Skip to main content
Log in

ATP release from non-excitable cells

  • Original Article
  • Published:
Purinergic Signalling Aims and scope Submit manuscript

Abstract

All cells release nucleotides and are in one way or another involved in local autocrine and paracrine regulation of organ function via stimulation of purinergic receptors. Significant technical advances have been made in recent years to quantify more precisely resting and stimulated adenosine triphosphate (ATP) concentrations in close proximity to the plasma membrane. These technical advances are reviewed here. However, the mechanisms by which cells release ATP continue to be enigmatic. The current state of knowledge on different suggested mechanisms is also reviewed. Current evidence suggests that two separate regulated modes of ATP release co-exist in non-excitable cells: (1) a conductive pore which in several systems has been found to be the channel pannexin 1 and (2) vesicular release. Modes of stimulation of ATP release are reviewed and indicate that both subtle mechanical stimulation and agonist-triggered release play pivotal roles. The mechano-sensor for ATP release is not yet defined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Spyer KM, Dale N, Gourine AV (2004) ATP is a key mediator of central and peripheral chemosensory transduction. Exp Physiol 89:53–59

    Article  PubMed  CAS  Google Scholar 

  2. Fabbro A, Skorinkin A, Grandolfo M, Nistri A, Giniatullin R (2004) Quantal release of ATP from clusters of PC12 cells. J Physiol 560:505–517

    Article  PubMed  CAS  Google Scholar 

  3. Finger TE, Danilova V, Barrows J, Bartel DL, Vigers AJ, Stone L, Hellekant G, Kinnamon SC (2005) ATP signaling is crucial for communication from taste buds to gustatory nerves. Science 310:1495–1499

    Article  PubMed  CAS  Google Scholar 

  4. Gourine AV, Llaudet E, Dale N, Spyer KM (2005) ATP is a mediator of chemosensory transduction in the central nervous system. Nature 436:108–111

    Article  PubMed  CAS  Google Scholar 

  5. Gourine AV, Llaudet E, Dale N, Spyer KM (2005) Release of ATP in the ventral medulla during hypoxia in rats: role in hypoxic ventilatory response. J Neurosci 25:1211–1218

    Article  PubMed  CAS  Google Scholar 

  6. Hegg CC, Greenwood D, Huang W, Han P, Lucero MT (2003) Activation of purinergic receptor subtypes modulates odor sensitivity. J Neurosci 23:8291–8301

    PubMed  CAS  Google Scholar 

  7. Housley GD, Jagger DJ, Greenwood D, Raybould NP, Salih SG, Jarlebark LE, Vlajkovic SM, Kanjhan R, Nikolic P, Munoz DJ, Thorne PR (2002) Purinergic regulation of sound transduction and auditory neurotransmission. Audiol Neurootol 7:55–61

    Article  PubMed  CAS  Google Scholar 

  8. Newman EA (2006) A purinergic dialogue between glia and neurons in the retina. Novartis Found Symp 276:193–202

    Article  PubMed  CAS  Google Scholar 

  9. Tsuda M, Shigemoto-Mogami Y, Koizumi S, Mizokoshi A, Kohsaka S, Salter MW, Inoue K (2003) P2X4 receptors induced in spinal microglia gate tactile allodynia after nerve injury. Nature 424:778–783

    Article  PubMed  CAS  Google Scholar 

  10. Huang YJ, Maruyama Y, Dvoryanchikov G, Pereira E, Chaudhari N, Roper SD (2007) The role of pannexin 1 hemichannels in ATP release and cell–cell communication in mouse taste buds. Proc Natl Acad Sci U S A 104:6436–6441

    Article  PubMed  CAS  Google Scholar 

  11. Komlosi P, Peti-Peterdi J, Fuson AL, Fintha A, Rosivall L, Bell PD (2004) Macula densa basolateral ATP release is regulated by luminal [NaCl] and dietary salt intake. Am J Physiol Renal Physiol 286:F1054–F1058

    Article  PubMed  CAS  Google Scholar 

  12. Schnermann J, Levine DZ (2003) Paracrine factors in tubuloglomerular feedback: adenosine, ATP, and nitric oxide. Annu Rev Physiol 65:501–529

    Article  PubMed  CAS  Google Scholar 

  13. Chen Y, Corriden R, Inoue Y, Yip L, Hashiguchi N, Zinkernagel A, Nizet V, Insel PA, Junger WG (2006) ATP release guides neutrophil chemotaxis via P2Y2 and A3 receptors. Science 314:1792–1795

