Skip to main content

Advertisement

Log in

Purinergic signalling in the gastrointestinal tract and related organs in health and disease

  • Review Article
  • Published:
Purinergic Signalling Aims and scope Submit manuscript

Abstract

Purinergic signalling plays major roles in the physiology and pathophysiology of digestive organs. Adenosine 5′-triphosphate (ATP), together with nitric oxide and vasoactive intestinal peptide, is a cotransmitter in non-adrenergic, non-cholinergic inhibitory neuromuscular transmission. P2X and P2Y receptors are widely expressed in myenteric and submucous enteric plexuses and participate in sympathetic transmission and neuromodulation involved in enteric reflex activities, as well as influencing gastric and intestinal epithelial secretion and vascular activities. Involvement of purinergic signalling has been identified in a variety of diseases, including inflammatory bowel disease, ischaemia, diabetes and cancer. Purinergic mechanosensory transduction forms the basis of enteric nociception, where ATP released from mucosal epithelial cells by distension activates nociceptive subepithelial primary afferent sensory fibres expressing P2X3 receptors to send messages to the pain centres in the central nervous system via interneurons in the spinal cord. Purinergic signalling is also involved in salivary gland and bile duct secretion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Abbracchio MP, Burnstock G, Verkhratsky A, Zimmermann H (2009) Purinergic signalling in the nervous system: an overview. Trends Neurosci 32:19–29

    PubMed  CAS  Google Scholar 

  2. Abe M, Endoh T, Suzuki T (2003) Extracellular ATP-induced calcium channel inhibition mediated by P1/P2Y purinoceptors in hamster submandibular ganglion neurons. Br J Pharmacol 138:1535–1543

    PubMed Central  PubMed  CAS  Google Scholar 

  3. Acheson A, Rayment S, Eames T, Mundey M, Nisar P, Scholefield J, Wilson VG (2009) Investigation of the role of adrenergic and non-nitrergic, non-adrenergic neurotransmission in the sheep isolated internal anal sphincter. Neurogastroenterol Motil 21:335–345

    PubMed  CAS  Google Scholar 

  4. Ahn JS, Camden JM, Schrader AM, Redman RS, Turner JT (2000) Reversible regulation of P2Y2 nucleotide receptor expression in the duct-ligated rat submandibular gland. Am J Physiol Cell Physiol 279:C286–C294

    PubMed  CAS  Google Scholar 

  5. Ahsan MA, Ilundain A, Naftalin RJ, Sandhu BK, Smith PM (1987) Effects of theophylline, choleragen and loperamide on rabbit ileal fluid and electrolyte transport in vitro. Br J Pharmacol 92:743–754

    PubMed Central  PubMed  CAS  Google Scholar 

  6. Ainz LF, Gil-Rodrigo CE, Gómez R, Malillos M, Requejo D, Gandarias JM (1989) Effects of various physiologic adenine derivatives on the secretion of acid in isolated gastric glands in rabbits. Rev Esp Fisiol 45:281–286

    PubMed  CAS  Google Scholar 

  7. Ainz LF, Salgado C, Gandarias JM, Gómez R, Vallejo A, Gil-Rodrigo CE (1993) P1(A2/Ra)-purinoceptors may mediate the stimulatory effect of adenosine and adenosine analogs on acid formation in isolated rabbit parietal cells. Pharmacol Res 27:319–334

    PubMed  CAS  Google Scholar 

  8. Al Humayyd M, White TD (1985) 5-Hydroxytryptamine releases adenosine 5′-triphosphate from nerve varicosities isolated from the myenteric plexus of guinea-pig ileum. Br J Pharmacol 84:27–34

    PubMed Central  PubMed  CAS  Google Scholar 

  9. Alfahel E, Korngreen A, Parola AH, Priel Z (1996) Purinergically induced membrane fluidization in ciliary cells: characterization and control by calcium and membrane potential. Biophys J 70:1045–1053

    PubMed Central  PubMed  CAS  Google Scholar 

  10. Amsallem H, Metioui M, VandenAbeele A, Elyamani A, Moran A, Dehaye JP (1996) Presence of a metabotropic and an ionotropic purinergic receptor on rat submandibular ductal cells. Am J Physiol 271:C1546–C1555

    PubMed  CAS  Google Scholar 

  11. Andrews PLR, Lawes INC (1985) Characteristics of the vagally driven non-adrenergic, non-cholinergic inhibitory innervation of ferret gastric corpus. J Physiol 363:1–20

    PubMed Central  PubMed  CAS  Google Scholar 

  12. Antonioli L, Fornai M, Blandizzi C, Salvadorini C, Colucci R, Breschi MC, Del Taca M (2005) The inhibitory effects of adenosine on enteric neuromuscular activity are decreased in inflamed colonic tissues. Gastroenterology 128:A273

    Google Scholar 

  13. Antonioli L, Fornai M, Colucci R, Ghisu N, Blandizzi C, Del Tacca M (2006) A2a receptors mediate inhibitory effects of adenosine on colonic motility in the presence of experimental colitis. Inflamm Bowel Dis 12:117–122

    PubMed  Google Scholar 

  14. Antonioli L, Fornai M, Colucci R, Ghisu N, Da SF, Natale G, Kastsiuchenka O, Duranti E, Virdis A, Vassalle C, La MC, Mugnaini L, Breschi MC, Blandizzi C, Del Taca M (2007) Inhibition of adenosine deaminase attenuates inflammation in experimental colitis. J Pharmacol Exp Ther 322:435–442

    PubMed  CAS  Google Scholar 

  15. Antonioli L, Fornai M, Colucci R, Awwad O, Ghisu N, Tuccori M, Da SF, La Motta C, Natale G, Duranti E, Virdis A, Blandizzi C (2010) The blockade of adenosine deaminase ameliorates chronic experimental colitis through the recruitment of adenosine A2A and A3 receptors. J Pharmacol Exp Ther 335:434–442

    PubMed  CAS  Google Scholar 

  16. Antonioli L, Fornai M, Colucci R, Awwad O, Ghisu N, Tuccori M, Del Tacca M, Blandizzi C (2011) Differential recruitment of high affinity A1 and A2A adenosine receptors in the control of colonic neuromuscular function in experimental colitis. Eur J Pharmacol 650:639–649

    PubMed  CAS  Google Scholar 

  17. Antonioli L, Colucci R, Pellegrini C, Giustarini G, Tuccori M, Blandizzi C, Fornai M (2013) The role of purinergic pathways in the pathophysiology of gut diseases: pharmacological modulation and potential therapeutic applications. Pharmacol Ther 139:157–188

    PubMed  CAS  Google Scholar 

  18. Arkle S, Hanahoe A, Shum CMC (1998) Effects of KN-62, RO-31-8220, Mn2+, Ni2+ and Co2+ on ATP4−-stimulated responses in rat parotid salivary glands in vitro. Br J Pharmacol 125:83P

    Google Scholar 

  19. Arreola J, Melvin JE (2003) A novel chloride conductance activated by extracellular ATP in mouse parotid acinar cells. J Physiol 547:197–208

    PubMed Central  PubMed  CAS  Google Scholar 

  20. Atkinson L, Milligan CJ, Buckley NJ, Deuchars J (2002) An ATP-gated ion channel at the cell nucleus. Nature 420:42

    PubMed  CAS  Google Scholar 

  21. Aulí M, Martínez E, Gallego D, Opazo A, Espín F, Martí-Gallostra M, Jiménez M, Clavé P (2008) Effects of excitatory and inhibitory neurotransmission on motor patterns of human sigmoid colon in vitro. Br J Pharmacol 155:1043–1055

    PubMed Central  PubMed  Google Scholar 

  22. Aure MH, Roed A, Galtung HK (2010) Intracellular Ca2+ responses and cell volume regulation upon cholinergic and purinergic stimulation in an immortalized salivary cell line. Eur J Oral Sci 118:237–244

    PubMed  CAS  Google Scholar 

  23. Baer HP, Frew R (1979) Relaxation of guinea-pig fundic strip by adenosine, adenosine triphosphate and electrical stimulation: lack of antagonism by theophylline or ATP treatment. Br J Pharmacol 67:293–299

    PubMed Central  PubMed  CAS  Google Scholar 

  24. Bailey SJ, Hourani SMO (1990) A study of the purinoceptors mediating contraction in the rat colon. Br J Pharmacol 100:753–756

    PubMed Central  PubMed  CAS  Google Scholar 

  25. Bailey SJ, Hourani SMO (1992) Effects of purines on the longitudinal muscle of the rat colon. Br J Pharmacol 105:885–892

    PubMed Central  PubMed  CAS  Google Scholar 

  26. Bailey SJ, Hickman D, Hourani SMO (1992) Characterization of the P1-purinoceptors mediating contraction of the rat colon muscularis mucosae. Br J Pharmacol 105:400–404

    PubMed Central  PubMed  CAS  Google Scholar 

  27. Baker OJ, Camden JM, Rome DE, Seye CI, Weisman GA (2008) P2Y2 nucleotide receptor activation up-regulates vascular cell adhesion molecule-1 expression and enhances lymphocyte adherence to a human submandibular gland cell line. Mol Immunol 45:65–75

    PubMed Central  PubMed  CAS  Google Scholar 

  28. Balemba OB, Salter MJ, Mawe GM (2004) Innervation of the extrahepatic biliary tract. Anat Rec A: Discov Mol Cell Evol Biol 280:836–847

    Google Scholar 

  29. Balestra B, Vicini R, Cremon C, Zecchi L, Dothel G, Vasina V, De GR, Paccapelo A, Pastoris O, Stanghellini V, Corinaldesi R, De Ponti F, Tonini M, Barbara G (2012) Colonic mucosal mediators from patients with irritable bowel syndrome excite enteric cholinergic motor neurons. Neurogastroenterol Motil 24:1118-e570

    Google Scholar 

  30. Banks BEC, Brown C, Burgess GM, Burnstock G, Claret M, Cocks TM, Jenkinson DH (1979) Apamin blocks certain neurotransmitter-induced increases in potassium permeability. Nature 282:415–417

    PubMed  CAS  Google Scholar 

  31. Barajas-López C (1993) Adenosine reduces the potassium conductance of guinea pig submucosal plexus neurons by activating protein kinase A. Pflugers Arch 424:410–415

    PubMed  Google Scholar 

  32. Barajas-López C, Surprenant A, North RA (1991) Adenosine A1 and A2 receptors mediate presynaptic inhibition and postsynaptic excitation in guinea pig submucosal neurons. J Pharmacol Exp Ther 258:490–495

    PubMed  Google Scholar 

  33. Barajas-López C, Espinosa-Luna R, Gerzanich V (1994) ATP closes a potassium and opens a cationic conductance through different receptors in neurons of guinea pig submucous plexus. J Pharmacol Exp Ther 268:1397–1402

    PubMed  Google Scholar 

  34. Barajas-López C, Huizinga JD, Collins SM, Gerzanich V, Espinosa-Luna R, Peres AL (1996) P2x-purinoceptors of myenteric neurons from the guinea-pig ileum and their unusual pharmacological properties. Br J Pharmacol 119:1541–1548

    PubMed Central  PubMed  Google Scholar 

  35. Barajas-López C, Peres AL, Espinosa-Luna R (1996) Cellular mechanisms underlying adenosine actions on cholinergic transmission in enteric neurons. Am J Physiol 271:C264–C275

    PubMed  Google Scholar 

  36. Barajas-López C, Espinosa-Luna R, Zhu Y (1998) Functional interactions between nicotinic and P2X channels in short-term cultures of guinea-pig submucosal neurons. J Physiol 513:671–683

    PubMed Central  PubMed  Google Scholar 

  37. Barajas-López C, Espinosa-Luna R, Christofi FL (2000) Changes in intracellular Ca2+ by activation of P2 receptors in submucosal neurons in short-term cultures. Eur J Pharmacol 409:243–257

    PubMed  Google Scholar 

  38. Barajas-López C, Montaño LM, Espinosa-Luna R (2002) Inhibitory interactions between 5-HT3 and P2X channels in submucosal neurons. Am J Physiol Gastrointest Liver Physiol 283:G1238–G1248

    PubMed  Google Scholar 

  39. Barthó L, Lénárd LJ, Maggi CA (1997) Evidence for the involvement of P2-purinoceptors in the cholinergic contraction of the guinea-pig ileum. Br J Pharmacol 121:1507–1508

    PubMed Central  PubMed  Google Scholar 

  40. Barthó L, Undi S, Benkó R, Wolf M, Lázár Z, Lénárd L Jr, Maggi CA (2006) Multiple motor effects of ATP and their inhibition by P purinoceptor antagonist, pyridoxalphosphate-6-azophenyl-2′,4′-disulphonic acid in the small intestine of the guinea-pig. Basic Clin Pharmacol Toxicol 98:488–495

    PubMed  Google Scholar 

  41. Bartlett V, Stewart RR, Nakatsu K (1979) Evidence for two adenine derivative receptors in rat ileum which are not involved in the nonadrenergic, noncholinergic response. Can J Physiol Pharmacol 57:1130–1137

    PubMed  CAS  Google Scholar 

  42. Bartoo AC, Nelson MT, Mawe GM (2008) ATP induces guinea pig gallbladder smooth muscle excitability via the P2Y4 receptor and COX-1 activity. Am J Physiol Gastrointest Liver Physiol 294:G1362–G1368

    PubMed Central  PubMed  CAS  Google Scholar 

  43. Bassil AK, Bourdu S, Townson KA, Wheeldon A, Jarvie EM, Zebda N, Abuin A, Grau E, Livi GP, Punter L, Latcham J, Grimes AM, Hurp DP, Downham KM, Sanger GJ, Winchester WJ, Morrison AD, Moore GB (2009) UDP-glucose modulates gastric function through P2Y14 receptor-dependent and -independent mechanisms. Am J Physiol Gastrointest Liver Physiol 296:G923–G930

    PubMed  CAS  Google Scholar 

  44. Bayguinov O, Hagen B, Bonev AD, Nelson MT, Sanders KM (2000) Intracellular calcium events activated by ATP in murine colonic myocytes. Am J Physiol Cell Physiol 279:C126–C135

    PubMed  CAS  Google Scholar 

  45. Beck K, Calamai F, Staderini G, Susini T (1988) Gastric motor responses elicited by vagal stimulation and purine compounds in the atropine-treated rabbit. Br J Pharmacol 94:1157–1166

    PubMed Central  PubMed  CAS  Google Scholar 

  46. Begg M, Dale N, Llaudet E, Molleman A, Parsons ME (2002) Modulation of the release of endogenous adenosine by cannabinoids in the myenteric plexus-longitudinal muscle preparation of the guinea-pig ileum. Br J Pharmacol 137:1298–1304

    PubMed Central  PubMed  CAS  Google Scholar 

  47. Benkó R, Undi S, Wolf M, Barthó L (2005) Effects of acute administration of and tachyphylaxis to α, β-methylene ATP in the guinea-pig small intestine. Basic Clin Pharmacol Toxicol 97:369–373

    PubMed  Google Scholar 

  48. Benkó R, Undi S, Wolf M, Magyar K, Tóvölgyi Z, Rumbus Z, Barthó L (2006) P2 purinoceptors account for the non-nitrergic NANC relaxation in the rat ileum. Naunyn Schmiedebergs Arch Pharmacol 373:319–324

    PubMed  Google Scholar 

  49. Benkó R, Undi S, Wolf M, Vereczkei A, Illènyi L, Kassai M, Cseke L, Kelemen D, Horváth ÖP, Antal A, Magyar K, Barthó L (2007) P2 purinoceptor antagonists inhibit the non-adrenergic, non-cholinergic relaxation of the human colon in vitro. Neuroscience 147:146–152

    PubMed  Google Scholar 

  50. Berglund E, Berglund D, Akcakaya P, Ghaderi M, Daré E, Berggren PO, Köhler M, Aspinwall CA, Lui WO, Zedenius J, Larsson C, Bränström R (2013) Evidence for Ca2+-regulated ATP release in gastrointestinal stromal tumors. Exp Cell Res 319:1229–1238

    PubMed  CAS  Google Scholar 

  51. Bertrand CA, Laboisse CL, Hopfer U (1999) Purinergic and cholinergic agonists induce exocytosis from the same granule pool in HT29-Cl.16E monolayers. Am J Physiol 276:C907–C914

    PubMed  CAS  Google Scholar 

  52. Bertrand PP (2003) ATP and sensory transduction in the enteric nervous system. Neuroscientist 9:243–260

    PubMed  CAS  Google Scholar 

  53. Bertrand PP (2004) Bursts of recurrent excitation in the activation of intrinsic sensory neurons of the intestine. Neuroscience 128:51–63

    PubMed  CAS  Google Scholar 

  54. Bertrand PP, Bornstein JC (2002) ATP as a putative sensory mediator: activation of intrinsic sensory neurons of the myenteric plexus via P2X receptors. J Neurosci 22:4767–4775

    PubMed  CAS  Google Scholar 

  55. Beyazit Y, Koklu S, Tas A, Purnak T, Sayilir A, Kurt M, Turhan T, Celik T, Suvak B, Torun S, Akbal E (2012) Serum adenosine deaminase activity as a predictor of disease severity in ulcerative colitis. J Crohn’s Colitis 6:102–107

    Google Scholar 

  56. Bhattacharya S, Verrill DS, Carbone KM, Brown S, Yule DI, Giovannucci DR (2012) Distinct contributions by ionotropic purinoceptor subtypes to ATP-evoked calcium signals in mouse parotid acinar cells. J Physiol 590:2721–2737

    PubMed Central  PubMed  CAS  Google Scholar 

  57. Bian X, Ren J, DeVries M, Schnegelsberg B, Cockayne DA, Ford AP, Galligan JJ (2003) Peristalsis is impaired in the small intestine of mice lacking the P2X3 subunit. J Physiol 551:309–322

    PubMed Central  PubMed  CAS  Google Scholar 

  58. Bian XC, Bertrand PP, Bornstein JC (2000) Descending inhibitory reflexes involve P2X receptor-mediated transmission from interneurons to motor neurons in guinea-pig ileum. J Physiol Lond 528:551–560

    PubMed Central  PubMed  CAS  Google Scholar 

  59. Biancani P, Walsh J, Behar J (1985) Vasoactive intestinal peptide: a neurotransmitter for relaxation of the rabbit internal anal sphincter. Gastroenterology 89:867–874

    PubMed  CAS  Google Scholar 

  60. Binder HJ, Sandle GI (1994) Electrolyte transport in the mammalian colon. In: Johnson LR (ed) Physiology of the gastrointestinal tract. Raven, New York, pp 2133–2171

    Google Scholar 

  61. Birch DJ, Knight GE, Boulos PB, Burnstock G (2008) Analysis of the innervation of human mesenteric vessels in non-inflamed and inflamed bowel—a confocal and functional study. Neurogastroenterol Motil 20:660–670

    PubMed  CAS  Google Scholar 

  62. Blackshaw LA, Brookes SJ, Grundy D, Schemann M (2007) Sensory transmission in the gastrointestinal tract. Neurogastroenterol Motil 19:1–19

    PubMed  CAS  Google Scholar 

  63. Blottiére HM, Loirand G, Pacaud P (1996) Rise in cytosolic Ca2+ concentration induced by P2-purinoceptor activation in isolated myocytes from the rat gastrointestinal tract. Br J Pharmacol 117:775–780

    PubMed Central  PubMed  Google Scholar 

  64. Boeckxstaens GE, Pelckmans PA, Rampart M, Ruytjens IF, Verbeuren TJ, Herman AG, Van Maercke YM (1990) GABAA receptor-mediated stimulation of non-adrenergic non-cholinergic neurones in the dog ileocolonic junction. Br J Pharmacol 101:460–464

