Skip to main content

Advertisement

Log in

Pathophysiology of astroglial purinergic signalling

  • Review
  • Published:
Purinergic Signalling Aims and scope Submit manuscript

Abstract

Astrocytes are fundamental for central nervous system (CNS) physiology and are the fulcrum of neurological diseases. Astroglial cells control development of the nervous system, regulate synaptogenesis, maturation, maintenance and plasticity of synapses and are central for nervous system homeostasis. Astroglial reactions determine progression and outcome of many neuropathologies and are critical for regeneration and remodelling of neural circuits following trauma, stroke, ischaemia or neurodegenerative disorders. They secrete multiple neurotransmitters and neurohormones to communicate with neurones, microglia and the vascular walls of capillaries. Signalling through release of ATP is the most widespread mean of communication between astrocytes and other types of neural cells. ATP serves as a fast excitatory neurotransmitter and has pronounced long-term (trophic) roles in cell proliferation, growth, and development. During pathology, ATP is released from damaged cells and acts both as a cytotoxic factor and a proinflammatory mediator, being a universal “danger” signal. In this review, we summarise contemporary knowledge on the role of purinergic receptors (P2Rs) in a variety of diseases in relation to changes of astrocytic functions and nucleotide signalling. We have focussed on the role of the ionotropic P2X and metabotropic P2YRs working alone or in concert to modify the release of neurotransmitters, to activate signalling cascades and to change the expression levels of ion channels and protein kinases. All these effects are of great importance for the initiation, progression and maintenance of astrogliosis–the conserved and ubiquitous glial defensive reaction to CNS pathologies. We highlighted specific aspects of reactive astrogliosis, especially with respect to the involvement of the P2X7 and P2Y1R subtypes. Reactive astrogliosis exerts both beneficial and detrimental effects in a context-specific manner determined by distinct molecular signalling cascades. Understanding the role of purinergic signalling in astrocytes is critical to identifying new therapeutic principles to treat acute and chronic neurological diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AA:

Arachidonic acid

Aβ:

Oligomeric β-amyloid peptide

AC:

Adenylate cyclase

AD:

Alzheimer’s disease

AKT:

Serine-threonine kinase AKT

ALS:

Amyotrophic lateral sclerosis

APP:

Amyloid precursor protein

ATP:

Adenosine 5′-triphosphate

BrdU:

5-Bromo-2′-deoxyuridine

[Ca2+]i :

Intracellular free calcium concentration

cAMP:

Cyclic adenosine-3′,5′-monophosphate

cGMP:

Cyclic guanosine-3′,5′-monophosphate

CNS:

Central nervous system

COX:

Cyclooxygenase

DAG:

Diacylglycerol

DRG:

Dorsal root ganglion

EGF:

Epidermal growth factor

EGFP:

Enhanced green fluorescent protein

ERK:

Extracellular signal regulated protein kinase

FGF:

Fibroblast growth factor

GFAP:

Glial fibrillary acidic protein

GSK3:

Glycogen synthase kinase 3

IL:

Interleukin

InsP3 :

Inositol (1,4,5)-trisphosphate

IR:

Immunoreactivity

JNK:

Jun N-terminal kinase

MAPK:

Mitogen-activated protein kinase

MCAO:

Middle cerebral artery occlusion

MS:

Multiple sclerosis

NAc:

Nucleus accumbens

NGF:

Nerve growth factor

NG2:

Chondroitin sulphate proteoglycan

NF-κB:

Nuclear factor-κB

NO:

Nitric oxide

PD:

Parkinson’s disease

PDGF:

Platelet-derived growth factor

PGE2 :

Prostaglandin E2

PKC:

Protein kinase C

PI3K:

Phosphatidylinositol 3-kinase

PL(A2):

Phospholipase (A2)

PPADS:

Pyridoxal-phosphate-6-azophenyl-2′,4′-disulphonic acid

P2R:

Purinergic receptor

SAPK:

Stress-activated protein kinase

SE:

Status epilepticus

STAT3:

Signal transducer and activator of transcription 3

TBI:

Traumatic brain injury

TNF:

Tumor necrosis factor

UTP:

Uridine 5′-triphosphate

References

  1. Butt AM, Hamilton N, Hubbard P et al (2005) Synantocytes: the fifth element. J Anat 207:695–706

    PubMed  Google Scholar 

  2. Kettenmann H, Ransom BR (2005) Neuroglia. Oxford University Press, Oxford, p. 601

  3. Verkhratsky A, Butt A (2007) Glial neurobiology. A textbook. Wiley, Chichester, p 220

    Google Scholar 

  4. Franke H, Illes P (2006) Involvement of P2 receptors in the growth and survival of neurons in the CNS. Pharmacol Ther 109:297–324

    PubMed  CAS  Google Scholar 

  5. Burnstock G (2007) Physiology and pathophysiology of purinergic neurotransmission. Physiol Rev 87:659–797

    PubMed  CAS  Google Scholar 

  6. Burnstock G (2008) Purinergic signalling and disorders of the central nervous system. Nat Rev Drug Discov 7:575–590

    PubMed  CAS  Google Scholar 

  7. Burnstock G, Verkhratsky A (2009) Evolutionary origins of the purinergic signalling system. Acta Physiol (Oxf) 195:415–447

    CAS  Google Scholar 

  8. Neary JT, Zimmermann H (2009) Trophic functions of nucleotides in the central nervous system. Trends Neurosci 32:189–198

    PubMed  CAS  Google Scholar 

  9. Verkhratsky A, Krishtal OA, Burnstock G (2009) Purinoceptors on neuroglia. Mol Neurobiol 39:190–208

    PubMed  CAS  Google Scholar 

  10. Illes P, Verkhratsky A, Burnstock G et al (2012) P2X Receptors and their roles in astroglia in the central and peripheral nervous system. Neuroscientist. doi:10.1177/1073858411418524

  11. Tozaki-Saitoh H, Tsuda M, Inoue K (2011) Role of purinergic receptors in CNS function and neuroprotection. Adv Pharmacol 61:495–528

    PubMed  CAS  Google Scholar 

  12. Zimmermann H (2011) Purinergic signaling in neural development. Semin Cell Dev Biol 22:194–204

    PubMed  CAS  Google Scholar 

  13. North RA, Verkhratsky A (2006) Purinergic transmission in the central nervous system. Pflüger’s Arch 452:479–485

    CAS  Google Scholar 

  14. Pankratov Y, Lalo U, Verkhratsky A et al (2006) Vesicular release of ATP at central synapses. Pflüger’s Arch 452:589–597

    CAS  Google Scholar 

  15. Pankratov Y, Lalo U, Verkhratsky A et al (2007) Quantal release of ATP in mouse cortex. J Gen Physiol 129:257–265

    PubMed  CAS  Google Scholar 

  16. Araque A, Navarrete M (2010) Glial cells in neuronal network function. Philos Trans R Soc Lond B Biol Sci 365:2375–2381

    PubMed  Google Scholar 

  17. Lalo U, Verkhratsky A, Pankratov Y (2011) Ionotropic ATP receptors in neuronal-glial communication. Semin Cell Dev Biol 22:220–228

    PubMed  CAS  Google Scholar 

  18. Hamilton NB, Attwell D (2010) Do astrocytes really exocytose neurotransmitters? Nat Rev Neurosci 11:227–238

    PubMed  CAS  Google Scholar 

  19. Braun N, Zhu Y, Krieglstein J et al (1998) Upregulation of the enzyme chain hydrolyzing extracellular ATP after transient forebrain ischemia in the rat. J Neurosci 18:4891–4900

    PubMed  CAS  Google Scholar 

  20. Juranyi Z, Sperlagh B, Vizi ES (1999) Involvement of P2 purinoceptors and the nitric oxide pathway in [3H]purine outflow evoked by short-term hypoxia and hypoglycemia in rat hippocampal slices. Brain Res 823:183–190

    PubMed  CAS  Google Scholar 

  21. Melani A, Turchi D, Vannucchi MG et al (2005) ATP extracellular concentrations are increased in the rat striatum during in vivo ischemia. Neurochem Int 47:442–448

    PubMed  CAS  Google Scholar 

  22. Neary JT, Kang Y, Tran M et al (2005) Traumatic injury activates protein kinase B/Akt in cultured astrocytes: role of extracellular ATP and P2 purinergic receptors. J Neurotrauma 22:491–500

    PubMed  Google Scholar 

  23. Franke H, Grummich B, Härtig W et al (2006) Changes in purinergic signaling after cerebral injury–involvement of glutamatergic mechanisms? Int J Dev Neurosci 24:123–132

    PubMed  CAS  Google Scholar 

  24. Zimmermann H, Braun N (1999) Ecto-nucleotidases—molecular structures, catalytic properties, and functional roles in the nervous system. Prog Brain Res 120:371–385

    PubMed  CAS  Google Scholar 

  25. Zimmermann H (2006) Ectonucleotidases in the nervous system. Novartis Found Symp 276:113–128

    PubMed  CAS  Google Scholar 

  26. Ralevic V, Burnstock G (1998) Receptors for purines and pyrimidines. Pharmacol Rev 50:413–492

    PubMed  CAS  Google Scholar 

  27. Abbracchio MP, Burnstock G, Boeynaems JM et al (2006) International Union of Pharmacology LVIII: update on the P2Y G protein-coupled nucleotide receptors: from molecular mechanisms and pathophysiology to therapy. Pharmacol Rev 58:281–341

    PubMed  CAS  Google Scholar 

  28. Khakh BS, North RA (2006) P2X receptors as cell-surface ATP sensors in health and disease. Nature 442:527–532

    PubMed  CAS  Google Scholar 

  29. Abbracchio MP, Burnstock G, Verkhratsky A et al (2009) Purinergic signalling in the nervous system: an overview. Trends Neurosci 32:19–29