    Article  PubMed  CAS  Google Scholar 

  14. Gachet C (2006) Regulation of platelet functions by p2 receptors. Annu Rev Pharmacol Toxicol 46:277–300

    Article  PubMed  CAS  Google Scholar 

  15. Bodin P, Burnstock G (2001) Purinergic signalling: ATP release. Neurochem Res 26:959–969

    Article  PubMed  CAS  Google Scholar 

  16. von Kügelgen I, Goncalves J, Driessen B, Starke K (1998) Corelease of noradrenaline and adenosine triphosphate from sympathetic neurones. Adv Pharmacol 42:120–125

    Article  Google Scholar 

  17. Obermuller S, Lindqvist A, Karanauskaite J, Galvanovskis J, Rorsman P, Barg S (2005) Selective nucleotide-release from dense-core granules in insulin-secreting cells. J Cell Sci 118:4271–4282

    Article  PubMed  CAS  Google Scholar 

  18. Novak I (2003) ATP as a signaling molecule: the exocrine focus. News Physiol Sci 18:12–17

    PubMed  CAS  Google Scholar 

  19. Lazarowski ER, Boucher RC, Harden TK (2003) Mechanisms of release of nucleotides and integration of their action as P2X- and P2Y-receptor activating molecules. Mol Pharmacol 64:785–795

    Article  PubMed  CAS  Google Scholar 

  20. Schwiebert EM, Zsembery A (2003) Extracellular ATP as a signaling molecule for epithelial cells. Biochim Biophys Acta 1615:7–32

    Article  PubMed  CAS  Google Scholar 

  21. Abbracchio MP, Burnstock G, Boeynaems JM, Barnard EA, Boyer JL, Kennedy C, Knight GE, Fumagalli M, Gachet C, Jacobson KA, Weisman GA (2006) International Union of Pharmacology LVIII: update on the P2Y G protein-coupled nucleotide receptors: from molecular mechanisms and pathophysiology to therapy. Pharmacol Rev 58:281–341

    Article  PubMed  CAS  Google Scholar 

  22. Wood KV, Lam YA, McElroy WD (1989) Introduction to beetle luciferases and their applications. J Biolumin Chemilumin 4:289–301

    Article  PubMed  CAS  Google Scholar 

  23. Wang Z, Haydon PG, Yeung ES (2000) Direct observation of calcium-independent intercellular ATP signaling in astrocytes. Anal Chem 72:2001–2007

    Article  PubMed  CAS  Google Scholar 

  24. Denburg JL, McElroy WD (1970) Anion inhibition of firefly luciferase. Arch Biochem Biophys 141:668–675

    Article  PubMed  CAS  Google Scholar 

  25. Gruenhagen JA, Lovell P, Moroz LL, Yeung ES (2004) Monitoring real-time release of ATP from the molluscan central nervous system. J Neurosci Methods 139:145–152

    Article  PubMed  CAS  Google Scholar 

  26. Gruenhagen JA, Yeung ES (2004) Investigation of G protein-initiated, Ca2+-dependent release of ATP from endothelial cells. Biochim Biophys Acta 1693:135–146

    Article  PubMed  CAS  Google Scholar 

  27. Boudreault F, Grygorczyk R (2002) Cell swelling-induced ATP release and gadolinium-sensitive channels. Am J Physiol Cell Physiol 282:C219–C226

    PubMed  CAS  Google Scholar 

  28. Liu GJ, Werry EL, Bennett MR (2005) Secretion of ATP from Schwann cells in response to uridine triphosphate. Eur J Neurosci 21:151–160

    Article  PubMed  Google Scholar 

  29. Okada, S., Paradiso, A. M., Lazarowski, E. R., and Boucher, R. C. A calcium-dependent pathway in swelling-induced ATP release from airway epithelial cells. J Physiol 567P, C53. 2006. Abstract

  30. Joseph SM, Buchakjian MR, Dubyak GR (2003) Colocalization of ATP release sites and ecto-ATPase activity at the extracellular surface of human astrocytes. J Biol Chem 278:23331–23342

    Article  PubMed  CAS  Google Scholar 

  31. Beigi R, Kobatake E, Aizawa M, Dubyak GR (1999) Detection of local ATP release from activated platelets using cell surface-attached firefly luciferase. Am J Physiol 276:C267–C278

    PubMed  CAS  Google Scholar 

  32. Okada SF, Nicholas RA, Kreda SM, Lazarowski ER, Boucher RC (2006) Physiological regulation of ATP release at the apical surface of human airway epithelia. J Biol Chem 281:22992–23002

    Article  PubMed  CAS  Google Scholar 

  33. Nakamura M, Mie M, Funabashi H, Yamamoto K, Ando J, Kobatake E (2006) Cell-surface-localized ATP detection with immobilized firefly luciferase. Anal Biochem 352:61–67

    Article  PubMed  CAS  Google Scholar 

  34. Pellegatti P, Falzoni S, Pinton P, Rizzuto R, Di Virgilio F (2005) A novel recombinant plasma membrane-targeted luciferase reveals a new pathway for ATP secretion. Mol Biol Cell 16:3659–3665