    PubMed Central  PubMed  CAS  Google Scholar 

  65. Boeckxstaens GE, Pelckmans PA, Herman AG, Van Maercke YM (1993) Involvement of nitric oxide in the inhibitory innervation of the human isolated colon. Gastroenterology 104:690–697

    PubMed  CAS  Google Scholar 

  66. Boeynaems JM, Sirtori CR (2010) The unexpected roles of extracellular ADP and P2Y13 receptor in reverse cholesterol transport. Purinergic Signal 6:361–363

    PubMed Central  PubMed  CAS  Google Scholar 

  67. Börjesson L, Nordgren S, Delbro DS (1997) DMPP causes relaxation of rat distal colon by a purinergic and a nitrergic mechanism. Eur J Pharmacol 334:223–231

    PubMed  Google Scholar 

  68. Bornstein JC (2008) Purinergic mechanisms in the control of gastrointestinal motility. Purinergic Signal 4:197–212

    PubMed Central  PubMed  CAS  Google Scholar 

  69. Bornstein JC (2012) Enteric neural regulation of mucosal secretion. In: Johnson LR, Ghishan FK, Kaunitz JD, Merchant JL, Said HM, Wood JD (eds) Physiology of the gastrointestinal tract. Elsevier Academic, San Diego, pp 769–790

    Google Scholar 

  70. Bornstein JC, Costa M, Grider JR (2004) Enteric motor and interneuronal circuits controlling motility. Neurogastroenterol Motil 16(Suppl 1):34–38

    PubMed  Google Scholar 

  71. Bours MJ, Troost FJ, Brummer RJ, Bast A, Dagnelie PC (2007) Local effect of adenosine 5′-triphosphate on indomethacin-induced permeability changes in the human small intestine. Eur J Gastroenterol Hepatol 19:245–250

    PubMed  CAS  Google Scholar 

  72. Braun N, Sevigny J, Robson SC, Hammer K, Hanani M, Zimmermann H (2004) Association of the ecto-ATPase NTPDase2 with glial cells of the peripheral nervous system. Glia 45:124–132

    PubMed  Google Scholar 

  73. Brierley SM, Carter R, Jones W III, Xu L, Robinson DR, Hicks GA, Gebhart GF, Blackshaw LA (2005) Differential chemosensory function and receptor expression of splanchnic and pelvic colonic afferents in mice. J Physiol 567:267–281

    PubMed Central  PubMed  CAS  Google Scholar 

  74. Briggs CA, Cooper JR (1981) A synaptosomal preparation from the guinea pig ileum myenteric plexus. J Neurochem 36:1097–1108

    PubMed  CAS  Google Scholar 

  75. Brown CM, Burnstock G (1981) Evidence in support of the P1/P2 purinoceptor hypothesis in the guinea-pig taenia coli. Br J Pharmacol 73:617–624

    PubMed Central  PubMed  CAS  Google Scholar 

  76. Brown GP, Harvey BJ (2000) The role of intracellular calcium and UDP-stimulated chloride secretion across murine intestinal epithelium. J Physiol 526:5P

    Google Scholar 

  77. Bülbring E, Tomita T (1967) Properties of the inhibitory potential of smooth muscle as observed in the response to field stimulation of the guinea-pig taenia coli. J Physiol 189:299–315

    Google Scholar 

  78. Bulloch JM, Starke K (1989) Presynaptic α2-autoinhibition in a vascular neuroeffector junction where ATP and noradrenaline act as co-transmitters. Br J Pharmacol 99:279–284

    Google Scholar 

  79. Bültmann R, von Kügelgen I, Starke K (1991) Adrenergic and purinergic cotransmission in nicotine-evoked vasoconstriction in rabbit ileocolic arteries. Naunyn Schmiedebergs Arch Pharmacol 344:174–182

    PubMed  Google Scholar 

  80. Burleigh DE, D'Mello A, Parks AG (1979) Responses of isolated human internal anal sphincter to drugs and electrical field stimulation. Gastroenterology 77:484–490

    PubMed  CAS  Google Scholar 

  81. Burnstock G (1969) Evolution of the autonomic innervation of visceral and cardiovascular systems in vertebrates. Pharmacol Rev 21:247–324

    PubMed  CAS  Google Scholar 

  82. Burnstock G (1972) Purinergic nerves. Pharmacol Rev 24:509–581

    PubMed  CAS  Google Scholar 

  83. Burnstock G (1975) Purinergic transmission. In: Iversen LI, Iversen SD, Snyder SH (eds) Handbook of psychopharmacology, vol 5. Plenum, New York, pp 131–194

    Google Scholar 

  84. Burnstock G (1975) Comparative studies of purinergic nerves. J Exp Zool 194:103–133

    PubMed  CAS  Google Scholar 

  85. Burnstock G (1978) A basis for distinguishing two types of purinergic receptor. In: Straub RW, Bolis L (eds) Cell membrane receptors for drugs and hormones: a multidisciplinary approach. Raven, New York, pp 107–118

    Google Scholar 

  86. Burnstock G (1979) Past and current evidence for the purinergic nerve hypothesis. In: Baer HP, Drummond GI (eds) Physiological and regulatory functions of adenosine and adenine nucleotides. Raven, New York, pp 3–32

    Google Scholar 

  87. Burnstock G (1992) Neuromuscular transmission and neuromodulation in the gastrointestinal tract. In: Heading RC, Wood JD (eds) Gastrointestinal dysmotility: focus on cisapride. Proc. 2nd Int. Cisapride Investigators Meeting, Nice, December 3–4 1990. Raven, New York, pp 41–60

  88. Burnstock G (1993) Physiological and pathological roles of purines: an update. Drug Dev Res 28:195–206

    CAS  Google Scholar 

  89. Burnstock G (1996) Purinoceptors: ontogeny and phylogeny. Drug Dev Res 39:204–242

    CAS  Google Scholar 

  90. Burnstock G (1997) Commentary on paper by G. Burnstock, G. Campbell, D. Satchell & A. Smythe (1970) entitled “Evidence that adenosine triphosphate or a related nucleotide is the transmitter substance released by non-adrenergic inhibitory nerves in the gut” In: Birmingham AT, Brown DA (eds) Landmarks in pharmacology. Br. J. Pharmacol. (Golden Jubilee 1946–1996), pp 334–357

  91. Burnstock G (2001a) Purinergic signalling in gut. In: Abbracchio MP, Williams M (eds) Handbook of experimental pharmacology, volume 151/II. Purinergic and pyrimidinergic signalling II—cardiovascular, respiratory, immune, metabolic and gastrointestinal tract function. Springer, Berlin, pp 141–238

    Google Scholar 

  92. Burnstock G (2001b) Purinergic signalling in development. In: Abbracchio MP, Williams M (eds) Handbook of experimental pharmacology, volume 151/I. Purinergic and pyrimidinergic signalling I—molecular, nervous and urinogenitary system function. Springer, Berlin, pp 89–127

    Google Scholar 

  93. Burnstock G (2001) Purine-mediated signalling in pain and visceral perception. Trends Pharmacol Sci 22:182–188

    PubMed  CAS  Google Scholar 

  94. Burnstock G (2001) Expanding field of purinergic signaling. Drug Dev Res 52:1–10

    CAS  Google Scholar 

  95. Burnstock G (2004) A moment of excitement. Living history series. The discovery of non-adrenergic, non-cholinergic neurotransmission. Physiol News 56:7–9

    Google Scholar 

  96. Burnstock G (2006) Pathophysiology and therapeutic potential of purinergic signalling. Pharmacol Rev 58:58–86

    PubMed  CAS  Google Scholar 

  97. Burnstock G (2007) Physiology and pathophysiology of purinergic neurotransmission. Physiol Rev 87:659–797

    PubMed  CAS  Google Scholar 

  98. Burnstock G (2008) The journey to establish purinergic signalling in the gut. Neurogastroenterol Motil 20:8–19

    PubMed  CAS  Google Scholar 

  99. Burnstock G (2008) Commentary.Purinergic receptors as future targets for treatment of functional GI disorders. Gut 57:1193–1194

    PubMed  Google Scholar 

  100. Burnstock G, Hoyle CHV (1985) Actions of adenine dinucleotides in the guinea-pig taenia coli: NAD acts indirectly on P1-purinoceptors; NADP acts like a P2-purinoceptor agonist. Br J Pharmacol 84:825–831

    PubMed Central  PubMed  CAS  Google Scholar 

  101. Burnstock G, Lavin S (2002) Interstitial cells of Cajal and purinergic signalling. Auton Neurosci 97:68–72

    PubMed  CAS  Google Scholar 

  102. Burnstock G, Ralevic V (1994) New insights into the local regulation of blood flow by perivascular nerves and endothelium. Br J Plast Surg 47:527–543

    PubMed  CAS  Google Scholar 

  103. Burnstock G, Verkhratsky A (2012) Purinergic signalling and the nervous system. Springer, Heidelberg, pp 1–715

    Google Scholar 

  104. Burnstock G, Warland JJI (1987) P2-purinoceptors of two subtypes in the rabbit mesenteric artery: reactive blue 2 selectively inhibits responses mediated via the P2y- but not the P2x-purinoceptor. Br J Pharmacol 90:383–391

    PubMed Central  PubMed  CAS  Google Scholar 

  105. Burnstock G, Wong H (1978) Comparison of the effects of ultraviolet light and purinergic nerve stimulation on the guinea-pig taenia coli. Br J Pharmacol 62:293–302

    PubMed Central  PubMed  CAS  Google Scholar 

  106. Burnstock G, Campbell G, Bennett M, Holman ME (1963) The effects of drugs on the transmission of inhibition from autonomic nerves to the smooth muscle of the guinea pig taenia coli. Biochem Pharmacol 12(Suppl):134–135

    Google Scholar 

  107. Burnstock G, Campbell G, Bennett M, Holman ME (1964) Innervation of the guinea-pig taenia coli: are there intrinsic inhibitory nerves which are distinct from sympathetic nerves? Int J Neuropharmacol 3:163–166

    PubMed  CAS  Google Scholar 

  108. Burnstock G, Campbell G, Rand MJ (1966) The inhibitory innervation of the taenia of the guinea-pig caecum. J Physiol 182:504–526

    PubMed Central  PubMed  CAS  Google Scholar 

  109. Burnstock G, Campbell G, Satchell D, Smythe A (1970) Evidence that adenosine triphosphate or a related nucleotide is the transmitter substance released by non-adrenergic inhibitory nerves in the gut. Br J Pharmacol 40:668–688

    PubMed Central  PubMed  CAS  Google Scholar 

  110. Burnstock G, Satchell DG, Smythe A (1972) A comparison of the excitatory and inhibitory effects of non-adrenergic, non-cholinergic nerve stimulation and exogenously applied ATP on a variety of smooth muscle preparations from different vertebrate species. Br J Pharmacol 46:234–242

    PubMed Central  PubMed  CAS  Google Scholar 

  111. Burnstock G, Cocks T, Paddle B, Staszewska-Barczak J (1975) Evidence that prostaglandin is responsible for the ‘rebound contraction’ following stimulation of non-adrenergic, non-cholinergic (‘purinergic’) inhibitory nerves. Eur J Pharmacol 31:360–362

    PubMed  CAS  Google Scholar 

  112. Burnstock G, Hills JM, Hoyle CHV (1984) Evidence that the P1-purinoceptor in the guinea-pig taenia coli is an A2-subtype. Br J Pharmacol 81:533–541

    PubMed Central  PubMed  CAS  Google Scholar 

  113. Burnstock G, Fischer B, Hoyle CHV, Maillard M, Ziganshin AU, Brizzolara AL, von Isakovics A, Boyer JL, Harden TK, Jacobson KA (1994) Structure activity relationships for derivatives of adenosine 5′-triphosphate as agonists at P2 purinoceptors: heterogeneity within P2X and P2Y subtypes. Drug Dev Res 31:206–219

    PubMed Central  PubMed  Google Scholar 

  114. Buzzi N, Bilbao PS, Boland R, de Boland AR (2009) Extracellular ATP activates MAP kinase cascades through a P2Y purinergic receptor in the human intestinal Caco-2 cell line. Biochim Biophys Acta 1790:1651–1659

    PubMed  CAS  Google Scholar 

  115. Buzzi N, Boland R, Russo de Boland A (2010) Signal transduction pathways associated with ATP-induced proliferation of colon adenocarcinoma cells. Biochim Biophys Acta 1800:946–955

    PubMed  CAS  Google Scholar 

  116. Bywater RAR, Taylor GS (1982) Electrophysiological studies on the colon of the piebald-lethal mouse. Proc Aust Physiol Pharmacol Soc 13:250P

    Google Scholar 

  117. Carlson CC, Chinery R, Burnham LL, Dransfield DT (2000) 8-Cl-adenosine-induced inhibition of colorectal cancer growth in vitro and in vivo. Neoplasia 2:441–448

    PubMed Central  PubMed  CAS  Google Scholar 

  118. Casas-Pruneda G, Reyes JP, Pérez-Flores G, Pérez-Cornejo P, Arreola J (2009) Functional interactions between P2X4 and P2X7 receptors from mouse salivary epithelia. J Physiol 587:2887–2901

    PubMed Central  PubMed  CAS  Google Scholar 

  119. Cascabulho CM, Menna-Barreto RF, Coutinho-Silva R, Persechini PM, Henriques-Pons A (2008) P2X7 modulatory web in Trypanosoma cruzi infection. Parasitol Res 103:829–838

    PubMed  CAS  Google Scholar 

  120. Castelucci P, Robbins HL, Poole DP, Furness JB (2002) The distribution of purine P2X2 receptors in the guinea-pig enteric nervous system. Histochem Cell Biol 117:415–422

    PubMed  CAS  Google Scholar 

  121. Castelucci P, Robbins HL, Furness JB (2003) P2X2 purine receptor immunoreactivity of intraganglionic laminar endings in the mouse gastrointestinal tract. Cell Tissue Res 312:167–174

    PubMed  CAS  Google Scholar 

  122. Cataldi de Flombaum MA, Stoppani AO (1992) High-affinity calcium-stimulated, magnesium-dependent adenosine triphosphatase in Trypanosoma cruzi. Comp Biochem Physiol B 103:933–937

    PubMed  CAS  Google Scholar 

  123. Cesaro A, Brest P, Hofman V, Hébuterne X, Wildman S, Ferrua B, Marchetti S, Doglio A, Vouret-Craviari V, Galland F, Naquet P, Mograbi B, Unwin R, Hofman P (2010) Amplification loop of the inflammatory process is induced by P2X7R activation in intestinal epithelial cells in response to neutrophil transepithelial migration. Am J Physiol Gastrointest Liver Physiol 299:G32–G42

    PubMed  CAS  Google Scholar 

  124. Chan HC, Cheung WT, Leung PY, Wu LJ, Chew SB, Ko WH, Wong PY (1996) Purinergic regulation of anion secretion by cystic fibrosis pancreatic duct cells. Am J Physiol 271:C469–C477

    PubMed  CAS  Google Scholar 

  125. Chari RS, Schutz SM, Haebig JE, Shimokura GH, Cotton PB, Fitz JG, Meyers WC (1996) Adenosine nucleotides in bile. Am J Physiol 270:G246–G252

    PubMed  CAS  Google Scholar 

  126. Chen H, Redelman D, Ro S, Ward SM, Ördög T, Sanders KM (2007) Selective labeling and isolation of functional classes of interstitial cells of Cajal of human and murine small intestine. Am J Physiol Cell Physiol 292:C497–C507

    PubMed  CAS  Google Scholar 

  127. Cheng Y, Yang J, Agarwal R, Green GM, Mease RC, Pomper MG, Meltzer SJ, Abraham JM (2011) Strong inhibition of xenografted tumor growth by low-level doses of [32P]ATP. Oncotarget 2:461–466

    PubMed Central  PubMed  Google Scholar 

  128. Cho YB, Lee WY, Song SY, Choi SH, Shin HJ, Ahn KD, Lee JM, Kim HC, Yun SH, Chun HK (2009) In vitro chemosensitivity based on depth of invasion in advanced colorectal cancer using ATP-based chemotherapy response assay (ATP-CRA). Eur J Surg Oncol 35:951–956

    PubMed  CAS  Google Scholar 

  129. Christofi FL (2001) Unlocking mysteries of gut sensory transmission: is adenosine the key? News Physiol Sci 16:201–207

    PubMed  CAS  Google Scholar 

  130. Christofi FL (2008) Purinergic receptors and gastrointestinal secretomotor function. Purinergic Signal 4:213–236

    PubMed Central  PubMed  CAS  Google Scholar 

  131. Christofi FL, Cook MA (1986) Affinity of various purine nucleosides for adenosine receptors on purified myenteric varicosities compared to their efficacy as presynaptic inhibitors of acetylcholine release. J Pharmacol Exp Ther 237:305–311

    PubMed  CAS  Google Scholar 

  132. Christofi FL, Cook MA (1987) Possible heterogeneity of adenosine receptors present on myenteric nerve endings. J Pharmacol Exp Ther 243:302–309

    PubMed  CAS  Google Scholar 

  133. Christofi FL, Cook MA (1997) Purinergic modulation of gastrointestinal function. In: Jacobson KA, Jarvis MF (eds) Purinergic approaches in experimental therapeutics. Wiley-Liss, New York, pp 261–282

    Google Scholar 

  134. Christofi FL, Wood JD (1993) Endogenously released adenosine acts at A1 receptors to suppress slow excitatory transmission (slow EPSP) and enhance slow inhibitory transmission (slow IPSP) in the myenteric plexus of guinea-pig small intestine. Gastroenterology 104:A490

    Google Scholar 

  135. Christofi FL, Wood JD (1993) Presynaptic inhibition by adenosine A1 receptors on guinea pig small intestinal myenteric neurons. Gastroenterology 104:1420–1429

    PubMed  CAS  Google Scholar 

  136. Christofi FL, Wood JD (1994) Electrophysiological subtypes of inhibitory P1 purinoceptors on myenteric neurones of guinea-pig small bowel. Br J Pharmacol 113:703–710

    PubMed Central  PubMed  CAS  Google Scholar 

  137. Christofi FL, Tack J, Wood JD (1992) Suppression of nicotinic synaptic transmission by adenosine in myenteric ganglia of the guinea-pig gastric antrum. Eur J Pharmacol 216:17–22

    PubMed  CAS  Google Scholar 

  138. Christofi FL, Baidan LV, Fertel RH, Wood JD (1994) Adenosine A2 receptor-mediated excitation of a subset of AH/type 2 neurons and elevation of cAMP levels in myenteric ganglia of guinea-pig ileum. Neurogastroenterol Motil 6:67–78

    Google Scholar 

  139. Christofi FL, Guan Z, Lucas JH, Rosenberg Schaffer LJ, Stokes BT (1996) Responsiveness to ATP with an increase in intracellular free Ca2+ is not a distinctive feature of calbindin-D28 immunoreactive neurons in myenteric ganglia. Brain Res 725:241–246

    PubMed  CAS  Google Scholar 

  140. Christofi FL, Guan Z, Wood JD, Baidan LV, Stokes BT (1997) Purinergic Ca2+ signaling in myenteric neurons via P2 purinoceptors. Am J Physiol 272:G463–G473