    PubMed  CAS  Google Scholar 

  30. von Kügelgen I, Harden TK (2011) Molecular pharmacology, physiology, and structure of the P2Y receptors. Adv Pharmacol 61:373–415

    Google Scholar 

  31. Köles L, Leichsenring A, Rubini P et al (2011) P2 receptor signaling in neurons and glial cells of the central nervous system. Adv Pharmacol 61:441–493

    PubMed  Google Scholar 

  32. Giaume C, Kirchhoff F, Matute C et al (2007) Glia: the fulcrum of brain diseases. Cell Death Differ 14:1324–1335

    PubMed  CAS  Google Scholar 

  33. Rodriguez JJ, Olabarria M, Chvatal A et al (2009) Astroglia in dementia and Alzheimer’s disease. Cell Death Differ 16:378–385

    PubMed  CAS  Google Scholar 

  34. Heneka MT, Rodriguez JJ, Verkhratsky A (2010) Neuroglia in neurodegeneration. Brain Res Rev 63:189–211

    PubMed  CAS  Google Scholar 

  35. Robel S, Berninger B, Götz M (2011) The stem cell potential of glia: lessons from reactive gliosis. Nat Rev Neurosci 12:88–104

    PubMed  CAS  Google Scholar 

  36. Sofroniew MV, Vinters HV (2010) Astrocytes: biology and pathology. Acta Neuropathol 119:7–35

    PubMed  Google Scholar 

  37. Butt AM (2011) ATP: a ubiquitous gliotransmitter integrating neuron–glial networks. Semin Cell Dev Biol 22:205–213

    PubMed  CAS  Google Scholar 

  38. Verkhratsky A (2010) Physiology of neuronal-glial networking. Neurochem Int 57:332–343

    PubMed  CAS  Google Scholar 

  39. Verkhratsky A, Parpura V, Rodriguez JJ (2011) Where the thoughts dwell: the physiology of neuronal-glial “diffuse neural net”. Brain Res Rev 66:133–151

    PubMed  Google Scholar 

  40. Freeman MR (2010) Specification and morphogenesis of astrocytes. Science 330:774–778

    PubMed  CAS  Google Scholar 

  41. Li L, Lundkvist A, Andersson D et al (2008) Protective role of reactive astrocytes in brain ischemia. J Cereb Blood Flow Metab 28:468–481

    PubMed  Google Scholar 

  42. Benarroch EE (2005) Neuron-astrocyte interactions: partnership for normal function and disease in the central nervous system. Mayo Clin Proc 80:1326–1338

    PubMed  CAS  Google Scholar 

  43. Kimelberg HK, Nedergaard M (2010) Functions of astrocytes and their potential as therapeutic targets. Neurotherapeutics 7:338–353

    PubMed  CAS  Google Scholar 

  44. McGraw J, Hiebert GW, Steeves JD (2001) Modulating astrogliosis after neurotrauma. J Neurosci Res 63:109–115

    PubMed  CAS  Google Scholar 

  45. Fuller S, Munch G, Steele M (2009) Activated astrocytes: a therapeutic target in Alzheimer’s disease? Expert Rev Neurother 9:1585–1594

    PubMed  CAS  Google Scholar 

  46. Anderson CM, Swanson RA (2000) Astrocyte glutamate transport: review of properties, regulation, and physiological functions. Glia 32:1–14

    PubMed  CAS  Google Scholar 

  47. Coco S, Calegari F, Pravettoni E et al (2003) Storage and release of ATP from astrocytes in culture. J Biol Chem 278:1354–1362

    PubMed  CAS  Google Scholar 

  48. Hamilton N, Vayro S, Kirchhoff F et al (2008) Mechanisms of ATP- and glutamate-mediated calcium signaling in white matter astrocytes. Glia 56:734–749

    PubMed  Google Scholar 

  49. Sawada K, Echigo N, Juge N et al (2008) Identification of a vesicular nucleotide transporter. Proc Natl Acad Sci U S A 105:5683–5686

    PubMed  CAS  Google Scholar 

  50. Sreedharan S, Shaik JH, Olszewski PK et al (2010) Glutamate, aspartate and nucleotide transporters in the SLC17 family form four main phylogenetic clusters: evolution and tissue expression. BMC Genomics 11:17

    PubMed  Google Scholar 

  51. Montana V, Malarkey EB, Verderio C et al (2006) Vesicular transmitter release from astrocytes. Glia 54:700–715

    PubMed  Google Scholar 

  52. Bowser DN, Khakh BS (2007) Vesicular ATP is the predominant cause of intercellular calcium waves in astrocytes. J Gen Physiol 129:485–491

    PubMed  CAS  Google Scholar 

  53. Zhang Z, Chen G, Zhou W et al (2007) Regulated ATP release from astrocytes through lysosome exocytosis. Nat Cell Biol 9:945–953

    PubMed  CAS  Google Scholar 

  54. Locovei S, Wang J, Dahl G (2006) Activation of pannexin 1 channels by ATP through P2Y receptors and by cytoplasmic calcium. FEBS Lett 580:239–244

    PubMed  CAS  Google Scholar 

  55. Iwabuchi S, Kawahara K (2011) Functional significance of the negative-feedback regulation of ATP release via pannexin-1 hemichannels under ischemic stress in astrocytes. Neurochem Int 58:376–384

    PubMed  CAS  Google Scholar 

  56. Suadicani SO, Flores CE, Urban-Maldonado M et al (2004) Gap junction channels coordinate the propagation of intercellular Ca2+ signals generated by P2Y receptor activation. Glia 48:217–229

    PubMed  CAS  Google Scholar 

  57. Scemes E, Suadicani SO, Dahl G et al (2007) Connexin and pannexin mediated cell-cell communication. Neuron Glia Biol 3:199–208

    PubMed  Google Scholar 

  58. Duan S, Anderson CM, Keung EC et al (2003) P2X7 receptor-mediated release of excitatory amino acids from astrocytes. J Neurosci 23:1320–1328

    PubMed  CAS  Google Scholar 

  59. Cornell-Bell AH, Finkbeiner SM, Cooper MS et al (1990) Glutamate induces calcium waves in cultured astrocytes: long-range glial signaling. Science 247:470–473

    PubMed  CAS  Google Scholar 

  60. Giaume C, Venance L (1998) Intercellular calcium signaling and gap junctional communication in astrocytes. Glia 24:50–64

    PubMed  CAS  Google Scholar 

  61. Verkhratsky A, Orkand RK, Kettenmann H (1998) Glial calcium: homeostasis and signaling function. Physiol Rev 78:99–141

    PubMed  CAS  Google Scholar 

  62. Newman EA, Zahs KR (1997) Calcium waves in retinal glial cells. Science 275:844–847

    PubMed  CAS  Google Scholar 

  63. Guthrie PB, Knappenberger J, Segal M et al (1999) ATP released from astrocytes mediates glial calcium waves. J Neurosci 19:520–528

    PubMed  CAS  Google Scholar 

  64. Cotrina ML, Lin JH, Lopez-Garcia JC et al (2000) ATP-mediated glia signaling. J Neurosci 20:2835–2844

    PubMed  CAS  Google Scholar 

  65. Scemes E, Giaume C (2006) Astrocyte calcium waves: what they are and what they do. Glia 54:716–725

    PubMed  Google Scholar 

  66. Araque A, Sanzgiri RP, Parpura V et al (1998) Calcium elevation in astrocytes causes an NMDA receptor-dependent increase in the frequency of miniature synaptic currents in cultured hippocampal neurons. J Neurosci 18:6822–6829

    PubMed  CAS  Google Scholar 

  67. Newman EA (2003) Glial cell inhibition of neurons by release of ATP. J Neurosci 23:1659–1666

    PubMed  CAS  Google Scholar 

  68. Jourdain P, Bergersen LH, Bhaukaurally K et al (2007) Glutamate exocytosis from astrocytes controls synaptic strength. Nat Neurosci 10:331–339

    PubMed  CAS  Google Scholar 

  69. Parpura V, Haydon PG (2000) Physiological astrocytic calcium levels stimulate glutamate release to modulate adjacent neurons. Proc Natl Acad Sci U S A 97:8629–8634

    PubMed  CAS  Google Scholar 

  70. Araque A, Parpura V, Sanzgiri RP et al (1999) Tripartite synapses: glia, the unacknowledged partner. Trends Neurosci 22:208–215

    PubMed  CAS  Google Scholar 

  71. Halassa MM, Fellin T, Haydon PG (2009) Tripartite synapses: roles for astrocytic purines in the control of synaptic physiology and behavior. Neuropharmacology 57:343–346

    PubMed  CAS  Google Scholar 

  72. Perea G, Navarrete M, Araque A (2009) Tripartite synapses: astrocytes process and control synaptic information. Trends Neurosci 32:421–431

    PubMed  CAS  Google Scholar 

  73. Di Castro MA, Chuquet J, Liaudet N et al (2011) Local Ca2+ detection and modulation of synaptic release by astrocytes. Nat Neurosci 14:1276–1284

    PubMed  Google Scholar 

  74. Panatier A, Vallee J, Haber M et al (2011) Astrocytes are endogenous regulators of basal transmission at central synapses. Cell 146:785–798

    PubMed  CAS  Google Scholar 

  75. Kirischuk S, Möller T, Voitenko N et al (1995) ATP-induced cytoplasmic calcium mobilization in Bergmann glial cells. J Neurosci 15:7861–7871

    PubMed  CAS  Google Scholar 

  76. Franke H, Grosche J, Schädlich H et al (2001) P2X receptor expression on astrocytes in the nucleus accumbens of rats. Neuroscience 108:421–429

    PubMed  CAS  Google Scholar 

  77. Kukley M, Barden JA, Steinhäuser C et al (2001) Distribution of P2X receptors on astrocytes in juvenile rat hippocampus. Glia 36:11–21