    Article  PubMed  CAS  Google Scholar 

  35. Newman EA (2001) Propagation of intercellular calcium waves in retinal astrocytes and Muller cells. J Neurosci 21:2215–2223

    PubMed  CAS  Google Scholar 

  36. Arcuino G, Lin JH, Takano T, Liu C, Jiang L, Gao Q, Kang J, Nedergaard M (2002) Intercellular calcium signaling mediated by point-source burst release of ATP. Proc Natl Acad Sci U S A 99:9840–9845

    Article  PubMed  CAS  Google Scholar 

  37. Sorensen CE, Novak I (2001) Visualization of ATP release in pancreatic acini in response to cholinergic stimulus. Use of fluorescent probes and confocal microscopy. J Biol Chem 276:32925–32932

    Article  PubMed  CAS  Google Scholar 

  38. Corriden R, Insel PA, Junger WG (2007) A novel method using fluorescence microscopy for real-time assessment of ATP release from individual cells. Am J Physiol Cell Physiol 293:C1420–C1425

    Article  PubMed  CAS  Google Scholar 

  39. Cheek TR, Jackson TR, O’Sullivan AJ, Moreton RB, Berridge MJ, Burgoyne RD (1989) Simultaneous measurements of cytosolic calcium and secretion in single bovine adrenal chromaffin cells by fluorescent imaging of fura-2 in cocultured cells. J Cell Biol 109:1219–1227

    Article  PubMed  CAS  Google Scholar 

  40. Ralevic V, Burnstock G (1998) Receptors for purines and pyrimidines. Pharmacol Rev 50:413–492

    PubMed  CAS  Google Scholar 

  41. Osipchuk Y, Cahalan M (1992) Cell-to-cell spread of calcium signals mediated by ATP receptors in mast cells. Nature 359:241–244

    Article  PubMed  CAS  Google Scholar 

  42. Hazama A, Hayashi S, Okada Y (1998) Cell surface measurements of ATP release from single pancreatic beta cells using a novel biosensor technique. Pflügers Arch Eur J Physiol 437:31–35

    Article  CAS  Google Scholar 

  43. Hayashi S, Hazama A, Dutta AK, Sabirov RZ, Okada Y (2004) Detecting ATP release by a biosensor method. Sci STKE 2004:l14

    Article  Google Scholar 

  44. Bell PD, Lapointe JY, Sabirov R, Hayashi S, Peti-Peterdi J, Manabe K, Kovacs G, Okada Y (2003) Macula densa cell signaling involves ATP release through a maxi anion channel. Proc Natl Acad Sci U S A 100:4322–4327

    Article  PubMed  CAS  Google Scholar 

  45. Coco S, Calegari F, Pravettoni E, Pozzi D, Taverna E, Rosa P, Matteoli M, Verderio C (2003) Storage and release of ATP from astrocytes in culture. J Biol Chem 278:1354–1362

    Article  PubMed  CAS  Google Scholar 

  46. Hazama A, Shimizu T, Ando-Akatsuka Y, Hayashi S, Tanaka S, Maeno E, Okada Y (1999) Swelling-induced, CFTR-independent ATP release from a human epithelial cell line: lack of correlation with volume-sensitive Cl channels. J Gen Physiol 114:525–533

    Article  PubMed  CAS  Google Scholar 

  47. Brown P, Dale N (2002) Spike-independent release of ATP from Xenopus spinal neurons evoked by activation of glutamate receptors. J Physiol 540:851–860

    Article  PubMed  CAS  Google Scholar 

  48. King BF, Wildman SS, Unwin RJ (2006) Persistent activation of P2X2 receptors by locally released ATP. J Am Soc Nephrol 17:297A Abstract

    Google Scholar 

  49. Kueng A, Kranz C, Mizaikoff B (2004) Amperometric ATP biosensor based on polymer entrapped enzymes. Biosens Bioelectron 19:1301–1307

    Article  PubMed  CAS  Google Scholar 

  50. Llaudet E, Hatz S, Droniou M, Dale N (2005) Microelectrode biosensor for real-time measurement of ATP in biological tissue. Anal Chem 77:3267–3273

    Article  PubMed  CAS  Google Scholar 

  51. Llaudet E, Botting NP, Crayston JA, Dale N (2003) A three-enzyme microelectrode sensor for detecting purine release from central nervous system. Biosens Bioelectron 18:43–52

    Article  PubMed  CAS  Google Scholar 

  52. Kueng A, Kranz C, Lugstein A, Bertagnolli E, Mizaikoff B (2005) AFM-tip-integrated amperometric microbiosensors: high-resolution imaging of membrane transport. Angew Chem Int Ed Engl 44:3419–3422

