MA, Li Y, Basu AC, Bolshakov VY, Coyle JT (2012) Cell selective conditional null mutations of serine racemase demonstrate a predominate localization in cortical glutamatergic neurons. Cell Mol Neurobiol 32(4):613–624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Basu AC, Tsai GE, Ma CL, Ehmsen JT, Mustafa AK, Han L, Jiang ZI, Benneyworth MA, Froimowitz MP, Lange N, Snyder SH, Bergeron R, Coyle JT (2009) Targeted disruption of serine racemase affects glutamatergic neurotransmission and behavior. Mol Psychiatry 14(7):719–727

    Article  CAS  PubMed  Google Scholar 

  42. Balu DT, Takagi S, Puhl MD, Benneyworth MA, Coyle JT (2014) D-serine and serine racemase are localized to neurons in the adult mouse and human forebrain. Cell Mol Neurobiol 34(3):419–435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Gonzalez-Burgos G, Cho RY, Lewis DA (2015) Alterations in cortical network oscillations and parvalbumin neurons in schizophrenia. Biol Psychiatry 77(12):1031–1040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ehmsen JT, Ma TM, Sason H, Rosenberg D, Ogo T, Furuya S, Snyder SH, Wolosker H (2013) D-serine in glia and neurons derives from 3-phosphoglycerate dehydrogenase. J Neurosci 33(30):12464–12469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Stevens ER, Esguerra M, Kim PM, Newman EA, Snyder SH, Zahs KR, Miller RF (2003) D-serine and serine racemase are present in the vertebrate retina and contribute to the physiological activation of NMDA receptors. Proc Natl Acad Sci USA 100(11):6789–6794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Yamasaki M, Yamada K, Furuya S, Mitoma J, Hirabayashi Y, Watanabe M (2001) 3-Phosphoglycerate dehydrogenase, a key enzyme for l-serine biosynthesis, is preferentially expressed in the radial glia/astrocyte lineage and olfactory ensheathing glia in the mouse brain. J Neurosci 21(19):7691–7704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Yang JH, Wada A, Yoshida K, Miyoshi Y, Sayano T, Esaki K, Kinoshita MO, Tomonaga S, Azuma N, Watanabe M, Hamase K, Zaitsu K, Machida T, Messing A, Itohara S, Hirabayashi Y, Furuya S (2010) Brain-specific Phgdh deletion reveals a pivotal role for L-serine biosynthesis in controlling the level of D-serine, an N-methyl-D-aspartate receptor co-agonist, in adult brain. J Biol Chem 285(53):41380–41390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wolosker H, Radzishevsky I (2013) The serine shuttle between glia and neurons: implications for neurotransmission and neurodegeneration. Biochem Soc Trans 41(6):1546–1550

    Article  CAS  PubMed  Google Scholar 

  49. Beltrán-Castillo S, Olivares MJ, Contreras RA, Zúñiga G, Llona I, von Bernhardi R, Eugenín JL (2017) D-serine released by astrocytes in brainstem regulates breathing response to CO2 levels. Nat Commun 8(1):838

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Le Bail M, Martineau M, Sacchi S, Yatsenko N, Radzishevsky I, Conrod S, Ait Ouares K, Wolosker H, Pollegioni L, Billard JM, Mothet JP (2015) Identity of the NMDA receptor coagonist is synapse specific and developmentally regulated in the hippocampus. Proc Natl Acad Sci USA 112(2):E204–E213

    Article  PubMed  CAS  Google Scholar 

  51. Papouin T, Henneberger C, Rusakov DA, Oliet SHR (2017) Astroglial versus neuronal D-serine: fact checking. Trends Neurosci 40(9):517–520

    Article  CAS  PubMed  Google Scholar 

  52. Wolosker H, Balu DT, Coyle JT (2017) Astroglial versus neuronal D-serine: check your controls! Trends Neurosci 40(9):520–522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Wu J, Zhao R, Guo L, Zhen X (2017) Morphine-induced inhibition of Ca2+ -dependent d-serine release from astrocytes suppresses excitability of GABAergic neurons in the nucleus accumbens. Addict Biol 22(5):1289–1303