    PubMed  CAS  Google Scholar 

  141. Christofi FL, Zhang H, Yu JG, Guzman J, Xue J, Kim M, Wang YZ, Cooke HJ (2001) Differential gene expression of adenosine A1, A2a, A2b, and A3 receptors in the human enteric nervous system. J Comp Neurol 439:46–64

    PubMed  CAS  Google Scholar 

  142. Christofi FL, Wunderlich J, Yu JG, Wang YZ, Xue J, Guzman J, Javed N, Cooke H (2004) Mechanically evoked reflex electrogenic chloride secretion in rat distal colon is triggered by endogenous nucleotides acting at P2Y1, P2Y2, and P2Y4 receptors. J Comp Neurol 469:16–36

    PubMed  CAS  Google Scholar 

  143. Clark SR, Costa M, Tonini M, Brookes SJ (1996) Purinergic transmission is involved in a descending excitatory reflex in the guinea-pig small intestine. Proc Aust Neurosci Soc 7:176

    Google Scholar 

  144. Clarke LL, Harline MC, Gawenis LR, Walker NM, Turner JT, Weisman GA (2000) Extracellular UTP stimulates electrogenic bicarbonate secretion across CFTR knockout gallbladder epithelium. Am J Physiol Gastrointest Liver Physiol 279:G132–G138

    PubMed  CAS  Google Scholar 

  145. Clunes MT, Davidson RA, Bellingham M, Corbett AD, Bovell DL, Burnstock G (2002) Immunohistochemical localization of the P2Y4 receptor in human bowel. J Physiol 543:48P

    Google Scholar 

  146. Colgan SP, Fennimore B, Ehrentraut SF (2013) Adenosine and gastrointestinal inflammation. J Mol Med (Berlin) 91:157–164

    CAS  Google Scholar 

  147. Communi D, Parmentier M, Boeynaems JM (1996) Cloning, functional expression and tissue distribution of the human P2Y6 receptor. Biochem Biophys Res Commun 222:303–308

    PubMed  CAS  Google Scholar 

  148. Cook DI, Young JA (1989) Fluid and electrolyte secretion by salivary glands. In: Forte JG (ed) Handbook of physiology, the gastrointestinal system. Salivary, pancreatic, gastric and hepatobiliary secretion, section 6, volume III. American Physiological Society, Bethesda, pp 1–23

  149. Cooke HJ, Wunderlich J, Christofi FL (2003) “The force be with you”: ATP in gut mechanosensory transduction. News Physiol Sci 18:43–49

    PubMed  CAS  Google Scholar 

  150. Cooke HJ, Xue J, Yu JG, Wunderlich J, Wang YZ, Guzman J, Javed N, Christofi FL (2004) Mechanical stimulation releases nucleotides that activate P2Y1 receptors to trigger neural reflex chloride secretion in guinea pig distal colon. J Comp Neurol 469:1–15

    PubMed  CAS  Google Scholar 

  151. Cornberg M, Schoefl C, Jandl O, Potthoff A, Mix H, Goeke M, Beil W, Manns MP, Wagner S (2000) Differential expression of the adenosine receptor subtypes in human gastric mucosa and cancer cells. Gastroenterology 118:A304

    Google Scholar 

  152. Correale P, Caraglia M, Procopio A, Marinetti MR, Guarrasi R, Fabbrocini A, Bianco AR, Tagliaferri P (1993) Transmembrane ion flux modifiers verapamil and ouabain modulate cytotoxic effects of extracellular ATP on human tumor cells in vitro. Int J Oncol 3:847–851

    PubMed  CAS  Google Scholar 

  153. Correia-de-Sá P, Adães S, Timóteo MA, Vieira C, Magalhães-Cardoso T, Nascimento C, Duarte-Araújo M (2006) Fine-tuning modulation of myenteric motoneurons by endogenous adenosine: on the role of secreted adenosine deaminase. Auton Neurosci 126–127:211–224

    PubMed  Google Scholar 

  154. Costa M, Furness JB, Humphreys CM (1986) Apamin distinguishes two types of relaxation mediated by enteric nerves in the guinea-pig gastrointestinal tract. Naunyn Schmiedebergs Arch Pharmacol 332:79–88

    PubMed  CAS  Google Scholar 

  155. Coutinho CMLM, Pons AH, Araujo-Jorge TC, Persechini PM, Coutinho-Silva R (1998) Enhancement of P2Z-associated cell permeabilization during acute phase of Chagas' disease. Drug Dev Res 43:38

    Google Scholar 

  156. Crema A, Frigo GM, Lecchini S, Manzo L, Onori L, Tonini M (1983) Purine receptors in the guinea-pig internal anal sphincter. Br J Pharmacol 78:599–603

    PubMed Central  PubMed  CAS  Google Scholar 

  157. Cressman VL, Lazarowski E, Homolya L, Boucher RC, Koller BH, Grubb BR (1999) Effect of loss of P2Y2 receptor gene expression on nucleotide regulation of murine epithelial Cl transport. J Biol Chem 274:26461–26468

    PubMed  CAS  Google Scholar 

  158. Crist JR, He XD, Goyal RK (1992) Both ATP and the peptide VIP are inhibitory neurotransmitters in guinea-pig ileum circular muscle. J Physiol 447:119–131

    PubMed Central  PubMed  CAS  Google Scholar 

  159. Crowe R, Burnstock G (1981) Perinatal development of quinacrine-positive neurons in the rabbit gastrointestinal tract. J Auton Nerv Syst 4:217–230

    PubMed  CAS  Google Scholar 

  160. Cummins MM, O'Mullane LM, Barden JA, Cook DI, Poronnik P (2000) Purinergic responses in HT29 colonic epithelial cells are mediated by G protein α-subunits. Cell Calcium 27:247–255

    PubMed  CAS  Google Scholar 

  161. Currò D, Preziosi P (1998) Non-cholinergic non-adrenergic relaxation of the rat stomach. Gen Pharmacol 31:697–703

    PubMed  Google Scholar 

  162. Currò D, Ipavec V, Preziosi P (2008) Neurotransmitters of the non-adrenergic non-cholinergic relaxation of proximal stomach. Eur Rev Med Pharmacol Sci 12(Suppl 1):53–62

    PubMed  Google Scholar 

  163. Cusack NJ, Planker M (1979) Relaxation of isolated taenia coli of guinea-pig by enantiomers of 2-azido analogues of adenosine and adenine nucleotides. Br J Pharmacol 67:153–158

    PubMed Central  PubMed  CAS  Google Scholar 

  164. Cusack NJ, Hourani SMO, Loizou GD, Welford LA (1987) Pharmacological effects of isopolar phosphonate analogues of ATP on P2-purinoceptors in guinea-pig taenia coli and urinary bladder. Br J Pharmacol 90:791–795

    PubMed Central  PubMed  CAS  Google Scholar 

  165. Cuthbert AW, Hickman ME (1985) Indirect effects of adenosine triphosphate on chloride secretion in mammalian colon. J Membr Biol 86:157–166

    PubMed  CAS  Google Scholar 

  166. da Silveira AB, D'Avila Reis D, de Oliveira EC, Neto SG, Luquetti AO, Poole D, Correa-Oliveira R, Furness JB (2007) Neurochemical coding of the enteric nervous system in chagasic patients with megacolon. Dig Dis Sci 52:2877–2883

    PubMed  Google Scholar 

  167. Damen R, Haugen M, Svejda B, Alaimo D, Brenna O, Pfragner R, Gustafsson BI, Kidd M (2013) The stimulatory adenosine receptor ADORA2B regulates serotonin (5-HT) synthesis and release in oxygen-depleted EC cells in inflammatory bowel disease. PLoS One 8:e62607

    PubMed Central  PubMed  CAS  Google Scholar 

  168. Dang K, Bielfeldt K, Lamb K, Gebhart GF (2005) Gastric ulcers evoke hyperexcitability and enhance P2X receptor function in rat gastric sensory neurons. J Neurophysiol 93:3112–3119

    PubMed  CAS  Google Scholar 

  169. Davison JS, Al-Hassani M, Crowe R, Burnstock G (1978) The non-adrenergic, inhibitory innervation of the guinea-pig gallbladder. Pflugers Arch 377:43–49

    PubMed  CAS  Google Scholar 

  170. de Campos NE, Marques-da-Silva C, Corrêa G, Castelo-Branco MT, de Souza HS, Coutinho-Silva R (2012) Characterizing the presence and sensitivity of the P2X7 receptor in different compartments of the gut. J Innate Immun 4:529–541

    PubMed  Google Scholar 

  171. De Luca A, Li CG, Rand MJ (1999) Nitrergic and purinergic mechanisms and their interactions for relaxation of the rat internal anal sphincter. J Auton Pharmacol 19:29–37

    PubMed  Google Scholar 

  172. De Man JG, De Winter BY, Seerden TC, De Schepper HU, Herman AG, Pelckmans PA (2003) Functional evidence that ATP or a related purine is an inhibitory NANC neurotransmitter in the mouse jejunum: study on the identity of P2X and P2Y purinoceptors involved. Br J Pharmacol 140:1108–1116

    PubMed Central  PubMed  Google Scholar 

  173. Decker DA, Galligan JJ (2010) Molecular mechanisms of cross-inhibition between nicotinic acetylcholine receptors and P2X receptors in myenteric neurons and HEK-293 cells. Neurogastroenterol Motil 22(901–8):e235

    Google Scholar 

  174. Degagné É, Turgeon N, Moore-Gagné J, Asselin C, Gendron FP (2012) P2Y2 receptor expression is regulated by C/EBPβ during inflammation in intestinal epithelial cells. FEBS J 279:2957–2965

    PubMed  Google Scholar 

  175. Dehaye JP (1993) ATP4− increases the intracellular calcium concentration in rat submandibular glands. Gen Pharmacol 24:1097–1100

    PubMed  CAS  Google Scholar 

  176. Delbro D, Fändriks L (1982) ATP induces non-cholinergic, non-adrenergic gastric relaxation in vivo. Acta Physiol Scand Suppl 508:67

    Google Scholar 

  177. Delbro D, Fändriks L (1984) Inhibition of vagally induced non-adrenergic, non-cholinergic gastric relaxation by P2-purinoceptor desensitization. Acta Physiol Scand 120:12A

    Google Scholar 

  178. Deshpande NA, McDonald TJ, Cook MA (1999) Endogenous interstitial adenosine in isolated myenteric neural networks varies inversely with prevailing PO2. Am J Physiol 276:G875–G885

    PubMed  CAS  Google Scholar 

  179. Dho S, Stewart K, Foskett JK (1992) Purinergic receptor activation of Cl secretion in T84 cells. Am J Physiol 262:C67–C74

    PubMed  CAS  Google Scholar 

  180. Di Paola R, Melani A, Esposito E, Mazzon E, Paterniti I, Bramanti P, Pedata F, Cuzzocrea S (2010) Adenosine A2A receptor-selective stimulation reduces signaling pathways involved in the development of intestine ischemia and reperfusion injury. Shock 33:541–551

    PubMed  Google Scholar 

  181. Dick GM, Bradley KK, Horowitz B, Hume JR, Sanders KM (1998) Functional and molecular identification of a novel chloride conductance in canine colonic smooth muscle. Am J Physiol 275:C940–C950

    PubMed  CAS  Google Scholar 

  182. DiMarino AJ Jr (1974) Characteristics of lower esophageal sphincter function in symptomatic diffuse esophageal spasm. Gastroenterology 66:1–6

    PubMed  Google Scholar 

  183. Doctor RB, Matzakos T, McWilliams R, Johnson S, Feranchak AP, Fitz JG (2005) Purinergic regulation of cholangiocyte secretion: identification of a novel role for P2X receptors. Am J Physiol Gastrointest Liver Physiol 288:G779–G786

    PubMed  CAS  Google Scholar 

  184. Doggrell SA, Scott GW (1980) The effects of time and indomethacin on contractile responses of the guinea-pig gall bladder in vitro. Br J Pharmacol 71:429–434

    PubMed Central  PubMed  CAS  Google Scholar 

  185. Dong X, Smoll EJ, Ko KH, Lee J, Chow JY, Kim HD, Insel PA, Dong H (2009) P2Y receptors mediate Ca2+ signaling in duodenocytes and contribute to duodenal mucosal bicarbonate secretion. Am J Physiol Gastrointest Liver Physiol 296:G424–G432

    PubMed Central  PubMed  CAS  Google Scholar 

  186. Donnelly-Roberts D, McGaraughty S, Shieh CC, Honore P, Jarvis MF (2008) Painful purinergic receptors. J Pharmacol Exp Ther 324:409–415

    PubMed  CAS  Google Scholar 

  187. Donoso MV, Steiner M, Huidobro Toro JP (1997) BIBP 3226, suramin and prazosin identify neuropeptide Y, adenosine 5′-triphosphate and noradrenaline as sympathetic cotransmitters in the rat arterial mesenteric bed. J Pharmacol Exp Ther 282:691–698

    PubMed  CAS  Google Scholar 

  188. Dowd FJ, Murphy HC, Li L (1996) Metabolism of extracellular ATP by rat parotid cells. Arch Oral Biol 41:855–862

    PubMed  CAS  Google Scholar 

  189. Dowe GH, Kilbinger H, Whittaker VP (1980) Isolation of cholinergic synaptic vesicles from the myenteric plexus of guinea-pig small intestine. J Neurochem 35:993–1003

    PubMed  CAS  Google Scholar 

  190. Dranoff JA, Masyuk AI, Kruglov EA, LaRusso NF, Nathanson MH (2001) Polarized expression and function of P2Y ATP receptors in rat bile duct epithelia. Am J Physiol Gastrointest Liver Physiol 281:G1059–G1067

    PubMed  CAS  Google Scholar 

  191. Drury AN, Szent-Györgyi A (1929) The physiological activity of adenine compounds with special reference to their action upon the mammalian heart. J Physiol 68:213–237

    PubMed Central  PubMed  CAS  Google Scholar 

  192. Duarte-Araújo M, Nascimento C, Timóteo MA, Magalhães-Cardoso MT, Correia-de-Sá P (2009) Relative contribution of ecto-ATPase and ecto-ATPDase pathways to the biphasic effect of ATP on acetylcholine release from myenteric motoneurons. Br J Pharmacol 156:519–533

    PubMed Central  PubMed  Google Scholar 

  193. DuBose DR, Wolff SC, Qi AD, Naruszewicz I, Nicholas RA (2013) Apical targeting of the P2Y4 receptor is directed by hydrophobic and basic residues in the cytoplasmic tail. Am J Physiol Cell Physiol 304:C228–C239

    PubMed Central  PubMed  CAS  Google Scholar 

  194. Dubyak GR, El Moatassim C (1993) Signal transduction via P2-purinergic receptors for extracellular ATP and other nucleotides. Am J Physiol 265:C577–C606

    PubMed  CAS  Google Scholar 

  195. Durnin L, Hwang SJ, Ward SM, Sanders KM, Mutafova-Yambolieva VN (2012) Adenosine 5-diphosphate-ribose is a neural regulator in primate and murine large intestine along with β-NAD+. J Physiol 590:1921–1941

    PubMed Central  PubMed  CAS  Google Scholar 

  196. Durnin L, Sanders KM, Mutafova-Yambolieva VN (2013) Differential release of β-NAD+ and ATP upon activation of enteric motor neurons in primate and murine colons. Neurogastroenterol Motil 25:e194–e204

    PubMed Central  PubMed  CAS  Google Scholar 

  197. Dutta AK, Woo K, Doctor RB, Fitz JG, Feranchak AP (2008) Extracellular nucleotides stimulate Cl currents in biliary epithelia through receptor-mediated IP3 and Ca2+ release. Am J Physiol Gastrointest Liver Physiol 295:G1004–G1015

    PubMed Central  PubMed  CAS  Google Scholar 

  198. Eccles JC (1964) The physiology of synapses. Springer, Berlin, pp 1–316

    Google Scholar 

  199. Ekström J, Asztely A, Tobin G (1998) Parasympathetic non-adrenergic, non-cholinergic mechanisms in salivary glands and their role in reflex secretion. Eur J Morphol 36(Suppl):208–212

    PubMed  Google Scholar 

  200. El-Mahmoudy A, Khalifa M, Draid M, Shiina T, Shimizu Y, El-Sayed M, Takewaki T (2006) NANC inhibitory neuromuscular transmission in the hamster distal colon. Pharmacol Res 54:452–460

    PubMed  CAS  Google Scholar 

  201. El-Tayeb A, Michael S, Abdelrahman A, Behrenswerth A, Gollos S, Nieber K, Müller CE (2011) Development of polar adenosine A2A receptor agonists for inflammatory bowel disease: synergism with A2B antagonists. ACS Med Chem Lett 2:890–895

    CAS  Google Scholar 

  202. Elsing C, Kassner A, Stremmel W (1996) Sodium, hydrogen antiporter activation by extracellular adenosine triphosphate in biliary epithelial cells. Gastroenterology 111:1321–1332

    PubMed  CAS  Google Scholar 

  203. Eltzschig HK, Rivera-Nieves J, Colgan SP (2009) Targeting the A2B adenosine receptor during gastrointestinal ischemia and inflammation. Expert Opin Ther Targets 13:1267–1277

    PubMed  CAS  Google Scholar 

  204. Ernster VL (1984) Epidemiologic studies of caffeine and human health. Prog Clin Biol Res 158:377–400

    PubMed  CAS  Google Scholar 

  205. Eroglu A, Canbolat O, Demirci S, Kocaoglu H, Eryavuz Y, Akgül H (2000) Activities of adenosine deaminase and 5′-nucleotidase in cancerous and noncancerous human colorectal tissues. Med Oncol 17:319–324

    PubMed  CAS  Google Scholar 

  206. Estrada O, Lecea B, Aulí M, Farré R, Suñol X, Clave P (2006) Inhibitory purinergic neurotransmission in human lower esophageal sphincter. Neurogastroenterol Motil 18:780

    Google Scholar 

  207. Estrela AB, Abraham WR (2011) Adenosine in the inflamed gut: a Janus faced compound. Curr Med Chem 18:2791–2815

    PubMed  CAS  Google Scholar 

  208. Evans RJ, Cunnane TC (1992) Relative contributions of ATP and noradrenaline to the nerve evoked contraction of the rabbit jejunal artery. Dependence on stimulation parameters. Naunyn Schmiedeberg's Arch Pharmacol 345:424–430

    CAS  Google Scholar 

  209. Evans RJ, Surprenant A (1992) Vasoconstriction of guinea-pig submucosal arterioles following sympathetic nerve stimulation is mediated by the release of ATP. Br J Pharmacol 106:242–249

    PubMed Central  PubMed  CAS  Google Scholar 

  210. Facer P, Knowles CH, Tam PK, Ford AP, Dyer N, Baecker PA, Anand P (2001) Novel capsaicin (VR1) and purinergic (P2X3) receptors in Hirschsprung's intestine. J Pediatr Surg 36:1679–1684

    PubMed  CAS  Google Scholar 

  211. Fahrenkrug J, Haglund U, Jodal M, Lundgren O, Olbe L, de Muckadell OB (1978) Nervous release of vasoactive intestinal polypeptide in the gastrointestinal tract of cats: possible physiological implications. J Physiol 284:291–305

    PubMed Central  PubMed  CAS  Google Scholar 

  212. Fan J, Yu L, Zhang W, Zhao T, Yu Y, Gao J, Zou D, Ni X, Ma B, Burnstock G (2009) Estrogen altered visceromotor reflex and P2X3 mRNA expression in a rat model of colitis. Steroids 74:956–963