    Article  PubMed  CAS  Google Scholar 

  53. Kueng A, Kranz C, Mizaikoff B (2005) Imaging of ATP membrane transport with dual micro-disk electrodes and scanning electrochemical microscopy. Biosens Bioelectron 21:346–353

    Article  PubMed  CAS  Google Scholar 

  54. Schneider SW, Egan ME, Jena BP, Guggino WB, Oberleithner H, Geibel JP (1999) Continuous detection of extracellular ATP on living cells by using atomic force microscopy. Proc Natl Acad Sci U S A 96:12180–12185

    Article  PubMed  CAS  Google Scholar 

  55. Yegutkin GG, Henttinen T, Samburski SS, Spychala J, Jalkanen S (2002) The evidence for two opposite, ATP-generating and ATP-consuming, extracellular pathways on endothelial and lymphoid cells. Biochem J 367:121–128

    Article  PubMed  CAS  Google Scholar 

  56. Yegutkin GG, Mikhailov A, Samburski SS, Jalkanen S (2006) The detection of micromolar pericellular ATP pool on lymphocyte surface by using lymphoid ecto-adenylate kinase as intrinsic ATP sensor. Mol Biol Cell 17:3378–3385

    Article  PubMed  CAS  Google Scholar 

  57. Miller DS, Horowitz SB (1986) Intracellular compartmentalization of adenosine triphosphate. J Biol Chem 261:13911–13915

    PubMed  CAS  Google Scholar 

  58. Melchior NC (1954) Sodium and potassium complexes of adenosinetriphosphate: equilibrium studies. J Biol Chem 208:615–627

    PubMed  CAS  Google Scholar 

  59. Cantiello HF (2001) Electrodiffusional ATP movement through CFTR and other ABC transporters. Pflugers Arch 443(Suppl 1):S22–S27

    PubMed  CAS  Google Scholar 

  60. Schwiebert EM, Egan ME, Hwang T-H, Fulmer SB, Allen SS, Cutting GR, Guggino WB (1995) CFTR regulates outwardly rectifying chloride channels through an autocrine mechanism involving ATP. Cell 81:1063–1073

    Article  PubMed  CAS  Google Scholar 

  61. Jentsch TJ, Stein V, Weinreich F, Zdebik AA (2002) Molecular structure and physiological function of chloride channels. Physiol Rev 82:503–568

    PubMed  CAS  Google Scholar 

  62. Dutzler R, Campbell EB, Cadene M, Chait BT, MacKinnon R (2002) X-ray structure of a ClC chloride channel at 3.0 A reveals the molecular basis of anion selectivity. Nature 415:287–294

    Article  PubMed  CAS  Google Scholar 

  63. Rychkov GY, Pusch M, Roberts ML, Jentsch TJ, Bretag AH (1998) Permeation and block of the skeletal muscle chloride channel, ClC-1, by foreign anions. J Gen Physiol 111:653–665

    Article  PubMed  CAS  Google Scholar 

  64. De Groot BL, Grubmuller H (2001) Water permeation across biological membranes: mechanism and dynamics of aquaporin-1 and GlpF. Science 294:2353–2357

    Article  PubMed  Google Scholar 

  65. MacKinnon R (2003) Potassium channels. FEBS Lett 555:62–65

    Article  PubMed  CAS  Google Scholar 

  66. Hisadome K, Koyama T, Kimura C, Droogmans G, Ito Y, Oike M (2002) Volume-regulated anion channels serve as an auto/paracrine nucleotide release pathway in aortic endothelial cells. J Gen Physiol 119:511–520

    Article  PubMed  CAS  Google Scholar 

  67. Boudreault F, Grygorczyk R (2004) Cell swelling-induced ATP release is tightly dependent on intracellular calcium elevations. J Physiol 561:499–513

    Article  PubMed  CAS  Google Scholar 

  68. Wang Y, Roman RM, Lidofsky SD, Fitz JG (1996) Autocrine signaling through ATP release represents a novel mechanism for cell volume regulation. Proc Natl Acad Sci U S A 93:12020–12025

    Article  PubMed  CAS  Google Scholar 

  69. Strange K, Emma F, Jackson PS (1996) Cellular and molecular physiology of volume-sensitive anion channels. Am J Physiol 270:C711–C730

    PubMed  CAS  Google Scholar 

  70. Sabirov RZ, Dutta AK, Okada Y (2001) Volume-dependent ATP-conductive large-conductance anion channel as a pathway for swelling-induced ATP release. J Gen Physiol 118:251–266

    Article  PubMed  CAS  Google Scholar 

  71. Dutta AK, Okada Y, Sabirov RZ (2002) Regulation of an ATP-conductive large-conductance anion channel and swelling-induced ATP release by arachidonic acid. J Physiol 542:803–816