    Article  CAS  PubMed  Google Scholar 

  54. Meunier C, Wang N, Yi C, Dallerac G, Ezan P, Koulakoff A, Leybaert L, Giaume C (2017) (2017) Contribution of astroglial Cx43 hemichannels to the modulation of glutamatergic currents by D-serine in the mouse prefrontal cortex. J Neurosci 37(37):9064–9075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Papouin T, Dunphy JM, Tolman M, Dineley KT, Haydon PG (2017) Septal cholinergic neuromodulation tunes the astrocyte-dependent gating of hippocampal NMDA receptors to wakefulness. Neuron 94(4):840–854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Terrillion CE, Abazyan B, Yang Z, Crawford J, Shevelkin AV, Jouroukhin Y, Yoo KH, Cho CH, Roychaudhuri R, Snyder SH, Jang MH, Pletnikov MV (2017) DISC1 in astrocytes influences adult neurogenesis and hippocampus-dependent behaviors in mice. Neuropsychopharmacology 42(11):2242–2251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Sherwood MW, Arizono M, Hisatsune C, Bannai H, Ebisui E, Sherwood JL, Panatier A, Oliet SH, Mikoshiba K (2017) Astrocytic IP3 Rs: Contribution to Ca2+ signalling and hippocampal LTP. Glia 65(3):502–513

    Article  PubMed  Google Scholar 

  58. Robin LM, Oliveira da Cruz JF, Langlais VC, Martin-Fernandez M, Metna-Laurent M, Busquets-Garcia A, Bellocchio L, Soria-Gomez E, Papouin T, Varilh M, Sherwood MW, Belluomo I, Balcells G, Matias I, Bosier B, Drago F, Van Eeckhaut A, Smolders I, Georges F, Araque A, Panatier A, Oliet SHR, Marsicano G (2018) Astroglial CB1 receptors determine synaptic D-serine availability to enable recognition memory. Neuron 98(5):935–944

    Article  CAS  PubMed  Google Scholar 

  59. Hökfelt T, Barde S, Xu ZD, Kuteeva E, Rüegg J, Le Maitre E, Risling M, Kehr J, Ihnatko R, Theodorsson E, Palkovits M, Deakin W, Bagdy G, Juhasz G, Prud'homme HJ, Mechawar N, Diaz-Heijtz R, Ögren SO (2018) Neuropeptide and small transmitter coexistence: fundamental studies and relevance to mental illness. Front Neural Circuits 12:106. https://doi.org/10.3389/fncir.2018.00106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Whittaker VP (1989) Vasoactive intestinal polypeptide (VIP) as a cholinergic co-transmitter: some recent results. Cell Biol Int Rep 13(12):1039–1051

    Article  CAS  PubMed  Google Scholar 

  61. Sason H, Billard JM, Smith GP, Safory H, Neame S, Kaplan E, Rosenberg D, Zubedat S, Foltyn VN, Christoffersen CT, Bundgaard C, Thomsen C, Avital A, Christensen KV, Wolosker H (2017) Asc-1 transporter regulation of synaptic activity via the tonic release of d-serine in the forebrain. Cereb Cortex 27(2):1573–1587

    PubMed  Google Scholar 

  62. Rosenberg D, Kartvelishvily E, Shleper M, Klinker CM, Bowser MT, Wolosker H (2010) Neuronal release of D-serine: a physiological pathway controlling extracellular D-serine concentration. FASEB J 24(8):2951–2961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Rosenberg D, Artoul S, Segal AC, Kolodney G, Radzishevsky I, Dikopoltsev E, Foltyn VN, Inoue R, Mori H, Billard JM, Wolosker H (2013) Neuronal D-serine and glycine release via the Asc-1 transporter regulates NMDA receptor-dependent synaptic activity. J Neurosci 33(8):3533–3544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Ma TM, Paul BD, Fu C, Hu S, Zhu H, Blackshaw S, Wolosker H, Snyder SH (2014) Serine racemase regulated by binding to stargazin and PSD-95: potential N-methyl-D-aspartate-α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (NMDA-AMPA) glutamate neurotransmission cross-talk. J Biol Chem 289(43):29631–29641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Lin H, Jacobi AA, Anderson SA, Lynch DR (2016) D-serine and serine racemase are associated with PSD-95 and glutamatergic synapse stability. Front Cell Neurosci 10:34. https://doi.org/10.3389/fncel.2016.00034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Li Y, Sacchi S, Pollegioni L, Basu AC, Coyle JT, Bolshakov VY (2013) Identity of endogenous NMDAR glycine site agonist in amygdala is determined by synaptic activity level. Nat Commun 4:1760