    PubMed  CAS  Google Scholar 

  78. James G, Butt AM (2002) P2Y and P2X purinoceptor mediated Ca2+ signalling in glial cell pathology in the central nervous system. Eur J Pharmacol 447:247–260

    PubMed  CAS  Google Scholar 

  79. Fam SR, Gallagher CJ, Kalia LV et al (2003) Differential frequency dependence of P2Y1- and P2Y2- mediated Ca2+ signaling in astrocytes. J Neurosci 23:4437–4444

    PubMed  CAS  Google Scholar 

  80. Gallagher CJ, Salter MW (2003) Differential properties of astrocyte calcium waves mediated by P2Y1 and P2Y2 receptors. J Neurosci 23:6728–6739

    PubMed  CAS  Google Scholar 

  81. Simard M, Arcuino G, Takano T et al (2003) Signaling at the gliovascular interface. J Neurosci 23:9254–9262

    PubMed  CAS  Google Scholar 

  82. Ashour F, Deuchars J (2004) Electron microscopic localisation of P2X4 receptor subunit immunoreactivity to pre- and post-synaptic neuronal elements and glial processes in the dorsal vagal complex of the rat. Brain Res 1026:44–55

    PubMed  CAS  Google Scholar 

  83. Lalo U, Pankratov Y, Wichert SP et al (2008) P2X1 and P2X5 subunits form the functional P2X receptor in mouse cortical astrocytes. J Neurosci 28:5473–5480

    PubMed  CAS  Google Scholar 

  84. Fischer W, Appelt K, Grohmann M et al (2009) Increase of intracellular Ca2+ by P2X and P2Y receptor-subtypes in cultured cortical astroglia of the rat. Neuroscience 160:767–783

    PubMed  CAS  Google Scholar 

  85. Nörenberg W, Schunk J, Fischer W et al (2010) Electrophysiological classification of P2X7 receptors in rat cultured neocortical astroglia. Br J Pharmacol 160:1941–1952

    PubMed  Google Scholar 

  86. Oliveira JF, Riedel T, Leichsenring A et al (2011) Rodent cortical astroglia express in situ functional P2X7 receptors sensing pathologically high ATP concentrations. Cereb Cortex 21:806–820

    PubMed  Google Scholar 

  87. Palygin O, Lalo U, Verkhratsky A et al (2010) Ionotropic NMDA and P2X1/5 receptors mediate synaptically induced Ca2+ signalling in cortical astrocytes. Cell Calcium 48:225–231

    PubMed  CAS  Google Scholar 

  88. Franke H, Krügel U, Illes P (2006) P2 receptors and neuronal injury. Pflüger’s Arch 452:622–644

    CAS  Google Scholar 

  89. Burnstock G, Fredholm BB, Verkhratsky A (2011) Adenosine and ATP receptors in the brain. Curr Top Med Chem 11:973–1011

    PubMed  CAS  Google Scholar 

  90. Burnstock G, Verkhratsky A (2010) Long-term (trophic) purinergic signalling: purinoceptors control cell proliferation, differentiation and death. Cell Death Dis 1:e9

    PubMed  CAS  Google Scholar 

  91. Ballerini P, Rathbone MP, Di Iorio P et al (1996) Rat astroglial P2Z (P2X7) receptors regulate intracellular calcium and purine release. Neuroreport 7:2533–2537

    PubMed  CAS  Google Scholar 

  92. Fumagalli M, Brambilla R, D’Ambrosi N et al (2003) Nucleotide-mediated calcium signaling in rat cortical astrocytes: role of P2X and P2Y receptors. Glia 43:218–230

    PubMed  Google Scholar 

  93. Nobile M, Monaldi I, Alloisio S et al (2003) ATP-induced, sustained calcium signalling in cultured rat cortical astrocytes: evidence for a non-capacitative, P2X7-like-mediated calcium entry. FEBS Lett 538:71–76

    PubMed  CAS  Google Scholar 

  94. Ballerini P, Giulinai P, Buccella S, Nargi E, Santavenere C, Scemes E, Rathbone MP, Caciagli F (2000) P2X7 ATP receptor mediated modulation of astrocyte proliferation and coupling. Drug Dev Res 50:108

    Google Scholar 

  95. Ciccarelli R, Ballerini P, Sabatino G et al (2001) Involvement of astrocytes in purine-mediated reparative processes in the brain. Int J Dev Neurosci 19:395–414

    PubMed  CAS  Google Scholar 

  96. Skaper SD, Debetto P, Giusti P (2010) The P2X7 purinergic receptor: from physiology to neurological disorders. FASEB J 24:337–345

    PubMed  CAS  Google Scholar 

  97. Lenertz LY, Gavala ML, Zhu Y et al (2011) Transcriptional control mechanisms associated with the nucleotide receptor P2X7, a critical regulator of immunologic, osteogenic, and neurologic functions. Immunol Res 50:22–38

    PubMed  CAS  Google Scholar 

  98. Jabs R, Matthias K, Grote A et al (2007) Lack of P2X receptor mediated currents in astrocytes and GluR type glial cells of the hippocampal CA1 region. Glia 55:1648–1655

    PubMed  Google Scholar 

  99. Young MT, Pelegrin P, Surprenant A (2007) Amino acid residues in the P2X7 receptor that mediate differential sensitivity to ATP and BzATP. Mol Pharmacol 71:92–100

    PubMed  CAS  Google Scholar 

  100. Franke H, Krügel U, Grosche J et al (2004) P2Y receptor expression on astrocytes in the nucleus accumbens of rats. Neuroscience 127:431–441

    PubMed  CAS  Google Scholar 

  101. Abbracchio MP, Ceruti S (2006) Roles of P2 receptors in glial cells: focus on astrocytes. Purinergic Signal 2:595–604

    PubMed  CAS  Google Scholar 

  102. Fischer W, Krügel U (2007) P2Y receptors: focus on structural, pharmacological and functional aspects in the brain. Curr Med Chem 14:2429–2455

    PubMed  CAS  Google Scholar 

  103. Tonazzini I, Trincavelli ML, Montali M et al (2008) Regulation of A1 adenosine receptor functioning induced by P2Y1 purinergic receptor activation in human astroglial cells. J Neurosci Res 86:2857–2866

    PubMed  CAS  Google Scholar 

  104. Tonazzini I, Trincavelli ML, Storm-Mathisen J et al (2007) Co-localization and functional cross-talk between A1 and P2Y1 purine receptors in rat hippocampus. Eur J Neurosci 26:890–902

    PubMed  CAS  Google Scholar 

  105. Carrasquero LM, Delicado EG, Sanchez-Ruiloba L et al (2010) Mechanisms of protein kinase D activation in response to P2Y2 and P2X7 receptors in primary astrocytes. Glia 58:984–995

    PubMed  Google Scholar 

  106. Ase AR, Bernier LP, Blais D et al (2010) Modulation of heteromeric P2X1/5 receptors by phosphoinositides in astrocytes depends on the P2X1 subunit. J Neurochem 113:1676–1684

    PubMed  CAS  Google Scholar 

  107. Dusart I, Schwab ME (1994) Secondary cell death and the inflammatory reaction after dorsal hemisection of the rat spinal cord. Eur J Neurosci 6:712–724

    PubMed  CAS  Google Scholar 

  108. Hatten ME, Liem RK, Shelanski ML et al (1991) Astroglia in CNS injury. Glia 4:233–243

    PubMed  CAS  Google Scholar 

  109. Eddleston M, Mucke L (1993) Molecular profile of reactive astrocytes–implications for their role in neurologic disease. Neuroscience 54:15–36

    PubMed  CAS  Google Scholar 

  110. Norenberg MD (1994) Astrocyte responses to CNS injury. J Neuropathol Exp Neurol 53:213–220

    PubMed  CAS  Google Scholar 

  111. Ridet JL, Malhotra SK, Privat A et al (1997) Reactive astrocytes: cellular and molecular cues to biological function. Trends Neurosci 20:570–577

    PubMed  CAS  Google Scholar 

  112. Robson SC, Sevigny J, Zimmermann H (2006) The E-NTPDase family of ectonucleotidases: structure function relationships and pathophysiological significance. Purinergic Signal 2:409–430

    PubMed  CAS  Google Scholar 

  113. Neary JT, Rathbone MP, Cattabeni F et al (1996) Trophic actions of extracellular nucleotides and nucleosides on glial and neuronal cells. Trends Neurosci 19:13–18

    PubMed  CAS  Google Scholar 

  114. Abbracchio MP, Brambilla R, Ceruti S et al (1999) Signalling mechanisms involved in P2Y receptor-mediated reactive astrogliosis. Prog Brain Res 120:333–342

    PubMed  CAS  Google Scholar 

  115. Neary JT, Norenberg MD (1992) Signaling by extracellular ATP: physiological and pathological considerations in neuronal–astrocytic interactions. Prog Brain Res 94:145–151

    PubMed  CAS  Google Scholar 

  116. Neary JT, Whittemore SR, Zhu Q et al (1994) Destabilization of glial fibrillary acidic protein mRNA in astrocytes by ammonia and protection by extracellular ATP. J Neurochem 63:2021–2027

    PubMed  CAS  Google Scholar 

  117. Neary JT, Baker L, Jorgensen SL et al (1994) Extracellular ATP induces stellation and increases glial fibrillary acidic protein content and DNA synthesis in primary astrocyte cultures. Acta Neuropathol 87:8–13

    PubMed  CAS  Google Scholar 

  118. Abbracchio MP, Ceruti S, Langfelder R et al (1995) Effects of ATP analogues and basic fibroblast growth factor on astroglial cell differentiation in primary cultures of rat striatum. Int J Dev Neurosci 13:685–693

    PubMed  CAS  Google Scholar 

  119. Brambilla R, Ceruti S, Malorni W et al (2000) A novel gliotic P2 receptor mediating cyclooxygenase-2 induction in rat and human astrocytes. J Auton Nerv Syst 81:3–9