    Article  PubMed  CAS  Google Scholar 

  72. Bahamonde MI, Fernandez-Fernandez JM, Guix FX, Vazquez E, Valverde MA (2003) Plasma membrane voltage-dependent anion channel mediates antiestrogen-activated maxi Cl- currents in C1300 neuroblastoma cells. J Biol Chem 278:33284–33289

    Article  PubMed  CAS  Google Scholar 

  73. Okada SF, O’Neal WK, Huang P, Nicholas RA, Ostrowski LE, Craigen WJ, Lazarowski ER, Boucher RC (2004) Voltage-dependent anion channel-1 (VDAC-1) contributes to ATP release and cell volume regulation in murine cells. J Gen Physiol 124:513–526

    Article  PubMed  CAS  Google Scholar 

  74. Koyama T, Oike M, Ito Y (2001) Involvement of Rho-kinase and tyrosine kinase in hypotonic stress-induced ATP release in bovine aortic endothelial cells. J Physiol 532:759–769

    Article  PubMed  CAS  Google Scholar 

  75. Hirakawa M, Oike M, Karashima Y, Ito Y (2004) Sequential activation of RhoA and FAK/paxillin leads to ATP release and actin reorganization in human endothelium. J Physiol 558:479–488

    Article  PubMed  CAS  Google Scholar 

  76. Jiang Q, Mak D, Devidas S, Schwiebert EM, Bragin A, Zhang Y, Skach WR, Guggino WB, Foskett JK, Engelhardt JF (1998) Cystic fibrosis transmembrane conductance regulator-associated ATP release is controlled by a chloride sensor. J Cell Biol 143:645–657

    Article  PubMed  CAS  Google Scholar 

  77. Reigada D, Mitchell CH (2005) Release of ATP from retinal pigment epithelial cells involves both CFTR and vesicular transport. Am J Physiol Cell Physiol 288:C132–C140

    PubMed  CAS  Google Scholar 

  78. Reddy MM, Quinton PM, Haws C, Wine JJ, Grygorczyk R, Tabcharani JA, Hanrahan JW, Gunderson KL, Kopito RR (1996) Failure of the cystic fibrosis transmembrane conductance regulator to conduct ATP. Science 271:1876–1879

    Article  PubMed  CAS  Google Scholar 

  79. Watt WC, Lazarowski ER, Boucher RC (1998) Cystic fibrosis transmembrane regulator-independent release of ATP. Its implications for the regulation of P2Y2 receptors in airway epithelia. J Biol Chem 273:14053–14058

    Article  PubMed  CAS  Google Scholar 

  80. Donaldson SH, Lazarowski ER, Picher M, Knowles MR, Stutts MJ, Boucher RC (2000) Basal nucleotide levels, release, and metabolism in normal and cystic fibrosis airways. Mol Med 6:969–982

    PubMed  CAS  Google Scholar 

  81. Grygorczyk R, Hanrahan JW (1997) CFTR-independent ATP release from epithelial cells triggered by mechanical stimuli. Am J Physiol 272:C1058–C1066

    PubMed  CAS  Google Scholar 

  82. Liu GJ, Kalous A, Werry EL, Bennett MR (2006) Purine release from spinal cord microglia after elevation of calcium by glutamate. Mol Pharmacol 70:851–859

    Article  PubMed  CAS  Google Scholar 

  83. Sprague RS, Ellsworth ML, Stephenson AH, Kleinhenz ME, Lonigro AJ (1998) Deformation-induced ATP release from red blood cells requires CFTR activity. Am J Physiol 275:H1726–H1732

    PubMed  CAS  Google Scholar 

  84. North RA (2002) Molecular physiology of P2X receptors. Physiol Rev 82:1013–1067

    PubMed  CAS  Google Scholar 

  85. Li J, Liu D, Ke HZ, Duncan RL, Turner CH (2005) The P2X7 nucleotide receptor mediates skeletal mechanotransduction. J Biol Chem 280:42952–42959

    Article  PubMed  CAS  Google Scholar 

  86. Tsukimoto M, Maehata M, Harada H, Ikari A, Takagi K, Degawa M (2006) P2X7 Receptor-dependent cell death is modulated during murine T cell maturation and mediated by dual signaling pathways. J Immunol 177:2842–2850

    PubMed  CAS  Google Scholar 

  87. Fry T, Evans JH, Sanderson MJ (2001) Propagation of intercellular calcium waves in C6 glioma cells transfected with connexins 43 or 32. Microsc Res Tech 52:289–300

    Article  PubMed  CAS  Google Scholar 

  88. Kono T, Nishikori T, Kataoka H, Uchio Y, Ochi M, Enomoto K (2006) Spontaneous oscillation and mechanically induced calcium waves in chondrocytes. Cell Biochem Funct 24:103–111