    Article  PubMed  CAS  Google Scholar 

  67. Zhuang Z, Yang B, Theus MH, Sick JT, Bethea JR, Sick TJ, Liebl DJ (2010) EphrinBs regulate D-serine synthesis and release in astrocytes. J Neurosci 30(47):16015–16024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Shao Z, Kamboj A, Anderson CM (2009) Functional and immunocytochemical characterization of D-serine transporters in cortical neuron and astrocyte cultures. J Neurosci Res 87(11):2520–2530

    Article  CAS  PubMed  Google Scholar 

  69. Vargas-Lopes C, Madeira C, Kahn SA, Albino do Couto I, Bado P, Houzel JC, De Miranda J, de Freitas MS, Ferreira ST, Panizzutti R (2011) Protein kinase C activity regulates D-serine availability in the brain. J Neurochem 116(2):281–290

    Article  CAS  PubMed  Google Scholar 

  70. Ma TM, Abazyan S, Abazyan B, Nomura J, Yang C, Seshadri S, Sawa A, Snyder SH, Pletnikov MV (2013) Pathogenic disruption of DISC1-serine racemase binding elicits schizophrenia-like behavior via D-serine depletion. Mol Psychiatry 18(5):557–567

    Article  CAS  PubMed  Google Scholar 

  71. Jacobi AA, Halawani S, Lynch DR, Lin H (2019) Neuronal serine racemase associates with Disrupted-In-Schizophrenia-1 and DISC1 agglomerates: implications for schizophrenia. Neurosci Lett 23(692):107–114

    Article  CAS  Google Scholar 

  72. Perez EJ, Cepero ML, Perez SU, Coyle JT, Sick TJ, Liebl DJ (2016) EphB3 signaling propagates synaptic dysfunction in the traumatic injured brain. Neurobiol Dis 94:73–84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Perez EJ, Tapanes SA, Loris ZB, Balu DT, Sick TJ, Coyle JT, Liebl DJ (2017) Enhanced astrocytic d-serine underlies synaptic damage after traumatic brain injury. J Clin Invest 127(8):3114–3125

    Article  PubMed  PubMed Central  Google Scholar 

  74. Hardingham GE, Bading H (2010) Synaptic versus extrasynaptic NMDA receptor signalling: implications for neurodegenerative disorders. Nat Rev Neurosci 11(10):682–696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Parsons MP, Raymond LA (2014) Extra-synaptic NMDA receptor involvement in central nervous system disorders. Neuron 82(2):279–293

    Article  CAS  PubMed  Google Scholar 

  76. Li S, Uno Y, Rudolph U, Cobb J, Liu J, Anderson T, Levy D, Balu DT (2018) Coyle JT. Astrocytes in primary cultures express serine racemase, synthesize d-serine and acquire A1 reactive astrocyte features. Biochem Pharmacol 151:245–251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Mullane K, Williams M (2018) Alzheimer's disease (AD) therapeutics—1: Repeated clinical failures continue to question the amyloid hypothesis of AD and the current understanding of AD causality. Biochem Pharmacol 158:359–375

    Article  CAS  PubMed  Google Scholar 

  78. Heneka MT, Carson MJ, El Khoury J, Landreth GE, Brosseron F, Feinstein DL, Jacobs AH, Wyss-Coray T, Vitorica J, Ransohoff RM, Herrup K, Frautschy SA, Finsen B, Brown GC, Verkhratsky A, Yamanaka K, Koistinaho J, Latz E, Halle A, Petzold GC, Town T, Morgan D, Shinohara ML, Perry VH, Holmes C, Bazan NG, Brooks DJ, Hunot S, Joseph B, Deigendesch N, Garaschuk O, Boddeke E, Dinarello CA, Breitner JC, Cole GM, Golenbock DT, Kummer MP (2015) Neuroinflammation in Alzheimer's disease. Lancet Neurol 14(4):388–405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Guerreiro R, Wojtas A, Bras J, Carrasquillo M, Rogaeva E, Majounie E, Cruchaga C, Sassi C, Kauwe JS, Younkin S, Hazrati L, Collinge J, Pocock J, Lashley T, Williams J, Lambert JC, Amouyel P, Goate A, Rademakers R, Morgan K, Powell J, St George-Hyslop P, Singleton A, Hardy J (2013) Alzheimer genetic analysis group. TREM2 variants in Alzheimer's disease. N Engl J Med 368(2):117–127