    PubMed  CAS  Google Scholar 

  120. Abbracchio MP, Ceruti S, Bolego C et al (1996) Trophic roles of P2 purinoceptors in central nervous system astroglial cells. CIBA Found Symp 198:142–147

    PubMed  CAS  Google Scholar 

  121. Neary JT (1996) Trophic actions of extracellular ATP on astrocytes, synergistic interactions with fibroblast growth factors and underlying signal transduction mechanisms. CIBA Found Symp 198:130–139

    PubMed  CAS  Google Scholar 

  122. Neary JT, McCarthy M, Cornell-Bell A et al (1999) Trophic signaling pathways activated by purinergic receptors in rat and human astroglia. Prog Brain Res 120:323–332

    PubMed  CAS  Google Scholar 

  123. Rathbone MP, Middlemiss PJ, Gysbers JW et al (1999) Trophic effects of purines in neurons and glial cells. Prog Neurobiol 59:663–690

    PubMed  CAS  Google Scholar 

  124. Lenz G, Goncalves D, Luo Z et al (2001) Extracellular ATP stimulates an inhibitory pathway towards growth factor-induced cRaf-1 and MEKK activation in astrocyte cultures. J Neurochem 77:1001–1009

    PubMed  CAS  Google Scholar 

  125. Abbracchio MP, Saffrey MJ, Höpker V et al (1994) Modulation of astroglial cell proliferation by analogues of adenosine and ATP in primary cultures of rat striatum. Neuroscience 59:67–76

    PubMed  CAS  Google Scholar 

  126. Neary JT, McCarthy M, Kang Y et al (1998) Mitogenic signaling from P1 and P2 purinergic receptors to mitogen-activated protein kinase in human fetal astrocyte cultures. Neurosci Lett 242:159–162

    PubMed  CAS  Google Scholar 

  127. Franke H, Krügel U, Illes P (1999) P2 receptor-mediated proliferative effects on astrocytes in vivo. Glia 28:190–200

    PubMed  CAS  Google Scholar 

  128. Franke H, Krügel U, Schmidt R et al (2001) P2 receptor-types involved in astrogliosis in vivo. Br J Pharmacol 134:1180–1189

    PubMed  CAS  Google Scholar 

  129. Franke H, Sauer C, Rudolph C et al (2009) P2 receptor-mediated stimulation of the PI3-K/Akt-pathway in vivo. Glia 57:1031–1045

    PubMed  CAS  Google Scholar 

  130. Sofroniew MV (2009) Molecular dissection of reactive astrogliosis and glial scar formation. Trends Neurosci 32:638–647

    PubMed  CAS  Google Scholar 

  131. Zhang D, Hu X, Qian L et al (2010) Astrogliosis in CNS pathologies: is there a role for microglia? Mol Neurobiol 41:232–241

    PubMed  Google Scholar 

  132. Kuboyama K, Harada H, Tozaki-Saitoh H et al (2011) Astrocytic P2Y1 receptor is involved in the regulation of cytokine/chemokine transcription and cerebral damage in a rat model of cerebral ischemia. J Cereb Blood Flow Metab 31:1930–1941

    Google Scholar 

  133. John GR, Simpson JE, Woodroofe MN et al (2001) Extracellular nucleotides differentially regulate interleukin-1beta signaling in primary human astrocytes: implications for inflammatory gene expression. J Neurosci 21:4134–4142

    PubMed  CAS  Google Scholar 

  134. Xu J, Chalimoniuk M, Shu Y et al (2003) Prostaglandin E2 production in astrocytes: regulation by cytokines, extracellular ATP, and oxidative agents. Prostaglandins Leukot Essent Fatty Acids 69:437–448

    PubMed  CAS  Google Scholar 

  135. Domercq M, Brambilla L, Pilati E et al (2006) P2Y1 receptor-evoked glutamate exocytosis from astrocytes: control by tumor necrosis factor-α and prostaglandins. J Biol Chem 281:30684–30696

    PubMed  CAS  Google Scholar 

  136. Fujita T, Tozaki-Saitoh H, Inoue K (2009) P2Y1 receptor signaling enhances neuroprotection by astrocytes against oxidative stress via IL-6 release in hippocampal cultures. Glia 57:244–257

    PubMed  Google Scholar 

  137. Sun JJ, Liu Y, Ye ZR (2008) Effects of P2Y1 receptor on glial fibrillary acidic protein and glial cell line-derived neurotrophic factor production of astrocytes under ischemic condition and the related signaling pathways. Neurosci Bull 24:231–243

    PubMed  CAS  Google Scholar 

  138. Neary JT, Kang Y, Shi YF et al (2006) P2 receptor signalling, proliferation of astrocytes, and expression of molecules involved in cell-cell interactions. Novartis Found Symp 276:131–143

    PubMed  CAS  Google Scholar 

  139. Neary JT, Kang Y (2005) Signaling from P2 nucleotide receptors to protein kinase cascades induced by CNS injury: implications for reactive gliosis and neurodegeneration. Mol Neurobiol 31:95–103

    PubMed  CAS  Google Scholar 

  140. Neary JT, Shi YF, Kang Y et al (2008) Opposing effects of P2X7 and P2Y purine/pyrimidine-preferring receptors on proliferation of astrocytes induced by fibroblast growth factor-2: implications for CNS development, injury, and repair. J Neurosci Res 86:3096–3105

    PubMed  CAS  Google Scholar 

  141. Tran MD, Neary JT (2006) Purinergic signaling induces thrombospondin-1 expression in astrocytes. Proc Natl Acad Sci U S A 103:9321–9326

    PubMed  CAS  Google Scholar 

  142. Tran MD, Wanner IB, Neary JT (2008) Purinergic receptor signaling regulates N-cadherin expression in primary astrocyte cultures. J Neurochem 105:272–286

    PubMed  CAS  Google Scholar 

  143. Lemons ML, Howland DR, Anderson DK (1999) Chondroitin sulfate proteoglycan immunoreactivity increases following spinal cord injury and transplantation. Exp Neurol 160:51–65

    PubMed  CAS  Google Scholar 

  144. Becker T, Anliker B, Becker CG et al (2000) Tenascin-R inhibits regrowth of optic fibers in vitro and persists in the optic nerve of mice after injury. Glia 29:330–346

    PubMed  CAS  Google Scholar 

  145. Yang HY, Lieska N, Shao D et al (1994) Proteins of the intermediate filament cytoskeleton as markers for astrocytes and human astrocytomas. Mol Chem Neuropathol 21:155–176

    PubMed  CAS  Google Scholar 

  146. Cruz-Orengo L, Figueroa JD, Velazquez I et al (2006) Blocking EphA4 upregulation after spinal cord injury results in enhanced chronic pain. Exp Neurol 202:421–433

    PubMed  CAS  Google Scholar 

  147. Davalos D, Grutzendler J, Yang G et al (2005) ATP mediates rapid microglial response to local brain injury in vivo. Nat Neurosci 8:752–758

    PubMed  CAS  Google Scholar 

  148. Kettenmann H, Hanisch UK, Noda M et al (2011) Physiology of microglia. Physiol Rev 91:461–553

    PubMed  CAS  Google Scholar 

  149. Kim JE, Kwak SE, Jo SM et al (2009) Blockade of P2X receptor prevents astroglial death in the dentate gyrus following pilocarpine-induced status epilepticus. Neurol Res 31:982–988

    PubMed  CAS  Google Scholar 

  150. Inoue K, Tsuda M (2012) Purinergic systems, neuropathic pain and the role of microglia. Exp Neurol 234:293–301

    Google Scholar 

  151. Tsuda M, Tozaki-Saitoh H, Inoue K (2010) Pain and purinergic signaling. Brain Res Rev 63:222–232

    PubMed  CAS  Google Scholar 

  152. Quintas C, Fraga S, Goncalves J et al (2011) P2Y receptors on astrocytes and microglia mediate opposite effects in astroglial proliferation. Purinergic Signal 7:251–263

    PubMed  CAS  Google Scholar 

  153. Sun SH, Lin LB, Hung AC et al (1999) ATP-stimulated Ca2+ influx and phospholipase D activities of a rat brain-derived type-2 astrocyte cell line, RBA-2, are mediated through P2X7 receptors. J Neurochem 73:334–343

    PubMed  CAS  Google Scholar 

  154. Anderson CM, Bergher JP, Swanson RA (2004) ATP-induced ATP release from astrocytes. J Neurochem 88:246–256

    PubMed  CAS  Google Scholar 

  155. Wang CM, Chang YY, Kuo JS et al (2002) Activation of P2X7 receptors induced [3H]GABA release from the RBA-2 type-2 astrocyte cell line through a Cl-/HCO3 dependent mechanism. Glia 37:8–18

    PubMed  Google Scholar 

  156. Duan S, Neary JT (2006) P2X7 receptors: properties and relevance to CNS function. Glia 54:738–746

    PubMed  Google Scholar 

  157. Erb L, Liao Z, Seye CI et al (2006) P2 receptors: intracellular signaling. Pflüger’s Arch 452:552–562

    CAS  Google Scholar 

  158. Bianco F, Colombo A, Saglietti L et al (2009) Different properties of P2X7 receptor in hippocampal and cortical astrocytes. Purinergic Signal 5:233–240

    PubMed  CAS  Google Scholar 

  159. Adinolfi E, Cirillo M, Woltersdorf R et al (2010) Trophic activity of a naturally occurring truncated isoform of the P2X7 receptor. FASEB J 24:3393–3404

    PubMed  CAS  Google Scholar 

  160. Ortega F, Perez-Sen R, Delicado EG et al (2009) P2X7 nucleotide receptor is coupled to GSK-3 inhibition and neuroprotection in cerebellar granule neurons. Neurotox Res 15:193–204