    Article  PubMed  CAS  Google Scholar 

  89. Enomoto K-I, Furuya K, Yamagishi S, Oka T, Maeno T (1994) The increase in the intracellular Ca2+ concentration induced by mechanical stimulation is propagated via release of pyrophosphorylated nucleotides in mammary epithelial cells. Pflügers Arch Eur J Physiol 427:533–542

    Article  CAS  Google Scholar 

  90. Cotrina ML, Lin JH, Alves-Rodrigues A, Liu S, Li J, Azmi-Ghadimi H, Kang J, Naus CC, Nedergaard M (1998) Connexins regulate calcium signaling by controlling ATP release. Proc Natl Acad Sci U S A 95:15735–15740

    Article  PubMed  CAS  Google Scholar 

  91. Hofer A, Dermietzel R (1998) Visualization and functional blocking of gap junction hemichannels (connexons) with antibodies against external loop domains in astrocytes. Glia 24:141–154

    Article  PubMed  CAS  Google Scholar 

  92. Barbe MT, Monyer H, Bruzzone R (2006) Cell-cell communication beyond connexins: the pannexin channels. Physiology 21:103–114

    Article  PubMed  CAS  Google Scholar 

  93. Bruzzone R, Barbe MT, Jakob NJ, Monyer H (2005) Pharmacological properties of homomeric and heteromeric pannexin hemichannels expressed in Xenopus oocytes. J Neurochem 92:1033–1043

    Article  PubMed  CAS  Google Scholar 

  94. Bruzzone R, Hormuzdi SG, Barbe MT, Herb A, Monyer H (2003) Pannexins, a family of gap junction proteins expressed in brain. Proc Natl Acad Sci U S A 100:13644–13649

    Article  PubMed  CAS  Google Scholar 

  95. Bao L, Locovei S, Dahl G (2004) Pannexin membrane channels are mechanosensitive conduits for ATP. FEBS Lett 572:65–68

    Article  PubMed  CAS  Google Scholar 

  96. Thompson RJ, Zhou N, MacVicar BA (2006) Ischemia opens neuronal gap junction hemichannels. Science 312:924–927

    Article  PubMed  CAS  Google Scholar 

  97. Locovei S, Wang J, Dahl G (2006) Activation of pannexin 1 channels by ATP through P2Y receptors and by cytoplasmic calcium. FEBS Lett 580:239–244

    Article  PubMed  CAS  Google Scholar 

  98. Pelegrin P, Surprenant A (2006) Pannexin-1 mediates large pore formation and interleukin-1beta release by the ATP-gated P2X7 receptor. EMBO J 25:5071–5082

    Article  PubMed  CAS  Google Scholar 

  99. Locovei S, Scemes E, Qiu F, Spray DC, Dahl G (2007) Pannexin1 is part of the pore forming unit of the P2X7 receptor death complex. FEBS Lett 581:483–488

    Article  PubMed  CAS  Google Scholar 

  100. Pankratov Y, Lalo U, Verkhratsky A, North RA (2006) Vesicular release of ATP at central synapses. Pflügers Arch Eur J Physiol 452:589–597

    Article  CAS  Google Scholar 

  101. North RA, Verkhratsky A (2006) Purinergic transmission in the central nervous system. Pflügers Arch Eur J Physiol 452:479–485

    Article  CAS  Google Scholar 

  102. Njus D, Kelley PM, Harnadek GJ (1986) Bioenergetics of secretory vesicles. Biochim Biophys Acta 853:237–265

    PubMed  CAS  Google Scholar 

  103. Pascual O, Casper KB, Kubera C, Zhang J, Revilla-Sanchez R, Sul JY, Takano H, Moss SJ, McCarthy K, Haydon PG (2005) Astrocytic purinergic signaling coordinates synaptic networks. Science 310:113–116

    Article  PubMed  CAS  Google Scholar 

  104. Bowser DN, Khakh BS (2007) Vesicular ATP is the predominant cause of intercellular calcium waves in astrocytes. J Gen Physiol 129:485–491

    Article  PubMed  CAS  Google Scholar 

  105. Maroto R, Hamill OP (2001) Brefeldin A block of integrin-dependent mechanosensitive ATP release from Xenopus oocytes reveals a novel mechanism of mechanotransduction. J Biol Chem 276:23867–23872

    Article  PubMed  CAS  Google Scholar 

  106. Lalo U, Pankratov Y, North RA, Verkhratsky A (2007) Spontaneous autocrine release of protons activates ASIC-mediated currents in HEK293 cells. J Cell Physiol 212:473–480

    Article  PubMed  CAS  Google Scholar 

  107. Locovei S, Bao L, Dahl G (2006) Pannexin 1 in erythrocytes: function without a gap. Proc Natl Acad Sci U S A 103:7655–7659

    Article  PubMed  CAS  Google Scholar 

  108. Beigi RD, Dubyak GR (2000) Endotoxin activation of macrophages does not induce ATP release and autocrine stimulation of P2 nucleotide receptors. J Immunol 165:7189–7198