    PubMed  CAS  Google Scholar 

  213. Fang X, Hu HZ, Gao N, Liu S, Wang GD, Wang XY, Xia Y, Wood JD (2006) Neurogenic secretion mediated by the purinergic P2Y1 receptor in guinea-pig small intestine. Eur J Pharmacol 536:113–122

    PubMed  CAS  Google Scholar 

  214. Farré R, Auli M, Lecea B, Martinez E, Clave P (2006) Pharmacologic characterization of intrinsic mechanisms controlling tone and relaxation of porcine lower esophageal sphincter. J Pharmacol Exp Ther 316:1238–1248

    PubMed  Google Scholar 

  215. Fei G, Fang X, Wang GD, Liu S, Wang XY, Xia Y, Wood JD (2013) Neurogenic mucosal bicarbonate secretion in guinea pig duodenum. Br J Pharmacol 168:880–890

    PubMed Central  PubMed  CAS  Google Scholar 

  216. Feldberg W, Hebb C (1948) The stimulating action of phosphate compounds on the perfused superior cervical ganglion of the cat. J Physiol 107:210–221

    PubMed Central  PubMed  CAS  Google Scholar 

  217. Fernández E, Guo X, Vergara P, Jimenez M (1998) Evidence supporting a role for ATP as non-adrenergic non-cholinergic inhibitory transmitter in the porcine ileum. Life Sci 62:1303–1315

    PubMed  Google Scholar 

  218. Fernandez M, Pochet S, Chaïb N, Métioui M, Gómez-Muñoz A, Marino A, Dehaye JP (2001) Potentiation by propofol of the response of rat submandibular acinar cells to purinergic agonists. Cell Calcium 30:167–180

    PubMed  CAS  Google Scholar 

  219. Ferrero JD, Frischknecht R (1983) Different effector mechanisms for ATP and adenosine hyperpolarization in the guinea-pig taenia coli. Eur J Pharmacol 87:151–154

    PubMed  CAS  Google Scholar 

  220. Filinger EJ, Perec CJ, Stefano FJ (1989) Potassium-evoked efflux of [3H]purines from the rat submaxillary gland. Gen Pharmacol 20:285–288

    PubMed  CAS  Google Scholar 

  221. Fiorotto R, Spirli C, Fabris L, Cadamuro M, Okolicsanyi L, Strazzabosco M (2007) Ursodeoxycholic acid stimulates cholangiocyte fluid secretion in mice via CFTR-dependent ATP secretion. Gastroenterology 133:1603–1613

    PubMed  CAS  Google Scholar 

  222. Fisher RS, Cohen S (1975) Disorders of the lower esophageal sphincter. Annu Rev Med 26:373–390

    PubMed  CAS  Google Scholar 

  223. Fishman P, Bar-Yehuda S, Ohana G, Barer F, Ochaion A, Erlanger A, Madi L (2004) An agonist to the A3 adenosine receptor inhibits colon carcinoma growth in mice via modulation of GSK-3β and NF-κB. Oncogene 23:2465–2471

    PubMed  CAS  Google Scholar 

  224. Fitz JG, Basavappa S, McGill J, Melhus O, Cohn JA (1993) Regulation of membrane chloride currents in rat bile duct epithelial cells. J Clin Invest 91:319–328

    PubMed Central  PubMed  CAS  Google Scholar 

  225. Folkow B (1949) The vasodilator action of adenosine of adenosine triphosphate. Acta Physiol Scand 17:311–317

    PubMed  CAS  Google Scholar 

  226. Fontanils U, Seil M, Pochet S, El OM, Garcia-Marcos M, Dehaye JP, Marino A (2010) Stimulation by P2X7 receptors of calcium-dependent production of reactive oxygen species (ROS) in rat submandibular glands. Biochim Biophys Acta 1800:1183–1191

    PubMed  CAS  Google Scholar 

  227. Forte JG, Lee HC (1977) Gastric adenosine triphosphatases: a review of their possible role in HCl secretion. Gastroenterology 73:921–926

    PubMed  CAS  Google Scholar 

  228. Frasch AC, Cazzulo JJ, Stoppani AO (1978) Solubilization and some properties of the Mg2+-activated adenosine triphosphatase from Trypanosoma cruzi. Comp Biochem Physiol B 61:207–212

    PubMed  CAS  Google Scholar 

  229. Frew R, Lundy PM (1982) Evidence against ATP being the nonadrenergic, noncholinergic inhibitory transmitter in guinea pig stomach. Eur J Pharmacol 81:333–336

    PubMed  CAS  Google Scholar 

  230. Frigo GM, Del Tacca M, Lecchini S, Crema A (1973) Some observations on the intrinsic nervous mechanism in Hirschsprung's disease. Gut 14:35–40

    PubMed Central  PubMed  CAS  Google Scholar 

  231. Fukushi Y (1999) Heterologous desensitization of muscarinic receptors by P2Z purinoceptors in rat parotid acinar cells. Eur J Pharmacol 364:55–64

    PubMed  CAS  Google Scholar 

  232. Fukushi Y, Ozawa T, Kanno T, Wakui M (1997) Na+-dependent release of intracellular Ca2+ induced by purinoceptors in parotid acinar cells of the rat. Eur J Pharmacol 336:89–97

    PubMed  CAS  Google Scholar 

  233. Furness JB (2006) The enteric nervous system. Blackwell, Massachusetts, pp 137–147

    Google Scholar 

  234. Furness JB (2012) The enteric nervous system and neurogastroenterology. Nat Rev Gastroenterol Hepatol 9:286–294

    PubMed  CAS  Google Scholar 

  235. Furness JB, Morris JL, Gibbins IL, Costa M (1989) Chemical coding of neurons and plurichemical transmission. Annu Rev Pharmacol Toxicol 29:289–306

    PubMed  CAS  Google Scholar 

  236. Furness JB, Jones C, Nurgali K, Clerc N (2004) Intrinsic primary afferent neurons and nerve circuits within the intestine. Prog Neurobiol 72:143–164

    PubMed  CAS  Google Scholar 

  237. Furness JB, Robbins HL, Xiao J, Stebbing MJ, Nurgali K (2004) Projections and chemistry of Dogiel type II neurons in the mouse colon. Cell Tissue Res 317:1–12

    PubMed  CAS  Google Scholar 

  238. Furuya S, Furuya K (2013) Roles of substance P and ATP in the subepithelial fibroblasts of rat intestinal villi. Int Rev Cell Mol Biol 304:133–189

    PubMed  CAS  Google Scholar 

  239. Furuzono S, Nakayama S, Imaizumi Y (2005) Purinergic modulation of pacemaker Ca2+ activity in interstitial cells of Cajal. Neuropharmacology 48:264–273

    PubMed  CAS  Google Scholar 

  240. Gabella G, Trigg P (1984) Size of neurons and glial cells in the enteric ganglia of mice, guinea-pigs, rabbits and sheep. J Neurocytol 13:49–71

    PubMed  CAS  Google Scholar 

  241. Gade AR, Akbarali HI (2013) Electrophysiological characterization of purinergic receptors in mouse enteric neuron–glia culture. FASEB J 27:1093.24

    Google Scholar 

  242. Gallacher DV (1982) Are there purinergic receptors on parotid acinar cells? Nature 296:83–86

    PubMed  CAS  Google Scholar 

  243. Gallego D, Hernández P, Clavé P, Jiménez M (2006) P2Y1 receptors mediate inhibitory purinergic neuromuscular transmission in the human colon. Am J Physiol Gastrointest Liver Physiol 291:G584–G594

    PubMed  CAS  Google Scholar 

  244. Gallego D, Gil V, Aleu J, Martínez-Cutillas M, Clavé P, Jiménez M (2011) Pharmacological characterization of purinergic inhibitory neuromuscular transmission in the human colon. Neurogastroenterol Motil 23:792-e338

    Google Scholar 

  245. Gallego D, Gil V, Martínez-Cutillas M, Mañe N, Martín MT, Jiménez M (2012) Purinergic neuromuscular transmission is absent in the colon of P2Y1 knocked out mice. J Physiol 590:1943–1956

    PubMed Central  PubMed  CAS  Google Scholar 

  246. Gallego D, Malagelada C, Accarino A, De Giorgio R, Malagelada JR, Azp-Iroz F, Jimenez M (2012) Purinergic (P2Y1) and nitrergic neuromuscular transmission in the human small intestine. Neurogastroenterol Motil 24:81

    Google Scholar 

  247. Galligan JJ (1996) Electrophysiological studies of 5-hydroxytryptamine receptors on enteric neurons. Behav Brain Res 73:199–201

    PubMed  CAS  Google Scholar 

  248. Galligan JJ (2002) Pharmacology of synaptic transmission in the enteric nervous system. Curr Opin Pharmacol 2:623–629

    PubMed  CAS  Google Scholar 

  249. Galligan JJ (2004) Enteric P2X receptors as potential targets for drug treatment of the irritable bowel syndrome. Br J Pharmacol 141:1294–1302

    PubMed Central  PubMed  CAS  Google Scholar 

  250. Galligan JJ, North RA (2004) Pharmacology and function of nicotinic acetylcholine and P2X receptors in the enteric nervous system. Neurogastroenterol Motil 16(Suppl 1):64–70

    PubMed  Google Scholar 

  251. Galligan JJ, Herring A, Harpstead T (1995) Pharmacological characterization of purinoceptor-mediated constriction of submucosal arterioles in guinea pig ileum. J Pharmacol Exp Ther 274:1425–1430

    PubMed  CAS  Google Scholar 

  252. Galligan JJ, LePard KJ, Schneider DA, Zhou X (2000) Multiple mechanisms of fast excitatory synaptic transmission in the enteric nervous system. J Auton Nerv Syst 81:97–103

    PubMed  CAS  Google Scholar 

  253. Gandarias JM, Ainz LF, Gil-Rodrigo CE, Goiriena JJ, Gómez R, Martinez I (1985) Effect of various adenine derivatives on gastric acid secretion in the isolated rat stomach. Rev Esp Fisiol 41:83–87

    PubMed  CAS  Google Scholar 

  254. Gannon BJ, Burnstock G, Noblett HR, Campbell PE (1969) Histochemical diagnosis of Hirschsprung's disease. Lancet 293:894–895

    Google Scholar 

  255. Gao N, Hu HZ, Zhu MX, Fang X, Liu S, Gao C, Wood JD (2006) The P2Y1 purinergic receptor expressed by enteric neurones in guinea-pig intestine. Neurogastroenterol Motil 18:316–323

    PubMed  CAS  Google Scholar 

  256. Gao N, Hu HZ, Liu S, Gao C, Xia Y, Wood JD (2007) Stimulation of adenosine A1 and A2A receptors by AMP in the submucosal plexus of guinea pig small intestine. Am J Physiol Gastrointest Liver Physiol 292:G492–G500

    PubMed  CAS  Google Scholar 

  257. Garcia-Marcos M, Fontanils U, Aguirre A, Pochet S, Dehaye JP, Marino A (2005) Role of sodium in mitochondrial membrane depolarization induced by P2X7 receptor activation in submandibular glands. FEBS Lett 579:5407–5413

    PubMed  CAS  Google Scholar 

  258. Garcia-Marcos M, Pérez-Andrés E, Tandel S, Fontanils U, Kumps A, Kabré E, Gómez-Muñoz A, Marino A, Dehaye JP, Pochet S (2006) Coupling of two pools of P2X7 receptors to distinct intracellular signaling pathways in rat submandibular gland. J Lipid Res 47:705–714

    PubMed  CAS  Google Scholar 

  259. Geiger JD, Glavin GB (1985) Adenosine receptor activation in brain reduces stress-induced ulcer formation. Eur J Pharmacol 115:185–190

    PubMed  CAS  Google Scholar 

  260. Gerber JG, Payne NA (1988) Endogenous adenosine modulates gastric acid secretion to histamine in canine parietal cells. J Pharmacol Exp Ther 244:190–194

    PubMed  CAS  Google Scholar 

  261. Gerber JG, Fadul S, Payne NA, Nies AS (1984) Adenosine: a modulator of gastric acid secretion in vivo. J Pharmacol Exp Ther 231:109–113

    PubMed  CAS  Google Scholar 

  262. Gerber JG, Nies AS, Payne NA (1985) Adenosine receptors on canine parietal cells modulate gastric acid secretion to histamine. J Pharmacol Exp Ther 233:623–627

    PubMed  CAS  Google Scholar 

  263. Gershon MD, Thompson EB (1973) The maturation of neuromuscular function in a multiply innervated structure: development of the longitudinal smooth muscle of the foetal mammalian gut and its cholinergic excitatory, adrenergic inhibitory, and non-adrenergic inhibitory innervation. J Physiol 234:257–277

    PubMed Central  PubMed  CAS  Google Scholar 

  264. Gessi S, Merighi S, Varani K, Cattabriga E, Benini A, Mirandola P, Leung E, Mac Lennan S, Feo C, Baraldi S, Borea PA (2007) Adenosine receptors in colon carcinoma tissues and colon tumoral cell lines: focus on the A3 adenosine subtype. J Cell Physiol 211:826–836

    PubMed  CAS  Google Scholar 

  265. Gessi S, Merighi S, Varani K, Leung E, Mac Lennan S, Borea PA (2008) The A3 adenosine receptor: an enigmatic player in cell biology. Pharmacol Ther 117:123–140

    PubMed  CAS  Google Scholar 

  266. Gever J, Cockayne DA, Dillon MP, Burnstock G, Ford APDW (2006) Pharmacology of P2X channels. Pflugers Arch 452:513–537

    PubMed  CAS  Google Scholar 

  267. Ghanem E, Lövdahl C, Daré E, Ledent C, Fredholm BB, Boeynaems JM, Van Driessche W, Beauwens R (2005) Luminal adenosine stimulates chloride secretion through A1 receptor in mouse jejunum. Am J Physiol Gastrointest Liver Physiol 288:G972–G977

    PubMed  CAS  Google Scholar 

  268. Ghanem E, Robaye B, Leal T, Leipziger J, Van DW, Beauwens R, Boeynaems JM (2005) The role of epithelial P2Y2 and P2Y4 receptors in the regulation of intestinal chloride secretion. Br J Pharmacol 146:364–369

    PubMed Central  PubMed  CAS  Google Scholar 

  269. Gheber L, Priel Z (1994) Metachronal activity of cultured mucociliary epithelium under normal and stimulated conditions. Cell Motil Cytoskeleton 28:333–345

    PubMed  CAS  Google Scholar 

  270. Gheber L, Priel Z, Aflalo C, Shoshan Barmatz V (1995) Extracellular ATP binding proteins as potential receptors in mucociliary epithelium: characterization using [32P]-3′-O-(4-benzoyl)benzoyl ATP, a photoaffinity label. J Membr Biol 147:83–93

    PubMed  CAS  Google Scholar 

  271. Giaroni C, Knight GE, Ruan H-Z, Glass R, Bardini M, Lecchini S, Frigo G, Burnstock G (2002) P2 receptors in the murine gastrointestinal tract. Neuropharmacology 43:1313–1323

    PubMed  CAS  Google Scholar 

  272. Giaroni C, Knight GE, Zanetti E, Chiarelli RA, Lecchini S, Frigo G, Burnstock G (2006) Postnatal development of P2 receptors in the murine gastrointestinal tract. Neuropharmacology 50:690–704

    PubMed  CAS  Google Scholar 

  273. Gibb CA, Singh S, Cook DI, Poronnik P, Conigrave AD (1994) A nucleotide receptor that mobilizes Ca2+ in the mouse submandibular salivary cell line ST885. Br J Pharmacol 111:1135–1139

    PubMed Central  PubMed  CAS  Google Scholar 

  274. Gibbons SJ, Washburn KB, Talamo BR (2001) P2X7 receptors in rat parotid acinar cells: formation of large pores. J Auton Pharmacol 21:181–190

    PubMed  CAS  Google Scholar 

  275. Gibbons SJ, De Giorgio R, Miller SM, Schmalz PF, Young-Fadok TM, Szurszewski JH, Stanghellini V, Farrugia G (2004) Elevated apoptotic cell death in enteric neurons and intramuscular interstitial cells of Cajal from colon of patients with slow-transit constipation. Gastroenterology 126:A219

    Google Scholar 

  276. Giglioni S, Leoncini R, Aceto E, Chessa A, Civitelli S, Bernini A, Tanzini G, Carraro F, Pucci A, Vannoni D (2008) Adenosine kinase gene expression in human colorectal cancer. Nucleosides Nucleotides Nucleic Acids 27:750–754

    PubMed  CAS  Google Scholar 

  277. Gil V, Gallego D, Moha Ou Maati H, Peyronnet R, Martínez-Cutillas M, Heurteaux C, Borsotto M, Jiménez M (2012) Relative contribution of SKCa and TREK1 channels in purinergic and nitrergic neuromuscular transmission in the rat colon. Am J Physiol Gastrointest Liver Physiol 303:G412–G423

    PubMed  CAS  Google Scholar 

  278. Gil V, Martínez-Cutillas M, Mañé N, Martín MT, Jiménez M, Gallego D (2013) P2Y1 knockout mice lack purinergic neuromuscular transmission in the antrum and cecum. Neurogastroenterol Motil 25:e170–e182

    PubMed  CAS  Google Scholar 

  279. Gil-Rodrigo CE, Galdiz B, Gandarias JM, Gomez R, Ainz LF (1990) Characterization of the effects of adenosine, adenosine 5′-triphosphate and related purines on acid secretion in isolated rabbit gastric glands. Pharmacol Res 22:103–113

    PubMed  CAS  Google Scholar 

  280. Gil-Rodrigo CE, Gomez R, Gandarias JM, Galdiz B, Carou M, Bergaretxe I, Vallejo A, Ainz LF (1993) Effect of adenosine 5′-triphosphate on secretagogue-stimulated (14C)-aminopyrine accumulation by rabbit isolated gastric glands. Gen Physiol Biophys 12:27–36

    PubMed  CAS  Google Scholar 

  281. Gil-Rodrigo CE, Bergaretxe I, Carou M, Galdiz B, Salgado C, Ainz LF (1996) Inhibitory action of extracellular adenosine 5′-triphosphate on parietal cells isolated from rabbit gastric mucosa. Gen Physiol Biophys 15:251–264

    PubMed  CAS  Google Scholar 

  282. Girotti PA, Misawa R, Palombit K, Mendes CE, Bittencourt JC, Castelucci P (2013) Differential effects of undernourishment on the differentiation and maturation of rat enteric neurons. Cell Tissue Res

  283. Glasgow I, Mattar K, Krantis A (1998) Rat gastroduodenal motility in vivo: involvement of NO and ATP in spontaneous motor activity. Am J Physiol 275:G889–G896

    PubMed  CAS  Google Scholar 

  284. Glavin GB, Westerberg VS, Geiger JD (1987) Modulation of gastric acid secretion by adenosine in conscious rats. Can J Physiol Pharmacol 65:1182–1185

    PubMed  CAS  Google Scholar 

  285. Glushakov AV, Melishchuk AI, Skok VI (1996) ATP-induced currents in submucous plexus neurons of the guinea-pig small intestine. Neurophysiology (Moscow) 28:77–85

    Google Scholar 

  286. Glushakov AV, Glushakova HY, Skok VI (1998) Two types of P2X-purinoceptors in neurons of the guinea pig ileum submucous plexus. Neurophysiology (Moscow) 30:242–245

    Google Scholar 

  287. Goldman H, Rosoff CB (1968) Pathogenesis of acute gastric stress ulcers. Am J Pathol 52:227–244

    PubMed Central  PubMed  CAS  Google Scholar 

  288. Gomes P, Boesmans W, Janssens J, Neunlist M, Tack J, Vanden Berghe P (2007) Enteric neurons signal to glia via an ATP-dependent paracrine pathway. Neurogastroenterol Motil 19:43–44