    PubMed  CAS  Google Scholar 

  161. Volonte C, Amadio S, D’Ambrosi N et al (2006) P2 receptor web: complexity and fine-tuning. Pharmacol Ther 112:264–280

    PubMed  CAS  Google Scholar 

  162. Neary JT, Kang Y, Bu Y et al (1999) Mitogenic signaling by ATP/P2Y purinergic receptors in astrocytes: involvement of a calcium-independent protein kinase C, extracellular signal-regulated protein kinase pathway distinct from the phosphatidylinositol-specific phospholipase C/calcium pathway. J Neurosci 19:4211–4220

    PubMed  CAS  Google Scholar 

  163. Lange-Carter CA, Pleiman CM, Gardner AM et al (1993) A divergence in the MAP kinase regulatory network defined by MEK kinase and Raf. Science 260:315–319

    PubMed  CAS  Google Scholar 

  164. Neary JT, Zhu Q, Kang Y et al (1996) Extracellular ATP induces formation of AP-1 complexes in astrocytes via P2 purinoceptors. Neuroreport 7:2893–2896

    PubMed  CAS  Google Scholar 

  165. Brambilla R, Neary JT, Cattabeni F et al (2002) Induction of COX-2 and reactive gliosis by P2Y receptors in rat cortical astrocytes is dependent on ERK1/2 but independent of calcium signalling. J Neurochem 83:1285–1296

    PubMed  CAS  Google Scholar 

  166. Neary JT, Kang Y, Willoughby KA et al (2003) Activation of extracellular signal-regulated kinase by stretch-induced injury in astrocytes involves extracellular ATP and P2 purinergic receptors. J Neurosci 23:2348–2356

    PubMed  CAS  Google Scholar 

  167. Sellers LA, Simon J, Lundahl TS et al (2001) Adenosine nucleotides acting at the human P2Y1 receptor stimulate mitogen-activated protein kinases and induce apoptosis. J Biol Chem 276:16379–16390

    PubMed  CAS  Google Scholar 

  168. Gendron FP, Newbold N, Vivas-Mejia P et al (2003) Signal transduction pathways for P2Y2 and P2X7 nucleotide receptors that mediate neuroinflammatory responses in astrocytes and microglial cells. Biomedical Res 14:47–61

    CAS  Google Scholar 

  169. Panenka W, Jijon H, Herx LM et al (2001) P2X7-like receptor activation in astrocytes increases chemokine monocyte chemoattractant protein-1 expression via mitogen-activated protein kinase. J Neurosci 21:7135–7142

    PubMed  CAS  Google Scholar 

  170. Atkins CM, Oliva AA Jr, Alonso OF et al (2007) Hypothermia treatment potentiates ERK1/2 activation after traumatic brain injury. Eur J Neurosci 26:810–819

    PubMed  Google Scholar 

  171. Milenkovic I, Weick M, Wiedemann P et al (2004) Neuropeptide Y-evoked proliferation of retinal glial (Müller) cells. Graefes Arch Clin Exp Ophthalmol 242:944–950

    PubMed  CAS  Google Scholar 

  172. Weisman GA, Wang M, Kong Q et al (2005) Molecular determinants of P2Y2 nucleotide receptor function: implications for proliferative and inflammatory pathways in astrocytes. Mol Neurobiol 31:169–183

    PubMed  CAS  Google Scholar 

  173. Jacques-Silva MC, Rodnight R, Lenz G et al (2004) P2X7 receptors stimulate AKT phosphorylation in astrocytes. Br J Pharmacol 141:1106–1117

    PubMed  CAS  Google Scholar 

  174. Burgos M, Neary JT, Gonzalez FA (2007) P2Y2 nucleotide receptors inhibit trauma-induced death of astrocytic cells. J Neurochem 103:1785–1800

    PubMed  CAS  Google Scholar 

  175. Masood K, Besnard F, Su Y et al (1993) Analysis of a segment of the human glial fibrillary acidic protein gene that directs astrocyte-specific transcription. J Neurochem 61:160–166

    PubMed  CAS  Google Scholar 

  176. Hope BT, Nye HE, Kelz MB et al (1994) Induction of a long-lasting AP-1 complex composed of altered Fos-like proteins in brain by chronic cocaine and other chronic treatments. Neuron 13:1235–1244

    PubMed  CAS  Google Scholar 

  177. Perez-Cadahia B, Drobic B, Davie JR (2009) H3 phosphorylation: dual role in mitosis and interphase. Biochem Cell Biol 87:695–709

    PubMed  CAS  Google Scholar 

  178. Bolego C, Ceruti S, Brambilla R et al (1997) Characterization of the signalling pathways involved in ATP and basic fibroblast growth factor-induced astrogliosis. Br J Pharmacol 121:1692–1699

    PubMed  CAS  Google Scholar 

  179. Tsuda M, Koizumi S, Inoue K (2001) Role of endogenous ATP at the incision area in a rat model of postoperative pain. Neuroreport 12:1701–1704

    PubMed  CAS  Google Scholar 

  180. Gille H, Sharrocks AD, Shaw PE (1992) Phosphorylation of transcription factor p62TCF by MAP kinase stimulates ternary complex formation at c-fos promoter. Nature 358:414–417

    PubMed  CAS  Google Scholar 

  181. Dash PK, Moore AN, Dixon CE (1995) Spatial memory deficits, increased phosphorylation of the transcription factor CREB, and induction of the AP-1 complex following experimental brain injury. J Neurosci 15:2030–2039

    PubMed  CAS  Google Scholar 

  182. Murphy LO, Smith S, Chen RH et al (2002) Molecular interpretation of ERK signal duration by immediate early gene products. Nat Cell Biol 4:556–564

    PubMed  CAS  Google Scholar 

  183. Neary JT, Kang Y (2006) P2 purinergic receptors signal to glycogen synthase kinase-3beta in astrocytes. J Neurosci Res 84:515–524

    PubMed  CAS  Google Scholar 

  184. Florenzano F, Viscomi MT, Amadio S et al (2008) Do ATP and NO interact in the CNS? Prog Neurobiol 84:40–56

    PubMed  CAS  Google Scholar 

  185. Latini L, Geloso MC, Corvino V et al (2010) Trimethyltin intoxication up-regulates nitric oxide synthase in neurons and purinergic ionotropic receptor 2 in astrocytes in the hippocampus. J Neurosci Res 88:500–509

    PubMed  CAS  Google Scholar 

  186. Washburn KB, Neary JT (2006) P2 purinergic receptors signal to STAT3 in astrocytes: Difference in STAT3 responses to P2Y and P2X receptor activation. Neuroscience 142:411–423

    PubMed  CAS  Google Scholar 

  187. Peterson TS, Camden JM, Wang Y et al (2010) P2Y2 nucleotide receptor-mediated responses in brain cells. Mol Neurobiol 41:356–366

    PubMed  CAS  Google Scholar 

  188. Brambilla R, Burnstock G, Bonazzi A et al (1999) Cyclo-oxygenase-2 mediates P2Y receptor-induced reactive astrogliosis. Br J Pharmacol 126:563–567

    PubMed  CAS  Google Scholar 

  189. Brambilla R, Abbracchio MP (2001) Modulation of cyclooxygenase-2 and brain reactive astrogliosis by purinergic P2 receptors. Ann N Y Acad Sci 939:54–62

    PubMed  CAS  Google Scholar 

  190. Phillis JW, O’Regan MH, Perkins LM (1993) Adenosine 5′-triphosphate release from the normoxic and hypoxic in vivo rat cerebral cortex. Neurosci Lett 151:94–96

    PubMed  CAS  Google Scholar 

  191. Frenguelli BG, Wigmore G, Llaudet E et al (2007) Temporal and mechanistic dissociation of ATP and adenosine release during ischaemia in the mammalian hippocampus. J Neurochem 101:1400–1413

    PubMed  CAS  Google Scholar 

  192. Matute C, Cavaliere F (2011) Neuroglial interactions mediated by purinergic signalling in the pathophysiology of CNS disorders. Semin Cell Dev Biol 22:252–259

    PubMed  CAS  Google Scholar 

  193. Franke H, Günther A, Grosche J et al (2004) P2X7 receptor expression after ischemia in the cerebral cortex of rats. J Neuropathol Exp Neurol 63:686–699

    PubMed  CAS  Google Scholar 

  194. Milius D, Gröger-Arndt H, Stanchev D et al (2007) Oxygen/glucose deprivation increases the integration of recombinant P2X7 receptors into the plasma membrane of HEK293 cells. Toxicology 238:60–69

    PubMed  CAS  Google Scholar 

  195. Cavaliere F, Amadio S, Sancesario G et al (2004) Synaptic P2X7 and oxygen/glucose deprivation in organotypic hippocampal cultures. J Cereb Blood Flow Metab 24:392–398

    PubMed  CAS  Google Scholar 

  196. Wirkner K, Köfalvi A, Fischer W et al (2005) Supersensitivity of P2X receptors in cerebrocortical cell cultures after in vitro ischemia. J Neurochem 95:1421–1437

    PubMed  CAS  Google Scholar 

  197. Khakpay R, Polster D, Köles L et al (2010) Potentiation of the glutamatergic synaptic input to rat locus coeruleus neurons by P2X7 receptors. Purinergic Signal 6:349–359

    PubMed  CAS  Google Scholar 

  198. Anderson CM, Nedergaard M (2006) Emerging challenges of assigning P2X7 receptor function and immunoreactivity in neurons. Trends Neurosci 29:257–262

    PubMed  CAS  Google Scholar 

  199. Sperlagh B, Vizi ES, Wirkner K et al (2006) P2X7 receptors in the nervous system. Prog Neurobiol 78:327–346

    PubMed  CAS  Google Scholar 

  200. Moran-Jimenez MJ, Matute C (2000) Immunohistochemical localization of the P2Y1 purinergic receptor in neurons and glial cells of the central nervous system. Brain Res Mol Brain Res 78:50–58