    Article  CAS  PubMed  Google Scholar 

  80. Long JM, Holtzman DM (2019) Alzheimer disease (2019) an update on pathobiology and treatment strategies. Cell 179(2):312–339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Balu DT, Pantazopoulos H, Huang CCY, Muszynski K, Harvey TL, Uno Y, Rorabaugh JM, Galloway CR, Botz-Zapp C, Berretta S, Weinshenker D, Coyle JT (2019) Neurotoxic astrocytes express the d-serine synthesizing enzyme, serine racemase, in Alzheimer's disease. Neurobiol Dis 130:104511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Cohen RM, Rezai-Zadeh K, Weitz TM, Rentsendorj A, Gate D, Spivak I, Bholat Y, Vasilevko V, Glabe CG, Breunig JJ, Rakic P, Davtyan H, Agadjanyan MG, Kepe V, Barrio JR, Bannykh S, Szekely CA, Pechnick RN, Town T (2013) A transgenic Alzheimer rat with plaques, tau pathology, behavioral impairment, oligomeric aβ, and frank neuronal loss. J Neurosci 33(15):6245–6256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Tu W, Xu X, Peng L, Zhong X, Zhang W, Soundarapandian MM, Balel C, Wang M, Jia N, Zhang W, Lew F, Chan SL, Chen Y, Lu Y (2010) DAPK1 interaction with NMDA receptor NR2B subunits mediates brain damage in stroke. Cell 140(2):222–234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Matsuo H, Kanai Y, Tokunaga M, Nakata T, Chairoungdua A, Ishimine H, Tsukada S, Ooigawa H, Nawashiro H, Kobayashi Y, Fukuda J, Endou H (2004) High affinity D- and L-serine transporter Asc-1: cloning and dendritic localization in the rat cerebral and cerebellar cortices. Neurosci Lett 358(2):123–126

    Article  CAS  PubMed  Google Scholar 

  85. Harward SC, Hedrick NG, Hall CE, Parra-Bueno P, Milner TA, Pan E, Laviv T, Hempstead BL, Yasuda R, McNamara JO (2016) Autocrine BDNF-TrkB signalling within a single dendritic spine. Nature 538(7623):99–103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Bergeron R, Meyer TM, Coyle JT, Greene RW (1998) Modulation of N-methyl-D-aspartate receptor function by glycine transport. Proc Natl Acad Sci USA 95(26):15730–15734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Balu DT, Presti KT, Huang CCY, Muszynski K, Radzishevsky I, Wolosker H, Guffanti G, Ressler KJ, Coyle JT (2018) Serine racemase and d-serine in the amygdala are dynamically involved in fear learning. Biol Psychiatry 83(3):273–283

    Article  CAS  PubMed  Google Scholar 

  88. Le Meur K, Galante M, Angulo MC, Audinat E (2007) Tonic activation of NMDA receptors by ambient glutamate of non-synaptic origin in the rat hippocampus. J Physiol 580(Pt. 2):373–383

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Some of the research described in this review was supported by R01MH05190 and P50MH0G0450 to JTC and by Whitehall Foundation (#2018–05-107), BrightFocus Foundation (A2019034S), 1R03AG063201-01 (NIA), and a subcontract of R01NS098740-02 to DB. JTC reports consulting with Concert Pharm and holding a patent on D-serine for the treatment of serious mental illness, which is owned by Massachusetts General Hospital. DB and HW report no conflict of interests. We thank J-P Mothet for his helpful suggestions about the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph T. Coyle.

Additional information

This review is dedicated to Michael B Robinson, PhD, Professor of Pharmacology and Pediatrics at Perelman School of Medicine at the University of Pennsylvania, who spent the years of 1985–1989 as a post-doctoral fellow in the Coyle laboratory in the Department of Neuroscience at Johns Hopkins School of Medicine and played a seminal role in the laboratory’s 45-year-long research program on the role of glutamatergic neurotransmission in health and disease.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coyle, J.T., Balu, D. & Wolosker, H. d-Serine, the Shape-Shifting NMDA Receptor Co-agonist. Neurochem Res 45, 1344–1353 (2020). https://doi.org/10.1007/s11064-020-03014-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-020-03014-1

Keywords

Navigation