    Google Scholar 

  289. Gordon JL (1986) Extracellular ATP: effects, sources and fate. Biochem J 233:309–319

    PubMed Central  PubMed  CAS  Google Scholar 

  290. Goyal RK (2011) Evidence for β-nicotinamide adenine dinucleotide as a purinergic, inhibitory neurotransmitter in doubt. Gastroenterology 141:e27–e28

    PubMed  Google Scholar 

  291. Goyal RK, Sullivan MP, Chaudhury A (2013) Progress in understanding of inhibitory purinergic neuromuscular transmission in the gut. Neurogastroenterol Motil 25:203–207

    PubMed  CAS  Google Scholar 

  292. Gradilone SA, Masyuk AI, Splinter PL, Banales JM, Huang BQ, Tietz PS, Masyuk TV, LaRusso NF (2007) Cholangiocyte cilia express TRPV4 and detect changes in luminal tonicity inducing bicarbonate secretion. Proc Natl Acad Sci U S A 104:19138–19143

    PubMed Central  PubMed  CAS  Google Scholar 

  293. Granger DN, Richardson PD, Kvietys PR, Mortillaro NA (1980) Intestinal blood flow. Gastroenterology 78:837–863

    PubMed  CAS  Google Scholar 

  294. Grasa L, Gil V, Gallego D, Martín MT, Jiménez M (2009) P2Y1 receptors mediate inhibitory neuromuscular transmission in the rat colon. Br J Pharmacol 158:1641–1652

    PubMed Central  PubMed  CAS  Google Scholar 

  295. Grasl M, Turnheim K (1984) Stimulation of electrolyte secretion in rabbit colon by adenosine. J Physiol 346:93–110

    PubMed Central  PubMed  CAS  Google Scholar 

  296. Grbic DM, Degagné E, Langlois C, Dupuis AA, Gendron FP (2008) Intestinal inflammation increases the expression of the P2Y6 receptor on epithelial cells and the release of CXC chemokine ligand 8 by UDP. J Immunol 180:2659–2668

    PubMed  CAS  Google Scholar 

  297. Grbic DM, Degagné É, Larriveé JF, Bilodeau MS, Vinette V, Arguin G, Stankova J, Gendron FP (2012) P2Y6 receptor contributes to neutrophil recruitment to inflamed intestinal mucosa by increasing CXC chemokine ligand 8 expression in an AP-1-dependent manner in epithelial cells. Inflamm Bowel Dis 18:1456–1469

    PubMed  Google Scholar 

  298. Gröschel-Stewart U, Bardini M, Robson T, Burnstock G (1999) Localisation of P2X5 and P2X7 receptors by immunohistochemistry in rat stratified squamous epithelia. Cell Tissue Res 296:599–605

    PubMed  Google Scholar 

  299. Grundy D, Al-Chaer ED, Aziz Q, Collins SM, Ke M, Taché Y, Wood JD (2006) Fundamentals of neurogastroenterology: basic science. Gastroenterology 130:1391–1411

    PubMed  CAS  Google Scholar 

  300. Gulbransen BD, Sharkey KA (2009) Purinergic neuron-to-glia signaling in the enteric nervous system. Gastroenterology 136:1349–1358

    PubMed  CAS  Google Scholar 

  301. Gulbransen BD, Bains JS, Sharkey KA (2010) Enteric glia are targets of the sympathetic innervation of the myenteric plexus in the guinea pig distal colon. J Neurosci 30:6801–6809

    PubMed  CAS  Google Scholar 

  302. Gulbransen BD, Bashashati M, Hirota SA, Gui X, Roberts JA, MacDonald JA, Muruve DA, McKay DM, Beck PL, Mawe GM, Thompson RJ, Sharkey KA (2012) Activation of neuronal P2X7 receptor-pannexin-1 mediates death of enteric neurons during colitis. Nat Med 18:600–604

    PubMed Central  PubMed  CAS  Google Scholar 

  303. Guldali O, Savci V, Buyukafsar K (2011) CDP-choline-induced contractions in the mouse gastric fundus through purinoceptors and Rho/Rho-kinase signalling. Life Sci 88:473–479

    PubMed  CAS  Google Scholar 

  304. Guo C, Quobatari A, Shangguan Y, Hong S, Wiley JW (2004) Diabetic autonomic neuropathy: evidence for apoptosis in situ in the rat. Neurogastroenterol Motil 16:335–345

    PubMed  CAS  Google Scholar 

  305. Guo X, Merlin D, Harvey RD, Laboisse C, Hopfer U (1995) Stimulation of Cl secretion by extracellular ATP does not depend on increased cytosolic Ca2+ in HT-29.cl16E. Am J Physiol 269:C1457–C1463

    PubMed  CAS  Google Scholar 

  306. Guo XW, Merlin D, Laboisse C, Hopfer U (1997) Purinergic agonists, but not cAMP, stimulate coupled granule fusion and Cl conductance in HT29-Cl.16E. Am J Physiol 273:C804–C809

    PubMed  CAS  Google Scholar 

  307. Gür S, Karahan ST (1997) Effects of adenosine 5′-triphosphate, adenosine and acetylcholine in urinary bladder and colon muscles from streptozotocin diabetic rats. Arzneimittelforschung 47:1226–1229

    PubMed  Google Scholar 

  308. Gustafsson LE, Wiklund NP, Lundin J, Hedqvist P (1985) Characterization of pre- and post-junctional adenosine receptors in guinea-pig ileum. Acta Physiol Scand 123:195–203

    PubMed  CAS  Google Scholar 

  309. Guzman J, Yu JG, Suntres Z, Bozarov A, Cooke H, Javed N, Auer H, Palatini J, Hassanain HH, Cardounel AJ, Javed A, Grants I, Wunderlich JE, Christofi FL (2006) ADOA3R as a therapeutic target in experimental colitis: proof by validated high-density oligonucleotide microarray analysis. Inflamm Bowel Dis 12:766–789

    PubMed  Google Scholar 

  310. Gwynne RM, Bornstein JC (2007) Synaptic transmission at functionally identified synapses in the enteric nervous system: roles for both ionotropic and metabotropic receptors. Curr Neuropharmacol 5:1–17

    PubMed Central  PubMed  CAS  Google Scholar 

  311. Hamada E, Imai Y, Hazama H, Takahashi M, Nakajima T, Ota S, Terano A, Omata M, Kurachi Y (1993) P2-purinergic receptor in human gastric signet ring cell carcinoma cell line: a patch clamp study. Gastroenterology 104:A829

    Google Scholar 

  312. Hancock DL, Coupar IM (1995) Functional characterization of the adenosine receptor mediating inhibition of peristalsis in the rat jejunum. Br J Pharmacol 115:739–744

    PubMed Central  PubMed  CAS  Google Scholar 

  313. Hao MM, Boesmans W, Van den Abbeel V, Jennings EA, Bornstein JC, Young HM, Vanden Berghe P (2011) Early emergence of neural activity in the developing mouse enteric nervous system. J Neurosci 31:15352–15361

    PubMed  CAS  Google Scholar 

  314. Hart ML, Jacobi B, Schittenhelm J, Henn M, Eltzschig HK (2009) Cutting edge: A2B adenosine receptor signaling provides potent protection during intestinal ischemia/reperfusion injury. J Immunol 182:3965–3968

    PubMed  CAS  Google Scholar 

  315. Hatanaka H, Takada S, Choi YL, Fujiwara S, Soda M, Enomoto M, Kurashina K, Watanabe H, Yamashita Y, Sugano K, Mano H (2007) Transforming activity of purinergic receptor P2Y, G-protein coupled, 2 revealed by retroviral expression screening. Biochem Biophys Res Commun 356:723–726

    PubMed  CAS  Google Scholar 

  316. Heazell MA (1975) Is ATP an inhibitory neurotransmitter in the rat stomach? Br J Pharmacol 55:285P–286P

    PubMed Central  PubMed  CAS  Google Scholar 

  317. Hede SE, Amstrup J, Christoffersen BC, Novak I (1999) Purinoceptors evoke different electrophysiological responses in pancreatic ducts. P2Y inhibits K+ conductance, and P2X stimulates cation conductance. J Biol Chem 274:31784–31791

    PubMed  CAS  Google Scholar 

  318. Heinemann A, Shahbazian A, Barthó L, Holzer P (1999) Different receptors mediating the inhibitory action of exogenous ATP and endogenously released purines on guinea-pig intestinal peristalsis. Br J Pharmacol 128:313–320

    PubMed Central  PubMed  CAS  Google Scholar 

  319. Henry JP, Stephens PM (1980) Caffeine as an intensifier of stress-induced hormonal and pathophysiologic changes in mice. Pharmacol Biochem Behav 13:719–727

    PubMed  CAS  Google Scholar 

  320. Henz SL, Ribeiro CG, Rosa A, Chiarelli RA, Casali EA, Sarkis JJ (2006) Kinetic characterization of ATP diphosphohydrolase and 5′-nucleotidase activities in cells cultured from submandibular salivary glands of rats. Cell Biol Int 30:214–220

    PubMed  CAS  Google Scholar 

  321. Henz SL, Fürstenau CR, Chiarelli RA, Sarkis JJ (2007) Kinetic and biochemical characterization of an ecto-nucleotide pyrophosphatase/phosphodiesterase (EC 3.1.4.1) in cells cultured from submandibular salivary glands of rats. Arch Oral Biol 52:916–923

    PubMed  CAS  Google Scholar 

  322. Henz SL, Cognato GP, Vuaden FC, Bogo MR, Bonan CD, Sarkis JJ (2009) Influence of antidepressant drugs on Ecto-nucleotide pyrophosphatase/phosphodiesterases (E-NPPs) from salivary glands of rats. Arch Oral Biol 54:730–736

    PubMed  CAS  Google Scholar 

  323. Hinoshita E, Uchiumi T, Taguchi K, Kinukawa N, Tsuneyoshi M, Maehara Y, Sugimachi K, Kuwano M (2000) Increased expression of an ATP-binding cassette superfamily transporter, multidrug resistance protein 2, in human colorectal carcinomas. Clin Cancer Res 6:2401–2407

    PubMed  CAS  Google Scholar 

  324. Hirst GD, Bywater RA, Teramoto N, Edwards FR (2004) An analysis of inhibitory junction potentials in the guinea-pig proximal colon. J Physiol 558:841–855

    PubMed Central  PubMed  CAS  Google Scholar 

  325. Hitchin BW, Dobson PR, Ruprai A, Hardcastle J, Hardcastle PT, Taylor CJ, Brown BL (1991) Purinoceptors and second messenger signalling in the human colonic adenoma cell line. J Physiol 438:80P

    Google Scholar 

  326. Holton P (1959) The liberation of adenosine triphosphate on antidromic stimulation of sensory nerves. J Physiol Lond 145:494–504

    PubMed Central  PubMed  CAS  Google Scholar 

  327. Holzer P (2004) Gastrointestinal pain in functional bowel disorders: sensory neurons as novel drug targets. Expert Opin Ther Targets 8:107–123

    PubMed  CAS  Google Scholar 

  328. Holzer P (2006) Efferent-like roles of afferent neurons in the gut: blood flow regulation and tissue protection. Auton Neurosci 125:70–75

    PubMed  Google Scholar 

  329. Holzer P (2007) Taste receptors in the gastrointestinal tract. V. Acid sensing in the gastrointestinal tract. Am J Physiol Gastrointest Liver Physiol 292:G699–G705

    PubMed  CAS  Google Scholar 

  330. Holzer P, Livingston EH, Saria A, Guth PH (1991) Sensory neurons mediate protective vasodilatation in rat gastric mucosa. Am J Physiol 260:G363–G370

    PubMed  CAS  Google Scholar 

  331. Höpfner M, Lemmer K, Jansen A, Hanski C, Riecken EO, Gavish M, Mann B, Buhr H, Glassmeier G, Scherübl H (1998) Expression of functional P2-purinergic receptors in primary cultures of human colorectal carcinoma cells. Biochem Biophys Res Commun 251:811–817

    PubMed  Google Scholar 

  332. Höpfner M, Maaser K, Barthel B, von Lampe B, Hanski C, Riecken EO, Zeitz M, Scherubl H (2001) Growth inhibition and apoptosis induced by P2Y2 receptors in human colorectal carcinoma cells: involvement of intracellular calcium and cyclic adenosine monophosphate. Int J Color Dis 16:154–166

    Google Scholar 

  333. Hourani SMO (1999) Postnatal development of purinoceptors in rat visceral smooth muscle preparations. Gen Pharmacol 32:3–7

    PubMed  CAS  Google Scholar 

  334. Hourani SMO, Bailey SJ, Nicholls J, Kitchen I (1991) Direct effects of adenylyl 5′-(β, γ-methylene)diphosphonate, a stable ATP analogue, on relaxant P1-purinoceptors in smooth muscle. Br J Pharmacol 104:685–690

    PubMed Central  PubMed  CAS  Google Scholar 

  335. Hourani SMO, Bailey SJ, Johnson CR, Tennant JP (1998) Effects of adenosine 5′-triphosphate, uridine 5′-triphosphate, adenosine 5′-tetraphosphate and diadenosine polyphosphates in guinea-pig taenia caeci and rat colon muscularis mucosae. Naunyn Schmiedebergs Arch Pharmacol 358:464–473

    PubMed  CAS  Google Scholar 

  336. Hoyle CHV (1992) Transmission: purines. In: Burnstock G, Hoyle CHV (eds) The autonomic nervous system. Autonomic neuroeffector mechanisms. Harwood Academic, Chur, pp 367–407

    Google Scholar 

  337. Hoyle CHV, Burnstock G (1989) Neuromuscular transmission in the gastrointestinal tract. In: Wood JD (ed) Handbook of physiology, section 6: the gastrointestinal system, vol. I: motility and circulation. American Physiological Society, Bethesda, pp 435–464

  338. Hoyle CHV, Reilly WM, Lincoln J, Burnstock G (1988) Adrenergic, but not cholinergic or purinergic, responses are potentiated in the cecum of diabetic rats. Gastroenterology 94:1357–1367

    PubMed  CAS  Google Scholar 

  339. Hoyle CHV, Kamm MA, Burnstock G, Lennard-Jones JE (1990) Enkephalins modulate inhibitory neuromuscular transmission in circular muscle of human colon via δ-opioid receptors. J Physiol 431:465–478

    PubMed Central  PubMed  CAS  Google Scholar 

  340. Hu H, O'Mullane LM, Cummins MM, Campbell CR, Hosoda Y, Poronnik P, Dinudom A, Cook DI (2010) Negative regulation of Ca2+ influx during P2Y2 purinergic receptor activation is mediated by Gβγ-subunits. Cell Calcium 47:55–64

    PubMed  CAS  Google Scholar 

  341. Hu HZ, Gao N, Zhu MX, Liu S, Ren J, Gao C, Xia Y, Wood JD (2003) Slow excitatory synaptic transmission mediated by P2Y1 receptors in the guinea-pig enteric nervous system. J Physiol 550:493–504

    PubMed Central  PubMed  CAS  Google Scholar 

  342. Hubel KA (1984) Electrical stimulus-secretion coupling in rabbit ileal mucosa. J Pharmacol Exp Ther 231:577–582

    PubMed  CAS  Google Scholar 

  343. Huh JW, Park YA, Lee KY, Sohn SK (2009) Heterogeneity of adenosine triphosphate-based chemotherapy response assay in colorectal cancer—secondary publication. Yonsei Med J 50:697–703

    PubMed Central  PubMed  Google Scholar 

  344. Hunt WB, Parsons DG, Wahid A, Wilkinson J (1978) Influence of 2-2′-pyridylisatogen tosylate on responses produced by ATP and by neural stimulation on the rat gastric copus. Br J Pharmacol 63:378P–379P

    PubMed Central  PubMed  CAS  Google Scholar 

  345. Hurley TW, Shoemaker DD, Ryan MP (1993) Extracellular ATP prevents the release of stored Ca2+ by autonomic agonists in rat submandibular gland acini. Am J Physiol 265:C1472–C1478

    PubMed  CAS  Google Scholar 

  346. Hurley TW, Ryan MP, Shoemaker DD (1994) Mobilization of Ca2+ influx, but not of stored Ca2+, by extracellular ATP in rat submandibular gland acini. Arch Oral Biol 39:205–212

    PubMed  CAS  Google Scholar 

  347. Hurley TW, Ryan MP, Moore WC (1996) Regulation of changes in cytosolic Ca2+ and Na+ concentrations in rat submandibular gland acini exposed to carbachol and ATP. J Cell Physiol 168:229–238

    PubMed  CAS  Google Scholar 

  348. Hwang SJ, Durnin L, Dwyer L, Rhee PL, Ward SM, Koh SD, Sanders KM, Mutafova-Yambolieva VN (2011) β-Nicotinamide adenine dinucleotide is an enteric inhibitory neurotransmitter in human and nonhuman primate colons. Gastroenterology 140:608–617

    PubMed Central  PubMed  CAS  Google Scholar 

  349. Hwang SJ, Blair PJ, Durnin L, Mutafova-Yambolieva V, Sanders KM, Ward SM (2012) P2Y1 purinoreceptors are fundamental to inhibitory motor control of murine colonic excitability and transit. J Physiol 590:1957–1972

    PubMed Central  PubMed  CAS  Google Scholar 

  350. Ikawa H (1981) Study of acetylcholine and muscarinic receptors in Hirschsprung's disease. Jpn J Pediatr Surg 17:237–247

    Google Scholar 

  351. Imaeda K, Suzuki H (1997) Properties of inhibitory transmission in smooth muscle of the guinea pig lower esophageal sphincter. J Auton Nerv Syst 65:132

    Google Scholar 

  352. Imoto A, Inoue R, Tanaka M, Ito Y (1998) Inhibitory NANC neurotransmission in choledocho-duodenal junction of rabbits—a possible role of PACAP. J Auton Nerv Syst 70:189–199

    PubMed  CAS  Google Scholar 

  353. Inoue CN, Woo JS, Schwiebert EM, Morita T, Hanaoka K, Guggino SE, Guggino WB (1997) Role of purinergic receptors in chloride secretion in Caco-2 cells. Am J Physiol 272:C1862–C1870

    PubMed  CAS  Google Scholar 

  354. Ishiguchi T, Takahashi T, Itoh H, Owyang C (2000) Nitrergic and purinergic regulation of the rat pylorus. Am J Physiol 279:G740–G747

    CAS  Google Scholar 

  355. Ishiguro H, Naruse S, Kitagawa M, Hayakawa T, Case RM, Steward MC (1999) Luminal ATP stimulates fluid and HCO3 secretion in guinea-pig pancreatic duct. J Physiol 519(Pt 2):551–558

    PubMed Central  PubMed  CAS  Google Scholar 

  356. Ishii T, Shimo Y (1983) Nerve-mediated non-adrenergic inhibitory responses of guinea-pig taenia caeci: further evidence of depression by morphine. J Pharm Pharmacol 35:828–830

    PubMed  CAS  Google Scholar 

  357. Ishikawa S (1985) Actions of ATP and α, β-methylene ATP on neuromuscular transmission and smooth muscle membrane of the rabbit and guinea-pig mesenteric arteries. Br J Pharmacol 86:777–787

    PubMed Central  PubMed  CAS  Google Scholar 

  358. Ivancheva C, Rahamimoff R, Radomirov R (2001) Apamin-sensitive nitric oxide- and ATP-mediated motor effects on the guinea pig small intestine. Gen Physiol Biophys 20:97–108