    PubMed  CAS  Google Scholar 

  201. Lämmer A, Günther A, Beck A et al (2006) Neuroprotective effects of the P2 receptor antagonist PPADS on focal cerebral ischaemia-induced injury in rats. Eur J Neurosci 23:2824–2828

    PubMed  Google Scholar 

  202. Lämmer AB, Beck A, Grummich B et al (2011) The P2 receptor antagonist PPADS supports recovery from experimental stroke in vivo. PLoS One 6:e19983

    PubMed  Google Scholar 

  203. Darby M, Kuzmiski JB, Panenka W et al (2003) ATP released from astrocytes during swelling activates chloride channels. J Neurophysiol 89:1870–1877

    PubMed  CAS  Google Scholar 

  204. Zheng W, Watts LT, Holstein DM et al (2010) Purinergic receptor stimulation reduces cytotoxic edema and brain infarcts in mouse induced by photothrombosis by energizing glial mitochondria. PLoS One 5:e14401

    PubMed  CAS  Google Scholar 

  205. Wu J, Holstein JD, Upadhyay G et al (2007) Purinergic receptor-stimulated IP3-mediated Ca2+ release enhances neuroprotection by increasing astrocyte mitochondrial metabolism during aging. J Neurosci 27:6510–6520

    PubMed  CAS  Google Scholar 

  206. Marrelli SP, Khorovets A, Johnson TD et al (1999) P2 purinoceptor-mediated dilations in the rat middle cerebral artery after ischemia-reperfusion. Am J Physiol 276:H33–H41

    PubMed  CAS  Google Scholar 

  207. Pelligrino DA, Vetri F, Xu HL (2011) Purinergic mechanisms in gliovascular coupling. Semin Cell Dev Biol 22:229–236

    PubMed  CAS  Google Scholar 

  208. Cavaliere F, Amadio S, Angelini DF et al (2004) Role of the metabotropic P2Y4 receptor during hypoglycemia: cross talk with the ionotropic NMDAR1 receptor. Exp Cell Res 300:149–158

    PubMed  CAS  Google Scholar 

  209. Feeser VR, Loria RM (2011) Modulation of traumatic brain injury using progesterone and the role of glial cells on its neuroprotective actions. J Neuroimmunol 237:4–12

    PubMed  CAS  Google Scholar 

  210. Hindley S, Herman MA, Rathbone MP (1994) Stimulation of reactive astrogliosis in vivo by extracellular adenosine diphosphate or an adenosine A2 receptor agonist. J Neurosci Res 38:399–406

    PubMed  CAS  Google Scholar 

  211. Ryu JK, Kim J, Choi SH et al (2002) ATP-induced in vivo neurotoxicity in the rat striatum via P2 receptors. Neuroreport 13:1611–1615

    PubMed  CAS  Google Scholar 

  212. Di Prospero NA, Zhou XR, Meiners S et al (1998) Suramin disrupts the gliotic response following a stab wound injury to the adult rat brain. J Neurocytol 27:491–506

    PubMed  Google Scholar 

  213. Franke H, Krügel U, Grosche J, Illes P (2003) Immunoreactivity for glial fibrillary acidic protein and P2 receptor expression on astrocytes in vivo. Drug Dev Res 59:175–189

    CAS  Google Scholar 

  214. Bremicker K, Grohmann M, Dreßler J, Weber M, Franke H (2011) Human traumatic brain injury induced astrogliosis - Involvement of P2Y1 receptors? Göttingen Meeting of the German Neuroscience Society, Supplement to Neuroforum, 2011(1), Volume XVII, T9-3B (ISSN 0947–0875)

  215. Kong Q, Peterson TS, Baker O et al (2009) Interleukin-1β enhances nucleotide-induced and alpha-secretase-dependent amyloid precursor protein processing in rat primary cortical neurons via up-regulation of the P2Y2 receptor. J Neurochem 109:1300–1310

    PubMed  CAS  Google Scholar 

  216. Camden JM, Schrader AM, Camden RE et al (2005) P2Y2 nucleotide receptors enhance alpha-secretase-dependent amyloid precursor protein processing. J Biol Chem 280:18696–18702

    PubMed  CAS  Google Scholar 

  217. Tran MD (2011) P2 receptor stimulation induces amyloid precursor protein production and secretion in rat cortical astrocytes. Neurosci Lett 492:155–159

    PubMed  CAS  Google Scholar 

  218. Franke H (2011) Role of G protein-coupled receptors (GPCRs) for purines and pyrimidines in mediating degeneration and regeneration under neuroinflammatory processes. Purinergic Signal 7:1–5

    PubMed  CAS  Google Scholar 

  219. Elliott MR, Chekeni FB, Trampont PC et al (2009) Nucleotides released by apoptotic cells act as a find-me signal to promote phagocytic clearance. Nature 461:282–286

    PubMed  CAS  Google Scholar 

  220. Lee M, Jantaratnotai N, McGeer E et al (2011) Mg2+ ions reduce microglial and THP-1 cell neurotoxicity by inhibiting Ca2+ entry through purinergic channels. Brain Res 1369:21–35

    PubMed  CAS  Google Scholar 

  221. Delarasse C, Auger R, Gonnord P et al (2011) The purinergic receptor P2X7 triggers alpha-secretase-dependent processing of the amyloid precursor protein. J Biol Chem 286:2596–2606

    PubMed  CAS  Google Scholar 

  222. Rampe D, Wang L, Ringheim GE (2004) P2X7 receptor modulation of beta-amyloid- and LPS-induced cytokine secretion from human macrophages and microglia. J Neuroimmunol 147:56–61

    PubMed  CAS  Google Scholar 

  223. Sanz JM, Chiozzi P, Ferrari D et al (2009) Activation of microglia by amyloid β requires P2X7 receptor expression. J Immunol 182:4378–4385

    PubMed  CAS  Google Scholar 

  224. McLarnon JG, Ryu JK, Walker DG et al (2006) Upregulated expression of purinergic P2X7 receptor in Alzheimer disease and amyloid-beta peptide-treated microglia and in peptide-injected rat hippocampus. J Neuropathol Exp Neurol 65:1090–1097

    PubMed  CAS  Google Scholar 

  225. Lai MK, Tan MG, Kirvell S et al (2008) Selective loss of P2Y2 nucleotide receptor immunoreactivity is associated with Alzheimer’s disease neuropathology. J Neural Transm 115:1165–1172

    PubMed  CAS  Google Scholar 

  226. Moore D, Iritani S, Chambers J et al (2000) Immunohistochemical localization of the P2Y1 purinergic receptor in Alzheimer’s disease. Neuroreport 11:3799–3803

    PubMed  CAS  Google Scholar 

  227. Parvathenani LK, Tertyshnikova S, Greco CR et al (2003) P2X7 mediates superoxide production in primary microglia and is up-regulated in a transgenic mouse model of Alzheimer’s disease. J Biol Chem 278:13309–13317

    PubMed  CAS  Google Scholar 

  228. Mirza B, Hadberg H, Thomsen P et al (2000) The absence of reactive astrocytosis is indicative of a unique inflammatory process in Parkinson’s disease. Neuroscience 95:425–432

    PubMed  CAS  Google Scholar 

  229. Zhang YX, Yamashita H, Ohshita T et al (1995) ATP increases extracellular dopamine level through stimulation of P2Y purinoceptors in the rat striatum. Brain Res 691:205–212

    PubMed  CAS  Google Scholar 

  230. Kittner H, Krügel U, Hoffmann E et al (2000) Effects of intra-accumbens injection of 2-methylthio ATP: a combined open field and electroencephalographic study in rats. Psychopharmacology (Berl) 150:123–131

    CAS  Google Scholar 

  231. Krügel U, Kittner H, Franke H et al (2001) Stimulation of P2 receptors in the ventral tegmental area enhances dopaminergic mechanisms in vivo. Neuropharmacology 40:1084–1093

    PubMed  Google Scholar 

  232. Krügel U, Kittner H, Illes P (2001) Mechanisms of adenosine 5′-triphosphate-induced dopamine release in the rat nucleus accumbens in vivo. Synapse 39:222–232

    PubMed  Google Scholar 

  233. Heine C, Wegner A, Grosche J et al (2007) P2 receptor expression in the dopaminergic system of the rat brain during development. Neuroscience 149:165–181

    PubMed  CAS  Google Scholar 

  234. Marcellino D, Suarez-Boomgaard D, Sanchez-Reina MD et al (2010) On the role of P2X7 receptors in dopamine nerve cell degeneration in a rat model of Parkinson’s disease: studies with the P2X7 receptor antagonist A-438079. J Neural Transm 117:681–687

    PubMed  CAS  Google Scholar 

  235. Schwarzschild MA (2007) Adenosine A2A antagonists as neurotherapeutics: crossing the bridge. Prog Neurobiol 83:261–262

    PubMed  Google Scholar 

  236. Burnstock G, Krügel U, Abbracchio MP et al (2011) Purinergic signalling: From normal behaviour to pathological brain function. Prog Neurobiol 95:229–274

    PubMed  CAS  Google Scholar 

  237. Narcisse L, Scemes E, Zhao Y et al (2005) The cytokine IL-1β transiently enhances P2X7 receptor expression and function in human astrocytes. Glia 49:245–258

    PubMed  Google Scholar 

  238. Amadio S, Montilli C, Magliozzi R et al (2010) P2Y12 receptor protein in cortical gray matter lesions in multiple sclerosis. Cereb Cortex 20:1263–1273

    PubMed  Google Scholar 

  239. Suadicani SO, Brosnan CF, Scemes E (2006) P2X7 receptors mediate ATP release and amplification of astrocytic intercellular Ca2+ signaling. J Neurosci 26:1378–1385

    PubMed  CAS  Google Scholar 

  240. Matute C, Torre I, Perez-Cerda F et al (2007) P2X7 receptor blockade prevents ATP excitotoxicity in oligodendrocytes and ameliorates experimental autoimmune encephalomyelitis. J Neurosci 27:9525–9533