    PubMed  CAS  Google Scholar 

  109. Geyti CS, Odgaard E, Jensen ME, Leipziger J, Praetorius HA (2008) Slow spontaneous [Ca2+]i oscillations reflect nucleotide release from renal epithelia. Pflugers Archiv 455(6):1105–1117

    Article  PubMed  CAS  Google Scholar 

  110. Joseph SM, Pifer MA, Przybylski RJ, Dubyak GR (2004) Methylene ATP analogs as modulators of extracellular ATP metabolism and accumulation. Br J Pharmacol 142:1002–1014

    Article  PubMed  CAS  Google Scholar 

  111. Ostrom RS, Gregorian C, Insel PA (2000) Cellular release of and response to ATP as key determinants of the set-point of signal transduction pathways. J Biol Chem 275:11735–11739

    Article  PubMed  CAS  Google Scholar 

  112. Rieg T, Bundey RA, Chen Y, Deschenes G, Junger WG, Insel PA, Vallon V (2007) Mice lacking P2Y2 receptors have salt-insensitive hypertension and facilitated renal Na+ and water excretion. FASEB J 13:3717–3726

    Article  CAS  Google Scholar 

  113. Lehrmann H, Thomas J, Kim SJ, Jacobi C, Leipziger J (2002) Luminal P2Y2 receptor-mediated inhibition of Na+ absorption in isolated perfused mouse CCD. J Am Soc Nephrol 13:10–18

    PubMed  CAS  Google Scholar 

  114. Leipziger J (2003) Control of epithelial transport via luminal P2 receptors. Am J Physiol Renal Physiol 284:F419–F432

    PubMed  CAS  Google Scholar 

  115. Rouse D, Leite M, Suki WN (1994) ATP inhibits the hydrostatic effect of AVP in rabbit CCT: evidence for a nucleotide P2U receptor. Am J Physiol 267:F289–F295

    PubMed  CAS  Google Scholar 

  116. Sauer H, Hofmann C, Wartenberg M, Wobus AM, Hescheler J (1998) Spontaneous calcium oscillations in embryonic stem cell-derived primitive endodermal cells. Exp Cell Res 238:13–22

    Article  PubMed  CAS  Google Scholar 

  117. Kawano S, Otsu K, Kuruma A, Shoji S, Yanagida E, Muto Y, Yoshikawa F, Hirayama Y, Mikoshiba K, Furuichi T (2006) ATP autocrine/paracrine signaling induces calcium oscillations and NFAT activation in human mesenchymal stem cells. Cell Calcium 39(4):313–324

    Article  PubMed  CAS  Google Scholar 

  118. Hellman B, Dansk H, Grapengiesser E (2004) Pancreatic {beta}-cells communicate via intermittent release of ATP. Am J Physiol Endocrinol Metab 286(5):E759–E765

    Article  PubMed  CAS  Google Scholar 

  119. Espelt MV, Estevez AY, Yin X, Strange K (2005) Oscillatory Ca2+ signaling in the isolated Caenorhabditis elegans intestine: role of the inositol-1, 4, 5-trisphosphate receptor and phospholipases C beta and gamma. J Gen Physiol 126:379–392

    Article  PubMed  CAS  Google Scholar 

  120. Lazarowski ER, Homolya L, Boucher RC, Harden TK (1997) Direct demonstration of mechanically induced release of cellular UTP and its implication for uridine nucleotide receptor activation. J Biol Chem 272:24348–24354

    Article  PubMed  CAS  Google Scholar 

  121. Praetorius HA, Frokiaer J, Leipziger J (2005) Transepithelial pressure pulses induce nucleotide release in polarized MDCK cells. Am J Physiol Renal Physiol 288:F133–F141

    Article  PubMed  CAS  Google Scholar 

  122. Harden TK, Lazarowski ER, Boucher RC (1997) Release, metabolism and interconversion of adenine and uridine nucleotides: implications for G protein-coupled P2 receptor agonist selectivity. Trends Pharmacol Sci 18:43–46

    Article  PubMed  CAS  Google Scholar 

  123. Bodin P, Burnstock G (2001) Evidence that release of adenosine triphosphate from endothelial cells during increased shear stress is vesicular. J Cardiovasc Pharmacol 38:900–908

    Article  PubMed  CAS  Google Scholar 

  124. Jensen ME, Odgaard E, Christensen MH, Praetorius HA, Leipziger J (2007) Flow-induced [Ca2+]I increase depends on nucleotide release and subsequent purinergic signaling in the intact nephron. J Am Soc Nephrol 18:2062–2070