    PubMed  CAS  Google Scholar 

  359. Iwanaga K, Murata T, Hori M, Ozaki H (2013) Purinergic P2Y1 receptor signaling mediates wound stimuli-induced cyclooxygenase-2 expression in intestinal subepithelial myofibroblasts. Eur J Pharmacol 702:158–164

    PubMed  CAS  Google Scholar 

  360. Jenkinson KM, Reid JJ (1995) Effect of diabetes on relaxations to non-adrenergic, non-cholinergic nerve stimulation in longitudinal muscle of the rat gastric fundus. Br J Pharmacol 116:1551–1556

    PubMed Central  PubMed  CAS  Google Scholar 

  361. Jenkinson KM, Reid JJ (2000) Altered non-adrenergic non-cholinergic neurotransmission in gastric fundus from streptozotocin-diabetic rats. Eur J Pharmacol 401:251–258

    PubMed  CAS  Google Scholar 

  362. Jessen KR, Burnstock G (1982) The enteric nervous system in tissue culture: a new mammalian model for the study of complex nervous networks. In: Kalsner S (ed) Trends in autonomic pharmacology, vol II. Urban & Schwartzenberg, Baltimore, pp 95–115

    Google Scholar 

  363. Jhandier MN, Kruglov EA, Lavoie EG, Sevigny J, Dranoff JA (2005) Portal fibroblasts regulate the proliferation of bile duct epithelia via expression of NTPDase2. J Biol Chem 280:22986–22992

    PubMed  CAS  Google Scholar 

  364. Jijon HB, Walker J, Hoentjen F, Diaz H, Ewaschuk J, Jobin C, Madsen KL (2005) Adenosine is a negative regulator of NF-κB and MAPK signaling in human intestinal epithelial cells. Cell Immunol 237:86–95

    PubMed  CAS  Google Scholar 

  365. Johannesson N, Andersson K-E, Joelsson B, Persson CG (1985) Relaxation of lower esophageal sphincter and stimulation of gastric secretion and diuresis by antiasthmatic xanthines. Role of adenosine antagonism. Am Rev Respir Dis 131:26–30

    PubMed  CAS  Google Scholar 

  366. Johnson CR, Hourani SMO (1994) Contractile effects of uridine 5′-triphosphate in the rat duodenum. Br J Pharmacol 113:1191–1196

    PubMed Central  PubMed  CAS  Google Scholar 

  367. Johnson CR, Charlton SJ, Hourani SMO (1996) Responses of the longitudinal muscle and the muscularis mucosae of the rat duodenum to adenine and uracil nucleotides. Br J Pharmacol 117:823–830

    PubMed Central  PubMed  CAS  Google Scholar 

  368. Jones CJ, Mann GE, Smaje LH (1980) The role of cyclic nucleotides and related compounds in nerve-mediated vasodilatation in the cat submandibular gland. Br J Pharmacol 68:485–497

    PubMed Central  PubMed  CAS  Google Scholar 

  369. Jorgensen TD, Gromada J, Tritsaris K, Nauntofte B, Dissing S (1995) Activation of P2z purinoceptors diminishes the muscarinic cholinergic-induced release of inositol 1,4,5-trisphosphate and stored calcium in rat parotid acini. ATP as a co-transmitter in the stimulus-secretion coupling. Biochem J 312:457–464

    PubMed Central  PubMed  Google Scholar 

  370. Kabré E, Chaïb N, Boussard P, Merino G, Devleeschouwer M, Dehaye JP (1999) Study on the activation of phospholipases A2 by purinergic agonists in rat submandibular ductal cells. Biochim Biophys Acta 1436:616–627

    PubMed  Google Scholar 

  371. Kadowaki M, Takeda M, Tokita K, Hanaoka K, Tomoi M (2000) Molecular identification and pharmacological characterization of adenosine receptors in the guinea-pig colon. Br J Pharmacol 129:871–876

    PubMed Central  PubMed  CAS  Google Scholar 

  372. Kalhan A, Kidd M, Modlin I, Pfragner R, Rees DA, Ham J (2009) Adenosine A2 receptor signalling mediates chromogranin A secretion from neuroendocrine tumours. Neuroendocrinology 90:119

    Google Scholar 

  373. Kalhan A, Gharibi B, Vazquez M, Jasani B, Neal J, Kidd M, Modlin IM, Pfragner R, Rees DA, Ham J (2012) Adenosine A2A and A2B receptor expression in neuroendocrine tumours: potential targets for therapy. Purinergic Signal 8:265–274

    PubMed Central  PubMed  CAS  Google Scholar 

  374. Kamiji T, Morita K, Katayama Y (1994) ATP regulates synaptic transmission by pre- and postsynaptic mechanisms in guinea-pig myenteric neurons. Neuroscience 59:165–174

    PubMed  CAS  Google Scholar 

  375. Kamikawa Y, Shimo Y (1982) Modulating effects of opioids, purine compounds, 5-hydroxytryptamine and prostaglandin E2 on cholinergic neurotransmission in a guinea-pig oesophagus preparation. J Pharm Pharmacol 34:794–797

    CAS  Google Scholar 

  376. Kamikawa Y, Serizawa K, Shimo Y (1977) Some possibilities for prostaglandin mediation in the contractile response to ATP of the guinea-pig digestive tract. Eur J Pharmacol 45:199–203

    PubMed  CAS  Google Scholar 

  377. Karanjia R, García-Hernandez LM, Miranda-Morales M, Somani N, Espinosa-Luna R, Montaño LM, Barajas-López C (2006) Cross-inhibitory interactions between GABAA and P2X channels in myenteric neurones. Eur J Neurosci 23:3259–3268

    PubMed  Google Scholar 

  378. Katayama Y, Morita K (1989) Adenosine 5′-triphosphate modulates membrane potassium conductance in guinea-pig myenteric neurones. J Physiol 408:373–390

    PubMed Central  PubMed  CAS  Google Scholar 

  379. Kaunitz JD, Akiba Y (2011) Purinergic regulation of duodenal surface pH and ATP concentration: implications for mucosal defence, lipid uptake and cystic fibrosis. Acta Physiol (Oxf) 201:109–116

    CAS  Google Scholar 

  380. Kazic T, Milosavljevic D (1977) Influence of pyridylisatogen tosylate on contractions produced by ATP and by purinergic stimulation in the terminal ileum of the guinea-pig. J Pharm Pharmacol 29:542–545

    PubMed  CAS  Google Scholar 

  381. Keating C, Pelegrin P, Martinez CM, Grundy D (2011) P2X7 receptor-dependent intestinal afferent hypersensitivity in a mouse model of postinfectious irritable bowel syndrome. J Immunol 187:1467–1474

    PubMed  CAS  Google Scholar 

  382. Keef KD, Du C, Ward SM, McGregor B, Sanders KM (1993) Enteric inhibitory neural regulation of human colonic circular muscle: role of nitric oxide. Gastroenterology 105:1009–1016

    PubMed  CAS  Google Scholar 

  383. Keef KD, Saxton SN, McDowall RA, Kaminski RE, Duffy AM, Cobine CA (2013) Functional role of vasoactive intestinal polypeptide in inhibitory motor innervation in the mouse internal anal sphincter. J Physiol 591:1489–1506

    PubMed  Google Scholar 

  384. Kennedy I, Humphrey PP (1994) Evidence for the presence of two types of P2 purinoceptor in the guinea-pig ileal longitudinal smooth muscle preparation. Eur J Pharmacol 261:273–280

    PubMed  CAS  Google Scholar 

  385. Kerstan D, Leipziger J, Gordjani N, Nitschke R, Greger R (1997) Luminal addition of ATP induces K+ secretion via a P2Y2 receptor in rat distal colonic mucosa. Pflugers Arch 433:R128

    Google Scholar 

  386. Kerstan D, Gordjani N, Nitschke R, Greger R, Leipziger J (1998) Luminal ATP induces K+ secretion via a P2Y2 receptor in rat distal colonic mucosa. Pflugers Arch 436:712–716

    PubMed  CAS  Google Scholar 

  387. Kestler C, Neuhuber WL, Raab M (2009) Distribution of P2X3 receptor immunoreactivity in myenteric ganglia of the mouse esophagus. Histochem Cell Biol 131:13–27

    PubMed  CAS  Google Scholar 

  388. Kidder GW (1973) Effects of the ATP analog 5′-adenylyl methylenediphosphonate on acid secretion in frog gastric mucosa. Biochim Biophys Acta 298:732–742

    PubMed  CAS  Google Scholar 

  389. Kidder GW (1982) Adenosine kinase from Trypanosoma cruzi. Biochem Biophys Res Commun 107:381–388

    PubMed  CAS  Google Scholar 

  390. Kim HD, Bowen JW, James-Kracke MR, Landon LA, Camden JM, Burnett JE, Turner JT (1996) Potentiation of regulatory volume decrease by P2U purinoceptors in HSG-PA cells. Am J Physiol 270:C86–C97

    PubMed  CAS  Google Scholar 

  391. Kim YC, Camaioni E, Ziganshin AU, Ji XD, King BF, Wildman SS, Rychkov A, Yoburn J, Kim H, Mohanram A, Harden TK, Boyer JL, Burnstock G, Jacobson KA (1998) Synthesis and structure–activity relationships of pyridoxal-6-azoaryl-5′-phosphate and phosphonate derivatives as P2 receptor antagonists. Drug Dev Res 45:52–66

    PubMed Central  PubMed  CAS  Google Scholar 

  392. Kimball BC, Mulholland MW (1995) Neuroligands evoke calcium signaling in cultured myenteric neurons. Surgery 118:162–169

    PubMed  CAS  Google Scholar 

  393. Kimball BC, Mulholland MW (1996) Enteric glia exhibit P2U receptors that increase cytosolic calcium by a phospholipase C-dependent mechanism. J Neurochem 66:604–612

    PubMed  CAS  Google Scholar 

  394. Kimmich G, Randles J (1980) Regulation of Na+-dependent sugar transport in intestinal epithelial cells by exogenous ATP. Am J Physiol 238:C177–C183

    PubMed  CAS  Google Scholar 

  395. Kimura Y, Turner JR, Braasch DA, Buddington RK (2005) Lumenal adenosine and AMP rapidly increase glucose transport by intact small intestine. Am J Physiol Gastrointest Liver Physiol 289:G1007–G1014

    PubMed  CAS  Google Scholar 

  396. King BF, Townsend-Nicholson A (2008) Involvement of P2Y1 and P2Y11 purinoceptors in parasympathetic inhibition of colonic smooth muscle. J Pharmacol Exp Ther 324:1055–1063

    PubMed  CAS  Google Scholar 

  397. Kinoshita N, Takahashi T, Tada S, Shinozuka K, Mizuno N, Takahashi K (2006) Activation of P2Y receptor enhances high-molecular compound absorption from rat ileum. J Pharm Pharmacol 58:195–200

    PubMed  CAS  Google Scholar 

  398. Kirkup AJ, Brunsden AM, Grundy D (2001) Receptors and transmission in the brain–gut axis: potential for novel therapies. I. Receptors on visceral afferents. Am J Physiol Gastrointest Liver Physiol 280:G787–G794

    PubMed  CAS  Google Scholar 

  399. Koh SD, Dick GM, Sanders KM (1997) Small-conductance Ca2+-dependent K+ channels activated by ATP in murine colonic smooth muscle. Am J Physiol 273:C2010–C2021

    PubMed  CAS  Google Scholar 

  400. Kohn PG, Newey H, Smyth DH (1970) The effect of adenosine triphosphate on the transmural potential in rat small intestine. J Physiol 208:203–220

    PubMed Central  PubMed  CAS  Google Scholar 

  401. Kolachala V, Asamoah V, Wang L, Obertone TS, Ziegler TR, Merlin D, Sitaraman SV (2005) TNF-α upregulates adenosine 2b (A2b) receptor expression and signaling in intestinal epithelial cells: a basis for A2bR overexpression in colitis. Cell Mol Life Sci 62:2647–2657

    PubMed  CAS  Google Scholar 

  402. Kolachala VL, Obertone TS, Wang L, Merlin D, Sitaraman SV (2006) Adenosine 2b receptor (A2bR) signals through adenylate cyclase (AC) 6 isoform in the intestinal epithelial cells. Biochim Biophys Acta 1760:1102–1108

    PubMed  CAS  Google Scholar 

  403. Kolachala VL, Bajaj R, Chalasani M, Sitaraman SV (2008) Purinergic receptors in gastrointestinal inflammation. Am J Physiol Gastrointest Liver Physiol 294:G401–G410

    PubMed  CAS  Google Scholar 

  404. Kolachala VL, Ruble BK, Vijay-Kumar M, Wang L, Mwangi S, Figler HE, Figler RA, Srinivasan S, Gewirtz AT, Linden J, Merlin D, Sitaraman SV (2008) Blockade of adenosine A2B receptors ameliorates murine colitis. Br J Pharmacol 155:127–137

    PubMed Central  PubMed  CAS  Google Scholar 

  405. Kolachala VL, Vijay-Kumar M, Dalmasso G, Yang D, Linden J, Wang L, Gewirtz A, Ravid K, Merlin D, Sitaraman SV (2008) A2B adenosine receptor gene deletion attenuates murine colitis. Gastroenterology 135:861–870

    PubMed Central  PubMed  Google Scholar 

  406. Kong ID, Koh SD, Sanders KM (2000) Purinergic activation of spontaneous transient outward currents in guinea pig taenia colonic myocytes. Am J Physiol Cell Physiol 278:C352–C362

    PubMed  CAS  Google Scholar 

  407. Korman LY, Lemp GF, Jackson MJ, Gardner JD (1982) Mechanism of action of ATP on intestinal epithelial cells. Cyclic AMP-mediated stimulation of active ion transport. Biochim Biophys Acta 721:47–54

    PubMed  CAS  Google Scholar 

  408. Kotecha N (1999) Mechanisms underlying ACh induced modulation of neurogenic and applied ATP constrictions in the submucosal arterioles of the guinea-pig small intestine. Br J Pharmacol 126:1625–1633

    PubMed Central  PubMed  CAS  Google Scholar 

  409. Köttgen M, Löffler T, Jacobi C, Nitschke R, Pavenstädt H, Schreiber R, Frische S, Nielsen S, Leipziger J (2003) P2Y6 receptor mediates colonic NaCl secretion via differential activation of cAMP-mediated transport. J Clin Invest 111:371–379

    PubMed Central  PubMed  Google Scholar 

  410. Krantis A, Costa M, Furness JB, Orbach J (1980) γ-Aminobutyric acid stimulates intrinsic inhibitory and excitatory nerves in the guinea-pig intestine. Eur J Pharmacol 67:461–468

    PubMed  CAS  Google Scholar 

  411. Krishnamurty VS, Kadowitz PJ (1983) Influence of adenosine triphosphate on the isolated perfused mesenteric artery of the rabbit. Can J Physiol Pharmacol 61:1409–1417

    PubMed  CAS  Google Scholar 

  412. Kunze WA, Bornstein JC, Furness JB (1995) Identification of sensory nerve cells in a peripheral organ (the intestine) of a mammal. Neuroscience 66:1–4

    PubMed  CAS  Google Scholar 

  413. Künzli BM, Berberat PO, Dwyer K, Deaglio S, Csizmadia E, Cowan P, d'Apice A, Moore G, Enjyoji K, Friess H, Robson SC (2011) Variable impact of CD39 in experimental murine colitis. Dig Dis Sci 56:1393–1403

    PubMed  Google Scholar 

  414. Kurahashi M, Zheng H, Dwyer L, Ward SM, Don KS, Sanders KM (2011) A functional role for the ‘fibroblast-like cells’ in gastrointestinal smooth muscles. J Physiol 589:697–710

    PubMed Central  PubMed  CAS  Google Scholar 

  415. Kurashima Y, Amiya T, Nochi T, Fujisawa K, Haraguchi T, Iba H, Tsutsui H, Sato S, Nakajima S, Iijima H, Kubo M, Kunisawa J, Kiyono H (2012) Extracellular ATP mediates mast cell-dependent intestinal inflammation through P2X7 purinoceptors. Nat Commun 3:1034

    PubMed Central  PubMed  Google Scholar 

  416. Kurihara K, Nakanishi N, Ueha T (1997) A calcium channel in human submandibular duct cell line, HSG cells, not regulated by P2U purinergic receptor-mediated intracellular calcium mobilization. Arch Oral Biol 42:547–557

    PubMed  CAS  Google Scholar 

  417. Kusu T, Kayama H, Kinoshita M, Jeon SG, Ueda Y, Goto Y, Okumura R, Saiga H, Kurakawa T, Ikeda K, Maeda Y, Nishimura J, Arima Y, Atarashi K, Honda K, Murakami M, Kunisawa J, Kiyono H, Okumura M, Yamamoto M, Takeda K (2013) Ecto-nucleoside triphosphate diphosphohydrolase 7 controls Th17 cell responses through regulation of luminal ATP in the small intestine. J Immunol 190:774–783

    PubMed Central  PubMed  CAS  Google Scholar 

  418. Lachish M, Alzola E, Chaib N, Métioui M, Grosfils K, Kabré E, Moran A, Marino A, Dehaye JP (1996) Study of nonspecific cation channel coupled to P2z purinergic receptors using an acid load technique. Am J Physiol 271:C1920–C1926

    PubMed  CAS  Google Scholar 

  419. Langley JN (1898) On inhibitory fibres in the vagus to the end of the oesophagus and stomach. J Physiol 23:407–414

    PubMed Central  PubMed  CAS  Google Scholar 

  420. Langlois C, Gendron FP (2009) Promoting Mϕ transepithelial migration by stimulating the epithelial cell P2Y2 receptor. Eur J Immunol 39:2895–2905

    PubMed  CAS  Google Scholar 

  421. Larsson LT (1994) Hirschsprung's disease—immunohistochemical findings. Histol Histopathol 9:615–629

    PubMed  CAS  Google Scholar 

  422. Larsson LT, Shen Z, Ekblad E, Sundler F, Alm P, Andersson KE (1995) Lack of neuronal nitric oxide synthase in nerve fibers of aganglionic intestine: a clue to Hirschsprung's disease. J Pediatr Gastroenterol Nutr 20:49–53

    PubMed  CAS  Google Scholar 

  423. Lavoie EG, Gulbransen BD, Martín-Satué M, Aliagas E, Sharkey KA, Sévigny J (2011) Ectonucleotidases in the digestive system: focus on NTPDase3 localization. Am J Physiol Gastrointest Liver Physiol 300:G608–G620

    PubMed  CAS  Google Scholar 

  424. Lazarowski ER, Rochelle LG, O'Neal WK, Ribeiro CM, Grubb BR, Zhang V, Harden TK, Boucher RC (2001) Cloning and functional characterization of two murine uridine nucleotide receptors reveal a potential target for correcting ion transport deficiency in cystic fibrosis gallbladder. J Pharmacol Exp Ther 297:43–49

    PubMed  CAS  Google Scholar 

  425. Lee HK, Ro S, Keef KD, Kim YH, Kim HW, Horowitz B, Sanders KM (2005) Differential expression of P2X-purinoceptor subtypes in circular and longitudinal muscle of canine colon. Neurogastroenterol Motil 17:575–584

    PubMed  CAS  Google Scholar 

  426. Lee JH, Kim MC, Oh SY, Kwon HC, Kim SH, Kwon KA, Lee S, Jeong JS, Choi SR, Kim HJ (2011) Predictive value of in vitro adenosine triphosphate-based chemotherapy response assay in advanced gastric cancer patients who received oral 5-fluorouracil after curative resection. Cancer Res Treat 43:117–123