    PubMed  CAS  Google Scholar 

  241. Ceruti S, Vigano F, Boda E et al (2011) Expression of the new P2Y-like receptor GPR17 during oligodendrocyte precursor cell maturation regulates sensitivity to ATP-induced death. Glia 59:363–378

    PubMed  Google Scholar 

  242. Fumagalli M, Daniele S, Lecca D et al (2011) Phenotypic changes, signaling pathway, and functional correlates of GPR17-expressing neural precursor cells during oligodendrocyte differentiation. J Biol Chem 286:10593–10604

    PubMed  CAS  Google Scholar 

  243. Volonte C, Apolloni S, Carri MT et al (2011) ALS: focus on purinergic signalling. Pharmacol Ther 132:111–122

    PubMed  CAS  Google Scholar 

  244. Amadio S, Apolloni S, D’Ambrosi N et al (2011) Purinergic signalling at the plasma membrane: a multipurpose and multidirectional mode to deal with amyotrophic lateral sclerosis and multiple sclerosis. J Neurochem 116:796–805

    PubMed  CAS  Google Scholar 

  245. Gandelman M, Peluffo H, Beckman JS et al (2010) Extracellular ATP and the P2X7 receptor in astrocyte-mediated motor neuron death: implications for amyotrophic lateral sclerosis. J Neuroinflammation 7:33

    PubMed  Google Scholar 

  246. Jabs R, Seifert G, Steinhäuser C (2008) Astrocytic function and its alteration in the epileptic brain. Epilepsia 49(Suppl 2):3–12

    PubMed  CAS  Google Scholar 

  247. Boison D (2010) Adenosine dysfunction and adenosine kinase in epileptogenesis. Open Neurosci J 4:93–101

    PubMed  CAS  Google Scholar 

  248. Kumaria A, Tolias CM, Burnstock G (2008) ATP signalling in epilepsy. Purinergic Signal 4:339–346

    PubMed  CAS  Google Scholar 

  249. Tian GF, Azmi H, Takano T et al (2005) An astrocytic basis of epilepsy. Nat Med 11:973–981

    PubMed  CAS  Google Scholar 

  250. Etherington LA, Patterson GE, Meechan L et al (2009) Astrocytic adenosine kinase regulates basal synaptic adenosine levels and seizure activity but not activity-dependent adenosine release in the hippocampus. Neuropharmacology 56:429–437

    PubMed  CAS  Google Scholar 

  251. Slezia A, Kekesi AK, Szikra T et al (2004) Uridine release during aminopyridine-induced epilepsy. Neurobiol Dis 16:490–499

    PubMed  CAS  Google Scholar 

  252. Vianna EP, Ferreira AT, Naffah-Mazzacoratti MG et al (2002) Evidence that ATP participates in the pathophysiology of pilocarpine-induced temporal lobe epilepsy: fluorimetric, immunohistochemical, and Western blot studies. Epilepsia 43(Suppl 5):227–229

    PubMed  CAS  Google Scholar 

  253. Avignone E, Ulmann L, Levavasseur F et al (2008) Status epilepticus induces a particular microglial activation state characterized by enhanced purinergic signaling. J Neurosci 28:9133–9144

    PubMed  CAS  Google Scholar 

  254. Grosso S, Rocchi R, Margollicci M et al (2009) Postictal serum nucleotidases activities in patients with epilepsy. Epilepsy Res 84:15–20

    PubMed  CAS  Google Scholar 

  255. Franke H (1995) Influence of chronic alcohol treatment on the GFAP-immunoreactivity in astrocytes of the hippocampus in rats. Acta Histochem 97:263–271

    PubMed  CAS  Google Scholar 

  256. Franke H, Kittner H, Berger P et al (1997) The reaction of astrocytes and neurons in the hippocampus of adult rats during chronic ethanol treatment and correlations to behavioral impairments. Alcohol 14:445–454

    PubMed  CAS  Google Scholar 

  257. Gustavsson L, Lundqvist C, Hansson E (1993) Receptor-mediated phospholipase D activity in primary astroglial cultures. Glia 8:249–255

    PubMed  CAS  Google Scholar 

  258. Othman T, Sinclair CJ, Haughey N et al (2002) Ethanol alters glutamate but not adenosine uptake in rat astrocytes: evidence for protein kinase C involvement. Neurochem Res 27:289–296

    PubMed  CAS  Google Scholar 

  259. Hirata H, Machado LS, Okuno CS et al (2006) Apoptotic effect of ethanol is potentiated by caffeine-induced calcium release in rat astrocytes. Neurosci Lett 393:136–140

    PubMed  CAS  Google Scholar 

  260. Ruby CL, Adams CA, Knight EJ et al (2010) An essential role for adenosine signaling in alcohol abuse. Curr Drug Abuse Rev 3:163–174

    PubMed  CAS  Google Scholar 

  261. Franke H, Kittner H, Grosche J et al (2003) Enhanced P2Y1 receptor expression in the brain after sensitisation with d-amphetamine. Psychopharmacology (Berl) 167:187–194

    CAS  Google Scholar 

  262. Liu JS, John GR, Sikora A et al (2000) Modulation of interleukin-1β and tumor necrosis factor α signaling by P2 purinergic receptors in human fetal astrocytes. J Neurosci 20:5292–5299

    PubMed  CAS  Google Scholar 

  263. Kittner H, Grosche J, Illes P, Franke H (2003) Changes of P2Y1 receptor and iNOS-expression after sensitization with d-amphetamine by rats. Naunyn-Schmiedeberg’s Arch Pharmacol 367(1):R34–R122

    Google Scholar 

  264. Garrison CJ, Dougherty PM, Kajander KC et al (1991) Staining of glial fibrillary acidic protein (GFAP) in lumbar spinal cord increases following a sciatic nerve constriction injury. Brain Res 565:1–7

    PubMed  CAS  Google Scholar 

  265. Hald A (2009) Spinal astrogliosis in pain models: cause and effects. Cell Mol Neurobiol 29:609–619

    PubMed  CAS  Google Scholar 

  266. Hald A, Nedergaard S, Hansen RR et al (2009) Differential activation of spinal cord glial cells in murine models of neuropathic and cancer pain. Eur J Pain 13:138–145

    PubMed  CAS  Google Scholar 

  267. Shimizu I, Iida T, Guan Y et al (2005) Enhanced thermal avoidance in mice lacking the ATP receptor P2X3. Pain 116:96–108

    PubMed  CAS  Google Scholar 

  268. Watkins LR, Milligan ED, Maier SF (2003) Glial proinflammatory cytokines mediate exaggerated pain states: implications for clinical pain. Adv Exp Med Biol 521:1–21

    PubMed  CAS  Google Scholar 

  269. Gu JG, MacDermott AB (1997) Activation of ATP P2X receptors elicits glutamate release from sensory neuron synapses. Nature 389:749–753

    PubMed  CAS  Google Scholar 

  270. Werry EL, Liu GJ, Bennett MR (2006) Glutamate-stimulated ATP release from spinal cord astrocytes is potentiated by substance P. J Neurochem 99:924–936

    PubMed  CAS  Google Scholar 

  271. Zhang XF, Han P, Faltynek CR et al (2005) Functional expression of P2X7 receptors in non-neuronal cells of rat dorsal root ganglia. Brain Res 1052:63–70

    PubMed  CAS  Google Scholar 

  272. Zhang X, Chen Y, Wang C et al (2007) Neuronal somatic ATP release triggers neuron-satellite glial cell communication in dorsal root ganglia. Proc Natl Acad Sci U S A 104:9864–9869

    PubMed  CAS  Google Scholar 

  273. Gosselin RD, Suter MR, Ji RR et al (2010) Glial cells and chronic pain. Neuroscientist 16:519–531

    PubMed  CAS  Google Scholar 

  274. Baranowska-Bosiacka I, Dabrowska-Bouta B, Struzynska L (2011) Regional changes in purines and selected purinergic receptors in immature rat brain exposed to lead. Toxicology 279:100–107

    PubMed  CAS  Google Scholar 

  275. Sak K, Illes P (2005) Neuronal and glial cell lines as model systems for studying P2Y receptor pharmacology. Neurochem Int 47:401–412

    PubMed  CAS  Google Scholar 

  276. White N, Burnstock G (2006) P2 receptors and cancer. Trends Pharmacol Sci 27:211–217

    PubMed  CAS  Google Scholar 

  277. Morrone FB, Horn AP, Stella J et al (2005) Increased resistance of glioma cell lines to extracellular ATP cytotoxicity. J Neurooncol 71:135–140

    PubMed  CAS  Google Scholar 

  278. Grobben B, Claes P, Van KK et al (2001) Agonists of the P2YAC-receptor activate MAP kinase by a ras-independent pathway in rat C6 glioma. J Neurochem 78:1325–1338

    PubMed  CAS  Google Scholar 

  279. Krzeminski P, Misiewicz I, Pomorski P et al (2007) Mitochondrial localization of P2Y1, P2Y2 and P2Y12 receptors in rat astrocytes and glioma C6 cells. Brain Res Bull 71:587–592

    PubMed  CAS  Google Scholar 

  280. Braganhol E, Huppes D, Bernardi A et al (2009) A comparative study of ectonucleotidase and P2 receptor mRNA profiles in C6 cell line cultures and C6 ex vivo glioma model. Cell Tissue Res 335:331–340

    PubMed  CAS  Google Scholar 

  281. Braganhol E, Morrone FB, Bernardi A et al (2009) Selective NTPDase2 expression modulates in vivo rat glioma growth. Cancer Sci 100:1434–1442

    PubMed  CAS  Google Scholar 

  282. Morrone FB, Oliveira DL, Gamermann P et al (2006) In vivo glioblastoma growth is reduced by apyrase activity in a rat glioma model. BMC Cancer 6:226