    Article  PubMed  CAS  Google Scholar 

  125. Tarran R, Button B, Picher M, Paradiso AM, Ribeiro CM, Lazarowski ER, Zhang L, Collins PL, Pickles RJ, Fredberg JJ, Boucher RC (2005) Normal and cystic fibrosis airway surface liquid homeostasis. The effects of phasic shear stress and viral infections. J Biol Chem 280:35751–35759

    Article  PubMed  CAS  Google Scholar 

  126. Voets T, Nilius B (2003) TRPs make sense. J Membr Biol 192:1–8

    Article  PubMed  CAS  Google Scholar 

  127. Bodin P, Bailey D, Burnstock G (1991) Increased flow-induced ATP release from isolated vascular endothelial cells but not smooth muscle cells. Br J Pharmacol 103:1203–1205

    PubMed  CAS  Google Scholar 

  128. Saiag B, Bodin P, Shacoori V, Catheline M, Rault B, Burnstock G (1995) Uptake and flow-induced release of uridine nucleotides from isolated vascular endothelial cells. Endothelium 2:279–285

    Article  CAS  Google Scholar 

  129. Yamamoto K, Sokabe T, Matsumoto T, Yoshimura K, Shibata M, Ohura N, Fukuda T, Sato T, Sekine K, Kato S, Isshiki M, Fujita T, Kobayashi M, Kawamura K, Masuda H, Kamiya A, Ando J (2006) Impaired flow-dependent control of vascular tone and remodeling in P2X4-deficient mice. Nat Med 12:133–137

    Article  PubMed  CAS  Google Scholar 

  130. Praetorius HA, Spring KR (2001) Bending the MDCK cell primary cilium increases intracellular calcium. J Membr Biol 184:71–79

    Article  PubMed  CAS  Google Scholar 

  131. Praetorius HA, Spring KR (2003) Removal of the MDCK cell primary cilium abolishes flow sensing. J Membr Biol 191:69–76

    Article  PubMed  CAS  Google Scholar 

  132. Liu W, Xu S, Woda C, Kim P, Weinbaum S, Satlin LM (2003) Effect of flow and stretch on the [Ca2+]i response of principal and intercalated cells in cortical collecting duct. Am J Physiol Renal Physiol 285:F998–F1012

    PubMed  CAS  Google Scholar 

  133. Nauli SM, Alenghat FJ, Luo Y, Williams E, Vassilev P, Li X, Elia AE, Lu W, Brown EM, Quinn SJ, Ingber DE, Zhou J (2003) Polycystins 1 and 2 mediate mechanosensation in the primary cilium of kidney cells. Nat Genet 33:129–137

    Article  PubMed  CAS  Google Scholar 

  134. Praetorius HA, Spring KR (2005) A physiological view of the primary cilium. Annu Rev Physiol 67:515–529

    Article  PubMed  CAS  Google Scholar 

  135. Okuhara DY, Geng L, Sfakianos JN, Mellman I, Somlo S (2006) Flow-induced Ca2+ Signaling in MDCK Cells. J Am Soc Nephrol 17:705A Abstract

    Google Scholar 

  136. Mitchell CH, Carre DA, McGlinn AM, Stone RA, Civan MM (1998) A release mechanism for stored ATP in ocular ciliary epithelial cells. Proc Natl Acad Sci U S A 95:7174–7178

    Article  PubMed  CAS  Google Scholar 

  137. van der Wijk T, De Jonge HR, Tilly BC (1999) Osmotic cell swelling-induced ATP release mediates the activation of extracellular signal-regulated protein kinase (Erk)-1/2 but not the activation of osmo-sensitive anion channels. Biochem J 343:579–586

    Article  PubMed  Google Scholar 

  138. van der Wijk T, Tomassen SF, Houtsmuller AB, De Jonge HR, Tilly BC (2003) Increased vesicle recycling in response to osmotic cell swelling. Cause and consequence of hypotonicity-provoked ATP release. J Biol Chem 278:40020–40025

    Article  PubMed  CAS  Google Scholar 

  139. Gorelik J, Zhang Y, Sanchez D, Shevchuk A, Frolenkov G, Lab M, Klenerman D, Edwards C, Korchev Y (2005) Aldosterone acts via an ATP autocrine/paracrine system: the Edelman ATP hypothesis revisited. Proc Natl Acad Sci U S A 102:15000–15005

    Article  PubMed  CAS  Google Scholar 

  140. Macfarlane SR, Seatter MJ, Kanke T, Hunter GD, Plevin R (2001) Proteinase-activated receptors. Pharmacol Rev 53:245–282

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We greatly appreciate the critical input and proofreading from Holger Nilsson and Elvin Odgaard.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jens Leipziger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Praetorius, H.A., Leipziger, J. ATP release from non-excitable cells. Purinergic Signalling 5, 433–446 (2009). https://doi.org/10.1007/s11302-009-9146-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11302-009-9146-2

Keywords

Navigation