    PubMed Central  PubMed  Google Scholar 

  427. Lee JJ, Talubmook C, Parsons ME (2001) Activation of presynaptic A1-receptors by endogenous adenosine inhibits acetylcholine release in the guinea-pig ileum. J Auton Pharmacol 21:29–38

    PubMed  CAS  Google Scholar 

  428. Lee MG, Schultheis PJ, Yan M, Shull GE, Bookstein C, Chang E, Tse M, Donowitz M, Park K, Muallem S (1998) Membrane-limited expression and regulation of Na+–H+ exchanger isoforms by P2 receptors in the rat submandibular gland duct. J Physiol 513:341–357

    PubMed Central  PubMed  CAS  Google Scholar 

  429. Lefebvre RA (1986) Study on the possible neurotransmitter of the non-adrenergic non-cholinergic innervation of the rat gastric fundus. Arch Int Pharmacodyn Ther 280:110–136

    PubMed  CAS  Google Scholar 

  430. Lefebvre RA, Willems JL (1979) Gastric relaxation by apomorphine and ATP in the conscious dog. J Pharm Pharmacol 31:561–563

    PubMed  CAS  Google Scholar 

  431. Leipziger J, Kerstan D, Nitschke R, Greger R (1997) ATP increases [Ca2+]i and ion secretion via a basolateral P2Y-receptor in rat distal colonic mucosa. Pflugers Arch 434:77–83

    PubMed  CAS  Google Scholar 

  432. Lelièvre V, Muller JM, Falcòn J (1998) Adenosine modulates cell proliferation in human colonic adenocarcinoma. I. Possible involvement of adenosine A1 receptor subtypes in HT29 cells. Eur J Pharmacol 341:289–297

    PubMed  Google Scholar 

  433. Lelièvre V, Muller JM, Falcòn J (1998) Adenosine modulates cell proliferation in human colonic carcinoma. II. Differential behavior of HT29, DLD-1, Caco-2 and SW403 cell lines. Eur J Pharmacol 341:299–308

    PubMed  Google Scholar 

  434. Leng Y, Yamamoto T, Kadowaki M (2008) Alteration of cholinergic, purinergic and sensory neurotransmission in the mouse colon of food allergy model. Neurosci Lett 445:195–198

    PubMed  CAS  Google Scholar 

  435. LePard KJ, Messori E, Galligan JJ (1997) Purinergic fast excitatory postsynaptic potentials in myenteric neurons of guinea pig: distribution and pharmacology. Gastroenterology 113:1522–1534

    PubMed  CAS  Google Scholar 

  436. LePard KJ, Ren J, Galligan JJ (2004) Presynaptic modulation of cholinergic and non-cholinergic fast synaptic transmission in the myenteric plexus of guinea pig ileum. Neurogastroenterol Motil 16:355–364

    PubMed  CAS  Google Scholar 

  437. Levin R, Braiman A, Priel Z (1997) Protein kinase C induced calcium influx and sustained enhancement of ciliary beating by extracellular ATP. Cell Calcium 21:103–113

    PubMed  CAS  Google Scholar 

  438. Li N, Harris PD, Zakaria ER, Matheson PJ, Garrison RN (2007) Role of adenosine receptor subtypes in rat jejunum in unfed state versus glucose-induced hyperemia. J Surg Res 139:51–60

    PubMed  CAS  Google Scholar 

  439. Li Q, Luo X, Zeng W, Muallem S (2003) Cell-specific behavior of P2X7 receptors in mouse parotid acinar and duct cells. J Biol Chem 278:47554–47561

    PubMed  CAS  Google Scholar 

  440. Lim SP, Muir TC (1986) Neuroeffector transmission in the guinea-pig internal anal sphincter: an electrical and mechanical study. Eur J Pharmacol 128:17–24

    PubMed  CAS  Google Scholar 

  441. Limami Y, Pinon A, Leger DY, Pinault E, Delage C, Beneytout JL, Simon A, Liagre B (2012) The P2Y2/Src/p38/COX-2 pathway is involved in the resistance to ursolic acid-induced apoptosis in colorectal and prostate cancer cells. Biochimie 94:1754–1763

    PubMed  CAS  Google Scholar 

  442. Liñán-Rico A, Wunderlich JE, Grants IS, Frankel WL, Xue J, Williams KC, Harzman AE, Enneking JT, Cooke HJ, Christofi FL (2013) Purinergic autocrine regulation of mechanosensitivity and serotonin release in a human EC model: ATP-gated P2X3 channels in EC are downregulated in ulcerative colitis. Inflamm Bowel Dis 19:2366–2379

    PubMed  Google Scholar 

  443. Linden J (2006) Adenosine metabolism and cancer. Focus on “Adenosine downregulates DPPIV on HT-29 colon cancer cells by stimulating protein tyrosine phosphatases and reducing ERK1/2 activity via a novel pathway”. Am J Physiol Cell Physiol 291:C405–C406

    PubMed  CAS  Google Scholar 

  444. Ling ZQ, Qi CJ, Lu XX, Qian LJ, Gu LH, Zheng ZG, Zhao Q, Wang S, Fang XH, Yang ZX, Yin J, Mao WM (2012) Heterogeneity of chemosensitivity in esophageal cancer using ATP-tumor chemosensitivity assay. Acta Pharmacol Sin 33:401–406

    PubMed  CAS  Google Scholar 

  445. Liu DM, Adams DJ (2001) Ionic selectivity of native ATP-activated (P2X) receptor channels in dissociated neurones from rat parasympathetic ganglia. J Physiol 534:423–435

    PubMed Central  PubMed  CAS  Google Scholar 

  446. Lohrmann E, Cabantchik ZI, Greger R (1992) Transmitter-induced changes of the membrane voltage of HT29 cells. Pflugers Arch 421:224–229

    PubMed  CAS  Google Scholar 

  447. Lomax AE, O'Reilly M, Neshat S, Vanner SJ (2007) Sympathetic vasoconstrictor regulation of mouse colonic submucosal arterioles is altered in experimental colitis. J Physiol 583:719–730

    PubMed Central  PubMed  CAS  Google Scholar 

  448. Luo X, Zheng W, Yan M, Lee MG, Muallem S (1999) Multiple functional P2X and P2Y receptors in the luminal and basolateral membranes of pancreatic duct cells. Am J Physiol 277:C205–C215

    PubMed  CAS  Google Scholar 

  449. Ma DF, Kondo T, Nakazawa T, Niu DF, Mochizuki K, Kawasaki T, Yamane T, Katoh R (2010) Hypoxia-inducible adenosine A2B receptor modulates proliferation of colon carcinoma cells. Hum Pathol 41:1550–1557

    PubMed  CAS  Google Scholar 

  450. Ma J, Altomare A, Rieder F, Behar J, Biancani P, Harnett KM (2011) ATP: a mediator for HCl-induced TRPV1 activation in esophageal mucosa. Am J Physiol Gastrointest Liver Physiol 301:G1075–G1082

    PubMed Central  PubMed  CAS  Google Scholar 

  451. Maaser K, Höpfner M, Kap H, Sutter AP, Barthel B, von Lampe B, Zeitz M, Scherübl H (2002) Extracellular nucleotides inhibit growth of human oesophageal cancer cells via P2Y2-receptors. Br J Cancer 86:636–644

    PubMed Central  PubMed  CAS  Google Scholar 

  452. Mabley J, Soriano F, Pacher P, Hasko G, Marton A, Wallace R, Salzman A, Szabo C (2003) The adenosine A3 receptor agonist, N6-(3-iodobenzyl)-adenosine-5′-N-methyluronamide, is protective in two murine models of colitis. Eur J Pharmacol 466:323–329

    PubMed  CAS  Google Scholar 

  453. Machaly M, Dalziel HH, Sneddon P (1988) Evidence for ATP as a cotransmitter in dog mesenteric artery. Eur J Pharmacol 147:83–91

    PubMed  CAS  Google Scholar 

  454. Maggi CA, Manzini S, Meli A (1984) Evidence that GABAA receptors mediate relaxation of rat duodenum by activating intramural nonadrenergic–noncholinergic neurones. J Auton Pharmacol 4:77–85

    PubMed  CAS  Google Scholar 

  455. Maguire MH, Satchell DG (1979) The contribution of adenosine to the inhibitory actions of adenine nucleotides on the guinea-pig taenia coli: studies with phosphate-modified adenine nucleotide analogs and dipyridamole. J Pharmacol Exp Ther 211:626–631

    PubMed  CAS  Google Scholar 

  456. Mantuano-Barradas M, Henriques-Pons A, Araujo-Jorge TC, Di Virgilio F, Coutinho-Silva R, Persechini PM (2003) Extracellular ATP induces cell death in CD4+/CD8+ double-positive thymocytes in mice infected with Trypanosoma cruzi. Microbes Infect 5:1363–1371

    PubMed  CAS  Google Scholar 

  457. Manzini S, Maggi CA, Meli A (1985) Further evidence for involvement of adenosine-5′-triphosphate in non-adrenergic non-cholinergic relaxation of the isolated rat duodenum. Eur J Pharmacol 113:399–408

    PubMed  CAS  Google Scholar 

  458. Maor I, Rainis T, Lanir A, Lavy A (2011) Adenosine deaminase activity in patients with Crohn's disease: distinction between active and nonactive disease. Eur J Gastroenterol Hepatol 23:598–602

    PubMed  CAS  Google Scholar 

  459. Martinson J (1965) Studies on the efferent vagal control of the stomach. Acta Physiol Scand Suppl 255:1–24

    PubMed  CAS  Google Scholar 

  460. Martinson J, Muren A (1963) Excitatory and inhibitory effects of vagus stimulation on gastric motility in the cat. Acta Physiol Scand 57:309–316

    Google Scholar 

  461. Masyuk AI, Gradilone SA, Banales JM, Huang BQ, Masyuk TV, Lee SO, Splinter PL, Stroope AJ, LaRusso NF (2008) Cholangiocyte primary cilia are chemosensory organelles that detect biliary nucleotides via P2Y12 purinergic receptors. Am J Physiol Gastrointest Liver Physiol 295:G725–G734

    PubMed Central  PubMed  CAS  Google Scholar 

  462. Matos JE, Robaye B, Boeynaems JM, Beauwens R, Leipziger J (2005) K+ secretion activated by luminal P2Y2 and P2Y4 receptors in mouse colon. J Physiol 564:269–279

    PubMed Central  PubMed  CAS  Google Scholar 

  463. Matos JE, Sorensen MV, Geyti CS, Robaye B, Boeynaems JM, Leipziger J (2007) Distal colonic Na+ absorption inhibited by luminal P2Y2 receptors. Pflugers Arch 454:977–987

    PubMed  CAS  Google Scholar 

  464. McAlroy HL, Ahmed S, Day SM, Baines DL, Wong HY, Yip CY, Ko WH, Wilson SM, Collett A (2000) Multiple P2Y receptor subtypes in the apical membranes of polarized epithelial cells. Br J Pharmacol 131:1651–1658

    PubMed Central  PubMed  CAS  Google Scholar 

  465. McColl KE (1997) Pathophysiology of duodenal ulcer disease. Eur J Gastroenterol Hepatol 9(Suppl 1):S9–S12

    PubMed  Google Scholar 

  466. McDonnell B, Hamilton R, Fong M, Ward SM, Keef KD (2008) Functional evidence for purinergic inhibitory neuromuscular transmission in the mouse internal anal sphincter. Am J Physiol Gastrointest Liver Physiol 294:G1041–G1051

    PubMed  CAS  Google Scholar 

  467. McGill JM, Basavappa S, Mangel AW, Shimokura GH, Middleton JP, Fitz JG (1994) Adenosine triphosphate activates ion permeabilities in biliary epithelial cells. Gastroenterology 107:236–243

    PubMed  CAS  Google Scholar 

  468. McGill JM, Yen MS, Basavappa S, Mangel AW, Kwiatkowski AP (1995) ATP-activated chloride permeability in biliary epithelial cells is regulated by calmodulin-dependent protein kinase II. Biochem Biophys Res Commun 208:457–462

    PubMed  CAS  Google Scholar 

  469. McMillian MK, Soltoff SP, Cantley LC, Rudel R, Talamo BR (1993) Two distinct cytosolic calcium responses to extracellular ATP in rat parotid acinar cells. Br J Pharmacol 108:453–461

    PubMed Central  PubMed  CAS  Google Scholar 

  470. McMillian MK, Soltoff SP, Cantley LC, Talamo BR (1987) Extracellular ATP elevates intracellular free calcium in rat parotid acinar cells. Biochem Biophys Res Commun 149:523–530

    PubMed  CAS  Google Scholar 

  471. McMillian MK, Soltoff SP, Lechleiter JD, Cantley LC, Talamo BR (1988) Extracellular ATP increases free cytosolic calcium in rat parotid acinar cells. Differences from phospholipase C-linked receptor agonists. Biochem J 255:291–300

    PubMed Central  PubMed  CAS  Google Scholar 

  472. McSwiney BA, Robson JH (1929) The response of smooth muscle to stimulation of the vagus nerve. J Physiol 68:124–131

    PubMed Central  PubMed  CAS  Google Scholar 

  473. Merighi S, Benini A, Mirandola P, Gessi S, Varani K, Simioni C, Leung E, Maclennan S, Baraldi PG, Borea PA (2007) Caffeine inhibits adenosine-induced accumulation of hypoxia-inducible factor-1α, vascular endothelial growth factor, and interleukin-8 expression in hypoxic human colon cancer cells. Mol Pharmacol 72:395–406

    PubMed  CAS  Google Scholar 

  474. Merlin D, Augeron C, Tien XY, Guo X, Laboisse CL, Hopfer U (1994) ATP-stimulated electrolyte and mucin secretion in the human intestinal goblet cell line HT29-C1.16E. J Membr Biol 137:137–149

    PubMed  CAS  Google Scholar 

  475. Métioui M, Amsallem H, Alzola E, Chaib N, Elyamani A, Moran A, Marino A, Dehaye JP (1996) Low affinity purinergic receptor modulates the response of rat submandibular glands to carbachol and substance P. J Cell Physiol 168:462–475

    PubMed  Google Scholar 

  476. Meyer MP, Clarke JDW, Patel K, Townsend-Nicholson A, Burnstock G (1999) Selective expression of purinoceptor cP2Y1 suggests a role for nucleotide signalling in development of the chick embryo. Dev Dyn 214:152–158

    PubMed  CAS  Google Scholar 

  477. Michael S, Warstat C, Michel F, Yan L, Müller CE, Nieber K (2010) Adenosine A2A agonist and A2B antagonist mediate an inhibition of inflammation-induced contractile disturbance of a rat gastrointestinal preparation. Purinergic Signal 6:117–124

    PubMed Central  PubMed  CAS  Google Scholar 

  478. Mihara S, Katayama Y, Nishi S (1985) Slow postsynaptic potentials in neurones of the submucous plexus of guinea pig caecum and their mimickry by noradrenaline and various peptides. Neuroscience 16:1057–1066

    PubMed  CAS  Google Scholar 

  479. Minagawa N, Nagata J, Shibao K, Masyuk AI, Gomes DA, Rodrigues MA, Lesage G, Akiba Y, Kaunitz JD, Ehrlich BE, LaRusso NF, Nathanson MH (2007) Cyclic AMP regulates bicarbonate secretion in cholangiocytes through release of ATP into bile. Gastroenterology 133:1592–1602

    PubMed Central  PubMed  CAS  Google Scholar 

  480. Minker E, Matejka Z (1981) Purinergic reflex activated by cathartics in the rat. Acta Physiol Acad Sci Hung 57:99–107

    PubMed  CAS  Google Scholar 

  481. Minocha A, Galligan JJ (1993) Excitatory and inhibitory responses mediated by GABAA and GABAB receptors in guinea pig distal colon. Eur J Pharmacol 230:187–193

    PubMed  CAS  Google Scholar 

  482. Misawa R, Girotti PA, Mizuno MS, Liberti EA, Furness JB, Castelucci P (2010) Effects of protein deprivation and re-feeding on P2X2 receptors in enteric neurons. World J Gastroenterol 16:3651–3663

    PubMed Central  PubMed  CAS  Google Scholar 

  483. Mizumori M, Ham M, Guth PH, Engel E, Kaunitz JD, Akiba Y (2009) Intestinal alkaline phosphatase regulates protective surface microclimate pH in rat duodenum. J Physiol 587:3651–3663

    PubMed Central  PubMed  CAS  Google Scholar 

  484. Mizuno-Kamiya M, Kameyama Y, Yashiro K, Fujita A (1998) ATP-mediated activation of Ca2+-independent phospholipase A2 in secretory granular membranes from rat parotid gland. J Biochem (Tokyo) 123:205–212

    CAS  Google Scholar 

  485. Monaghan KP, Koh SD, Ro S, Yeom J, Horowitz B, Sanders KM (2006) Nucleotide regulation of the voltage-dependent nonselective cation conductance in murine colonic myocytes. Am J Physiol Cell Physiol 291:C985–C994

    PubMed  CAS  Google Scholar 

  486. Monro RL, Bertrand PP, Bornstein JC (2002) ATP and 5-HT are the principal neurotransmitters in the descending excitatory reflex pathway of the guinea-pig ileum. Neurogastroenterol Motil 14:255–264

    PubMed  CAS  Google Scholar 

  487. Monro RL, Bertrand PP, Bornstein JC (2004) ATP participates in three excitatory postsynaptic potentials in the submucous plexus of the guinea pig ileum. J Physiol 556:571–584

    PubMed Central  PubMed  CAS  Google Scholar 

  488. Moody CJ, Burnstock G (1982) Evidence for the presence of P1-purinoceptors on cholinergic nerve terminals in the guinea-pig ileum. Eur J Pharmacol 77:1–9

    PubMed  CAS  Google Scholar 

  489. Mózsik G, Beck Z, Füzesi Z, Kiss J, Nagy L, Palotai Z, Szilágyi A, Tárnok F, Tóth E, Vizi F (1978a) Cellular mechanisms of gastric hypersecretion in pylorus-ligated rats. Acta Physiol Scand Special Suppl.:187–198

  490. Mózsik G, Kutas J, Nagy L, Tárnok F, Vizi F (1978b) Interrelationships between the cholinergic influences, gastric mucosa Na+–K+-dependent ATPase, ATP, ADP, ions of gastric juice and basal secretion in patients. Acta Physiol Scand Special Suppl.:199–208

  491. Mulè F, Serio R (2003) NANC inhibitory neurotransmission in mouse isolated stomach: involvement of nitric oxide, ATP and vasoactive intestinal polypeptide. Br J Pharmacol 140:431–437

    PubMed Central  PubMed  Google Scholar 

  492. Mulè F, Naccari D, Serio R (2005) Evidence for the presence of P2y and P2x receptors with different functions in mouse stomach. Eur J Pharmacol 513:135–140

    PubMed  Google Scholar 

  493. Muramatsu I (1986) Evidence for sympathetic, purinergic transmission in the mesenteric artery of the dog. Br J Pharmacol 87:478–480

    PubMed Central  PubMed  CAS  Google Scholar 

  494. Murthy KS, Makhlouf GM (1998) Coexpression of purinergic ligand-gated P2X and G protein-coupled P2Y receptors in smooth muscle. Preferential activation of P2Y receptors coupled to phospholipase C(PLC)-β1 via Gαq/11 and to PLC-β3 via Gβgi3. J Biol Chem 273:4695–4704