    PubMed  Google Scholar 

  283. Wink MR, Lenz G, Braganhol E et al (2003) Altered extracellular ATP, ADP and AMP catabolism in glioma cell lines. Cancer Lett 198:211–218

    PubMed  CAS  Google Scholar 

  284. Morrone FB, Jacques-Silva MC, Horn AP et al (2003) Extracellular nucleotides and nucleosides induce proliferation and increase nucleoside transport in human glioma cell lines. J Neurooncol 64:211–218

    PubMed  Google Scholar 

  285. Grobben B, Claes P, Roymans D et al (2000) Ecto-nucleotide pyrophosphatase modulates the purinoceptor-mediated signal transduction and is inhibited by purinoceptor antagonists. Br J Pharmacol 130:139–145

    PubMed  CAS  Google Scholar 

  286. Claes P, Grobben B, Van KK et al (2001) P2YAC–receptor agonists enhance the proliferation of rat C6 glioma cells through activation of the p42/44 mitogen-activated protein kinase. Br J Pharmacol 134:402–408

    PubMed  CAS  Google Scholar 

  287. Czajkowski R, Banachewicz W, Ilnytska O et al (2004) Differential effects of P2Y1 and P2Y12 nucleotide receptors on ERK1/ERK2 and phosphatidylinositol 3-kinase signalling and cell proliferation in serum-deprived and nonstarved glioma C6 cells. Br J Pharmacol 141:497–507

    PubMed  CAS  Google Scholar 

  288. White N, Ryten M, Clayton E et al (2005) P2Y purinergic receptors regulate the growth of human melanomas. Cancer Lett 224:81–91

    PubMed  CAS  Google Scholar 

  289. Sabala P, Czajkowski R, Przybylek K et al (2001) Two subtypes of G protein-coupled nucleotide receptors, P2Y1 and P2Y2 are involved in calcium signalling in glioma C6 cells. Br J Pharmacol 132:393–402

    PubMed  CAS  Google Scholar 

  290. Tu MT, Luo SF, Wang CC et al (2000) P2Y2 receptor-mediated proliferation of C(6) glioma cells via activation of Ras/Raf/MEK/MAPK pathway. Br J Pharmacol 129:1481–1489

    PubMed  CAS  Google Scholar 

  291. Kim SG, Gao ZG, Soltysiak KA et al (2003) P2Y6 nucleotide receptor activates PKC to protect 1321N1 astrocytoma cells against tumor necrosis factor-induced apoptosis. Cell Mol Neurobiol 23:401–418

    PubMed  CAS  Google Scholar 

  292. Krzeminski P, Suplat D, Czajkowski R et al (2007) Expression and functional characterization of P2Y1 and P2Y12 nucleotide receptors in long-term serum-deprived glioma C6 cells. FEBS J 274:1970–1982

    PubMed  CAS  Google Scholar 

  293. Kreda SM, Seminario-Vidal L, Heusden C et al (2008) Thrombin-promoted release of UDP-glucose from human astrocytoma cells. Br J Pharmacol 153:1528–1537

    PubMed  CAS  Google Scholar 

  294. Guo LH, Trautmann K, Schluesener HJ (2004) Expression of P2X4 receptor in rat C6 glioma by tumor-associated macrophages and activated microglia. J Neuroimmunol 152:67–72

    PubMed  CAS  Google Scholar 

  295. Di Virgilio F (2000) Dr. Jekyll/Mr. Hyde: the dual role of extracellular ATP. J Auton Nerv Syst 81:59–63

    Google Scholar 

  296. Neary JT, Zhu Q (1994) Signaling by ATP receptors in astrocytes. Neuroreport 5:1617–1620

    PubMed  CAS  Google Scholar 

  297. James G, Butt AM (2001) Changes in P2Y and P2X purinoceptors in reactive glia following axonal degeneration in the rat optic nerve. Neurosci Lett 312:33–36

    PubMed  CAS  Google Scholar 

  298. Hung AC, Chu YJ, Lin YH et al (2005) Roles of protein kinase C in regulation of P2X7 receptor-mediated calcium signalling of cultured type-2 astrocyte cell line, RBA-2. Cell Signal 17:1384–1396

    PubMed  CAS  Google Scholar 

  299. Murakami K, Nakamura Y, Yoneda Y (2003) Potentiation by ATP of lipopolysaccharide-stimulated nitric oxide production in cultured astrocytes. Neuroscience 117:37–42

    PubMed  CAS  Google Scholar 

  300. Kucher BM, Neary JT (2005) Bi-functional effects of ATP/P2 receptor activation on tumor necrosis factor-α release in lipopolysaccharide-stimulated astrocytes. J Neurochem 92:525–535

    PubMed  CAS  Google Scholar 

  301. Gendron FP, Neary JT, Theiss PM et al (2003) Mechanisms of P2X7 receptor-mediated ERK1/2 phosphorylation in human astrocytoma cells. Am J Physiol Cell Physiol 284:C571–C581

    PubMed  CAS  Google Scholar 

  302. Hung AC, Sun SH (2002) The P2X7 receptor-mediated phospholipase D activation is regulated by both PKC-dependent and PKC-independent pathways in a rat brain-derived type-2 astrocyte cell line, RBA-2. Cell Signal 14:83–92

    PubMed  CAS  Google Scholar 

  303. Wang CM, Chang YY, Sun SH (2003) Activation of P2X7 purinoceptor-stimulated TGF-β1 mRNA expression involves PKC/MAPK signalling pathway in a rat brain-derived type-2 astrocyte cell line, RBA-2. Cell Signal 15:1129–1137

    PubMed  Google Scholar 

  304. Barbieri R, Alloisio S, Ferroni S et al (2008) Differential crosstalk between P2X7 and arachidonic acid in activation of mitogen-activated protein kinases. Neurochem Int 53:255–262

    PubMed  CAS  Google Scholar 

  305. King BF, Neary JT, Zhu Q et al (1996) P2 purinoceptors in rat cortical astrocytes: expression, calcium-imaging and signalling studies. Neuroscience 74:1187–1196

    PubMed  CAS  Google Scholar 

  306. Centemeri C, Bolego C, Abbracchio MP et al (1997) Characterization of the Ca2+ responses evoked by ATP and other nucleotides in mammalian brain astrocytes. Br J Pharmacol 121:1700–1706

    PubMed  CAS  Google Scholar 

  307. Priller J, Reddington M, Haas CA et al (1998) Stimulation of P2Y-purinoceptors on astrocytes results in immediate early gene expression and potentiation of neuropeptide action. Neuroscience 85:521–525

    PubMed  CAS  Google Scholar 

  308. Fam SR, Gallagher CJ, Salter MW (2000) P2Y1 purinoceptor-mediated Ca2+ signaling and Ca2+ wave propagation in dorsal spinal cord astrocytes. J Neurosci 20:2800–2808

    PubMed  CAS  Google Scholar 

  309. Chen WC, Chen CC (1998) ATP-induced arachidonic acid release in cultured astrocytes is mediated by Gi protein coupled P2Y1 and P2Y2 receptors. Glia 22:360–370

    PubMed  CAS  Google Scholar 

  310. Liu J, Liao Z, Camden J et al (2004) Src homology 3 binding sites in the P2Y2 nucleotide receptor interact with Src and regulate activities of Src, proline-rich tyrosine kinase 2, and growth factor receptors. J Biol Chem 279:8212–8218

    PubMed  CAS  Google Scholar 

  311. Chorna NE, Santiago-Perez LI, Erb L et al (2004) P2Y receptors activate neuroprotective mechanisms in astrocytic cells. J Neurochem 91:119–132

    PubMed  CAS  Google Scholar 

  312. Wang M, Kong Q, Gonzalez FA et al (2005) P2Y nucleotide receptor interaction with alpha integrin mediates astrocyte migration. J Neurochem 95:630–640

    PubMed  CAS  Google Scholar 

  313. Lenz G, Gottfried C, Luo Z et al (2000) P2Y purinoceptor subtypes recruit different Mek activators in astrocytes. Br J Pharmacol 129:927–936

    PubMed  CAS  Google Scholar 

  314. Mamedova LK, Gao ZG, Jacobson KA (2006) Regulation of death and survival in astrocytes by ADP activating P2Y1 and P2Y12 receptors. Biochem Pharmacol 72:1031–1041

    PubMed  CAS  Google Scholar 

  315. John GR, Scemes E, Suadicani SO et al (1999) IL-1β differentially regulates calcium wave propagation between primary human fetal astrocytes via pathways involving P2 receptors and gap junction channels. Proc Natl Acad Sci U S A 96:11613–11618

    PubMed  CAS  Google Scholar 

  316. Meme W, Ezan P, Venance L et al (2004) ATP-induced inhibition of gap junctional communication is enhanced by interleukin-1β treatment in cultured astrocytes. Neuroscience 126:95–104

    PubMed  CAS  Google Scholar 

  317. Ballerini P, Di IP, Caciagli F et al (2006) P2Y2 receptor up-regulation induced by guanosine or UTP in rat brain cultured astrocytes. Int J Immunopathol Pharmacol 19:293–308

    PubMed  CAS  Google Scholar 

  318. Calon F, Dridi M, Hornykiewicz O et al (2004) Increased adenosine A2A receptors in the brain of Parkinson’s disease patients with dyskinesias. Brain 127:1075–1084

    PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Katrin Becker, Helga Sobottka, Katrin Krause and Lutz Feige for excellent technical assistance. This work was supported by the Deutsche Forschungsgemeinschaft (FR 1253/3-2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heike Franke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Franke, H., Verkhratsky, A., Burnstock, G. et al. Pathophysiology of astroglial purinergic signalling. Purinergic Signalling 8, 629–657 (2012). https://doi.org/10.1007/s11302-012-9300-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11302-012-9300-0

Keywords

Navigation