    PubMed  CAS  Google Scholar 

  495. Murthy KS, McHenry L, Grider JR, Makhlouf GM (1995) Adenosine A1 and A2b receptors coupled to distinct interactive signaling pathways in intestinal muscle cells. J Pharmacol Exp Ther 274:300–306

    PubMed  CAS  Google Scholar 

  496. Mutafova-Yambolieva VN (2012) Neuronal and extraneuronal release of ATP and NAD+ in smooth muscle. IUBMB Life 64:817–824

    PubMed Central  PubMed  Google Scholar 

  497. Mutafova-Yambolieva VN, Hwang SJ, Hao X, Chen H, Zhu MX, Wood JD, Ward SM, Sanders KM (2007) β-Nicotinamide adenine dinucleotide is an inhibitory neurotransmitter in visceral smooth muscle. Proc Natl Acad Sci U S A 104:16359–16364

    PubMed Central  PubMed  CAS  Google Scholar 

  498. Naganuma M, Wiznerowicz EB, Lappas CM, Linden J, Worthington MT, Ernst PB (2006) Cutting edge: critical role for A2A adenosine receptors in the T cell-mediated regulation of colitis. J Immunol 177:2765–2769

    PubMed  CAS  Google Scholar 

  499. Nagaoka I, Tamura H, Hirata M (2006) An antimicrobial cathelicidin peptide, human CAP18/LL-37, suppresses neutrophil apoptosis via the activation of formyl-peptide receptor-like 1 and P2X7. J Immunol 176:3044–3052

    PubMed  CAS  Google Scholar 

  500. Nagata K, Saito H, Matsuki N (1993) Adenosine induces contractions in suncus ileum. Jpn J Pharmacol 63:415–421

    PubMed  CAS  Google Scholar 

  501. Nakamoto T, Brown DA, Catalán MA, Gonzalez-Begne M, Romanenko VG, Melvin JE (2009) Purinergic P2X7 receptors mediate ATP-induced saliva secretion by the mouse submandibular gland. J Biol Chem 284:4815–4822

    PubMed Central  PubMed  CAS  Google Scholar 

  502. Nakamura T, Iwanaga K, Murata T, Hori M, Ozaki H (2011) ATP induces contraction mediated by the P2Y2 receptor in rat intestinal subepithelial myofibroblasts. Eur J Pharmacol 657:152–158

    PubMed  CAS  Google Scholar 

  503. Nakamura T, Murata T, Hori M, Ozaki H (2013) UDP promotes intestinal epithelial migration via the P2Y6 receptor. Br J Pharmacol 170(4):884–892

    Google Scholar 

  504. Nandi J, Ray TK, Sen PC (1981) Studies of gastric Ca2+-stimulated adenosine triphosphatase. I. Characterization and general properties. Biochim Biophys Acta 646:457–464

    PubMed  CAS  Google Scholar 

  505. Neary JT (1996) Trophic actions of extracellular ATP on astrocytes, synergistic interactions with fibroblast growth factors and underlying signal transduction mechanisms. In: Chadwick DJ, Goode JA (eds) P2 purinoceptors: localization, function and transduction mechanisms. Wiley, Chichester, pp 130–141

    Google Scholar 

  506. Neshat S, DeVries M, Barajas-Espinosa AR, Skeith L, Chisholm SP, Lomax AE (2009) Loss of purinergic vascular regulation in the colon during colitis is associated with upregulation of CD39. Am J Physiol Gastrointest Liver Physiol 296:G399–G405

    PubMed  CAS  Google Scholar 

  507. Nguyen TD, Moody MW, Savard CE, Lee SP (1998) Secretory effects of ATP on nontransformed dog pancreatic duct epithelial cells. Am J Physiol 275:G104–G113

    PubMed  CAS  Google Scholar 

  508. Nicholls J, Hourani SMO (1997) Characterization of adenosine receptors on rat ileum, ileal longitudinal muscle and muscularis mucosae. Eur J Pharmacol 338:143–150

    PubMed  CAS  Google Scholar 

  509. Nicholls J, Brownhill VR, Hourani SMO (1996) Characterization of P1-purinoceptors on rat isolated duodenum longitudinal muscle and muscularis mucosae. Br J Pharmacol 117:170–174

    PubMed Central  PubMed  CAS  Google Scholar 

  510. Nissan S, Vinograd Y, Hadari A, Merguerian P, Zamir O, Lernau O, Hanani M (1984) Physiological and pharmacological studies of the internal anal sphincter in the rat. J Pediatr Surg 19:12–14

    PubMed  CAS  Google Scholar 

  511. North RA (2002) Molecular physiology of P2X receptors. Physiol Rev 82:1013–1067

    PubMed  CAS  Google Scholar 

  512. Northway MG, Burks TF (1980) Stimulation of cholinergic nerves in dog intestine by adenine nucleotides. Eur J Pharmacol 65:11–19

    PubMed  CAS  Google Scholar 

  513. Novak I (2003) ATP as a signaling molecule: the exocrine focus. News Physiol Sci 18:12–17

    PubMed  CAS  Google Scholar 

  514. Novak I, Jans IM, Wohlfahrt L (2010) Effect of P2X7 receptor knockout on exocrine secretion of pancreas, salivary glands and lacrimal glands. J Physiol 588:3615–3627

    PubMed Central  PubMed  CAS  Google Scholar 

  515. Nurgali K, Furness JB, Stebbing MJ (2003) Analysis of purinergic and cholinergic fast synaptic transmission to identified myenteric neurons. Neuroscience 116:335–347

    PubMed  CAS  Google Scholar 

  516. Nylund G, Nordgren S, Delbro DS (2004) Expression of P2Y2 purinoceptors in MCG 101 murine sarcoma cells, and HT-29 human colon carcinoma cells. Auton Neurosci 112:69–79

    PubMed  CAS  Google Scholar 

  517. Nylund G, Hultman L, Nordgren S, Delbro DS (2007) P2Y2- and P2Y4 purinergic receptors are over-expressed in human colon cancer. Auton Autacoid Pharmacol 27:79–84

    PubMed  CAS  Google Scholar 

  518. O'Donnell AM, Puri P (2008) Deficiency of purinergic P2Y receptors in aganglionic intestine in Hirschsprung's disease. Pediatr Surg Int 24:77–80

    Google Scholar 

  519. Odashima M, Bamias G, Rivera-Nieves J, Linden J, Nast CC, Moskaluk CA, Marini M, Sugawara K, Kozaiwa K, Otaka M, Watanabe S, Cominelli F (2005) Activation of A2A adenosine receptor attenuates intestinal inflammation in animal models of inflammatory bowel disease. Gastroenterology 129:26–33

    PubMed  CAS  Google Scholar 

  520. Ohana G, Bar-Yehuda S, Arich A, Madi L, Dreznick Z, Rath-Wolfson L, Silberman D, Slosman G, Fishman P (2003) Inhibition of primary colon carcinoma growth and liver metastasis by the A3 adenosine receptor agonist CF101. Br J Cancer 89:1552–1558

    PubMed Central  PubMed  CAS  Google Scholar 

  521. Ohga A, Taneike T (1977) Dissimilarity between the responses to adenosine triphosphate or its related compounds and non-adrenergic inhibitory nerve stimulation in the longitudinal smooth muscle of pig stomach. Br J Pharmacol 60:221–231

    PubMed Central  PubMed  CAS  Google Scholar 

  522. Ohkawa H (1974) An analysis of the mechanical responses of the isolated ileum to single transmural stimulation and to drugs. Bull Yamaguchi Med School 21:31–45

    CAS  Google Scholar 

  523. Ohno N, Ito KM, Yamamoto Y, Suzuki H (1993) Suramin selectively inhibits the non-adrenergic non-cholinergic inhibitory junction potential in the guinea-pig stomach. Eur J Pharmacol 249:121–123

    PubMed  CAS  Google Scholar 

  524. Ohta T, Kubota A, Murakami M, Otsuguro K, Ito S (2005) P2X2 receptors are essential for [Ca2+]i increases in response to ATP in cultured rat myenteric neurons. Am J Physiol Gastrointest Liver Physiol 289:G935–G948

    PubMed  CAS  Google Scholar 

  525. Okasora T, Okamoto E (1986) Electrophysiological and pharmacological study on innervation of the aganglionic colon in Hirschsprung's disease of human and murine model. Z Kinderchir 41:93–96

    PubMed  CAS  Google Scholar 

  526. Okwuasaba FK, Hamilton JT, Cook MA (1977) Relaxations of guinea-pig fundic strip by adenosine, adenine nucleotides and electrical stimulation: antagonism by theophylline and desensitization to adenosine and its derivatives. Eur J Pharmacol 46:181–198

    PubMed  CAS  Google Scholar 

  527. Olsson RA, Pearson JD (1990) Cardiovascular purinoceptors. Physiol Rev 70:761–845

    PubMed  CAS  Google Scholar 

  528. Onaka U, Fujii K, Abe I, Fujishima M (1997) Enhancement by exogenous and locally generated angiotensin II of purinergic neurotransmission via angiotensin type 1 receptor in the guinea-pig isolated mesenteric artery. Br J Pharmacol 122:942–948

    PubMed Central  PubMed  CAS  Google Scholar 

  529. Opazo A, Lecea B, Gil V, Jimenez M, Clave P, Gallego D (2011) Specific and complementary roles for nitric oxide and ATP in the inhibitory motor pathways to rat internal anal sphincter. Neurogastroenterol Motil 23:e11–e25

    PubMed  CAS  Google Scholar 

  530. Ota S, Hiraishi H, Terano A, Mutoh H, Kurachi Y, Shimada T, Ivey KJ, Sugimoto T (1989) Effect of adenosine and adenosine analogs on [14C]aminopyrine accumulation by rabbit parietal cells. Dig Dis Sci 34:1882–1889

    PubMed  CAS  Google Scholar 

  531. Ota S, Yoshiura K, Takahashi M, Hata Y, Kohmoto O, Kawabe T, Shimada T, Hiraishi H, Mutoh H, Terano A, Sugimoto T, Omata M (1994) P2 purinergic receptor regulation of mucus glycoprotein secretion by rabbit gastric mucous cells in a primary culture. Gastroenterology 106:1485–1492

    PubMed  CAS  Google Scholar 

  532. Otsuguro KI, Ohta T, Ito S, Nakazato Y (1998) Two types of relaxation-mediating P2 receptors in rat gastric circular muscle. Jpn J Pharmacol 78:209–215

    PubMed  CAS  Google Scholar 

  533. Otte JM, Zdebik AE, Brand S, Chromik AM, Strauss S, Schmitz F, Steinstraesser L, Schmidt WE (2009) Effects of the cathelicidin LL-37 on intestinal epithelial barrier integrity. Regul Pept 156:104–117

    PubMed  CAS  Google Scholar 

  534. Ovadyahu D, Eshel D, Priel Z (1988) Intensification of ciliary motility by extracellular ATP. Biorheology 25:489–501

    PubMed  CAS  Google Scholar 

  535. Pacaud P, Feolde E, Frelin C, Loirand G (1996) Characterization of the P2Y-purinoceptor involved in the ATP-induced rise in cytosolic Ca2+ concentration in rat ileal myocytes. Br J Pharmacol 118:2213–2219

    PubMed Central  PubMed  CAS  Google Scholar 

  536. Page AJ, O'Donnell TA, Blackshaw LA (2000) P2X purinoceptor-induced sensitization of ferret vagal mechanoreceptors in oesophageal inflammation. J Physiol Lond 523:403–411

    PubMed Central  PubMed  CAS  Google Scholar 

  537. Palmer JM, Wood JD, Zafirov DH (1987) Purinergic inhibition in the small intestinal myenteric plexus of the guinea-pig. J Physiol 387:357–369

    PubMed Central  PubMed  CAS  Google Scholar 

  538. Paret RS, Kumashiro R, Kodama Y, Matsumoto T (1982) The effect of dipyridamole on experimentally induced stress ulcers. Am Surg 48:594–598

    PubMed  CAS  Google Scholar 

  539. Park HS, Betzenhauser MJ, Zhang Y, Yule DI (2012) Regulation of Ca2+ release through inositol 1,4,5-trisphosphate receptors by adenine nucleotides in parotid acinar cells. Am J Physiol Gastrointest Liver Physiol 302:G97–G104

    PubMed Central  PubMed  CAS  Google Scholar 

  540. Park JY, Kim YS, Bang S, Hyung WJ, Noh SH, Choi SH, Song SY (2007) ATP-based chemotherapy response assay in patients with unresectable gastric cancer. Oncology 73:439–440

    PubMed  Google Scholar 

  541. Park MK, Garrad RC, Weisman GA, Turner JT (1997) Changes in P2Y1 nucleotide receptor activity during the development of rat salivary glands. Am J Physiol 272:C1388–C1393

    PubMed  CAS  Google Scholar 

  542. Parr CE, Sullivan DM, Paradiso AM, Lazarowski ER, Burch LH, Olsen JC, Erb L, Weisman GA, Boucher RC, Turner JT (1994) Cloning and expression of a human P2U nucleotide receptor, a target for cystic fibrosis pharmacotherapy. Proc Natl Acad Sci U S A 91:13067

    PubMed  CAS  Google Scholar 

  543. Patacchini R, De Giorgio R, Barthó L, Barbara G, Corinaldesi R, Maggi CA (1998) Evidence that tachykinins are the main NANC excitatory neurotransmitters in the guinea-pig common bile duct. Br J Pharmacol 124:1703–1711

    PubMed Central  PubMed  CAS  Google Scholar 

  544. Paton WD, Vane JR (1963) Analysis of the responses of the isolated stomach to electrical stimulation and to drugs. J Physiol 165:10–46

    PubMed Central  PubMed  CAS  Google Scholar 

  545. Paulino AS, Palombit K, Cavriani G, Tavares-de-Lima W, Mizuno MS, Marosti AR, da Silva MV, Girotti PA, Liberti EA, Castelucci P (2011) Effects of ischemia and reperfusion on P2X2 receptor expressing neurons of the rat ileum enteric nervous system. Dig Dis Sci 56:2262–2275

    PubMed  CAS  Google Scholar 

  546. Pedersen AM, Dissing S, Fahrenkrug J, Hannibal J, Reibel J, Nauntofte B (2000) Innervation pattern and Ca2+ signalling in labial salivary glands of healthy individuals and patients with primary Sjogren's syndrome (pSS). J Oral Pathol Med 29:97–109

    PubMed  CAS  Google Scholar 

  547. Pennanen MF, Bass BL, Dziki AJ, Harmon JW (1994) Adenosine: differential effect on blood flow to subregions of the upper gastrointestinal tract. J Surg Res 56:461–465

    PubMed  CAS  Google Scholar 

  548. Percy WH, Miller AJ, Brunz JT (1997) Pharmacologic characteristics of rabbit esophageal muscularis mucosae in vitro. Dig Dis Sci 42:2537–2546

    PubMed  CAS  Google Scholar 

  549. Percy WH, Warren JM, Brunz JT (1999) Characteristics of the muscularis mucosae in the acid-secreting region of the rabbit stomach. Am J Physiol 276:G1213–G1220

    PubMed  CAS  Google Scholar 

  550. Percy WH, Fromm TH, Wangsness CE (2003) Muscularis mucosae contraction evokes colonic secretion via prostaglandin synthesis and nerve stimulation. Am J Physiol Gastrointest Liver Physiol 284:G213–G220

    PubMed  CAS  Google Scholar 

  551. Persson CG (1976) Inhibitory innervation of cat sphincter of Oddi. Br J Pharmacol 58:479–482

    PubMed Central  PubMed  CAS  Google Scholar 

  552. Pérez-Andrés E, Fernández-Rodriguez M, González M, Zubiaga A, Vallejo A, García I, Matute C, Pochet S, Dehaye JP, Trueba M, Marino A, Gómez-Muñoz A (2002) Activation of phospholipase D-2 by P2X7 agonists in rat submandibular gland acini. J Lipid Res 43:1244–1255

    PubMed  Google Scholar 

  553. Peri LE, Sanders KM, Mutafova-Yambolieva VN (2013) Differential expression of genes related to purinergic signaling in smooth muscle cells, PDGFRα-positive cells, and interstitial cells of Cajal in the murine colon. Neurogastroenterol Motil 25:e609–e620

    PubMed  CAS  Google Scholar 

  554. Pluja L, Fernández E, Jimenez M (1999) Neural modulation of the cyclic electrical and mechanical activity in the rat colonic circular muscle: putative role of ATP and NO. Br J Pharmacol 126:883–892

    PubMed Central  PubMed  CAS  Google Scholar 

  555. Pochet S, Gómez-Muñoz A, Marino A, Dehaye JP (2003) Regulation of phospholipase D by P2X7 receptors in submandibular ductal cells. Cell Signal 15:927–935

    PubMed  CAS  Google Scholar 

  556. Pochet S, Seil M, El OM, Dehaye JP (2013) P2X4 or P2X7: which of these two receptors is the best target to promote salivation? Med Sci (Paris) 29:509–514

    Google Scholar 

  557. Poole DP, Castelucci P, Robbins HL, Chiocchetti R, Furness JB (2002) The distribution of P2X3 purine receptor subunits in the guinea pig enteric nervous system. Auton Neurosci 101:39–47

    PubMed  CAS  Google Scholar 

  558. Prentice DJ, Hourani SMO (1997) Adenosine analogues relax guinea-pig taenia caeci via an adenosine A2B receptor and a xanthine-resistant site. Eur J Pharmacol 323:103–106

    PubMed  CAS  Google Scholar 

  559. Proctor KG (1986) Possible role for adenosine in local regulation of absorptive hyperemia in rat intestine. Circ Res 59:474–481

    PubMed  CAS  Google Scholar 

  560. Puurunen J, Huttunen P (1988) Central gastric antisecretory action of adenosine in the rat. Eur J Pharmacol 147:59–66

    PubMed  CAS  Google Scholar 

  561. Puurunen J, Aittakumpu R, Tanskanen T (1986) Vagally mediated stimulation of gastric acid secretion by intravenously administered adenosine derivatives in anaesthetized rats. Acta Pharmacol Toxicol 58:265–271

    CAS  Google Scholar 

  562. Rae MG, Muir TC (1996) Neuronal mediators of inhibitory junction potentials and relaxation in the guinea-pig internal anal sphincter. J Physiol 493:517–527

    PubMed Central  PubMed  CAS  Google Scholar 

  563. Rahimian R, Fakhfouri G, Daneshmand A, Mohammadi H, Bahremand A, Rasouli MR, Mousavizadeh K, Dehpour AR (2010) Adenosine A2A receptors and uric acid mediate protective effects of inosine against TNBS-induced colitis in rats. Eur J Pharmacol 649:376–381

    PubMed  CAS  Google Scholar 

  564. Ramme D, Regenold JT, Starke K, Busse R, Illes P (1987) Identification of the neuroeffector transmitter in jejunal branches of the rabbit mesenteric artery. Naunyn Schmiedebergs Arch Pharmacol 336:267–273

    PubMed  CAS  Google Scholar 

  565. Reese JH, Cooper JR (1982) Modulation of the release of acetylcholine from ileal synaptosomes by adenosine and adenosine 5′-triphosphate. J Pharmacol Exp Ther 223:612–616

    PubMed  CAS  Google Scholar 

  566. Reeves JJ, Coates J, Jarvis JE, Sheehan MJ, Strong P (1993) Characterization of the adenosine receptor mediating contraction in rat colonic muscularis mucosae. Br J Pharmacol 110:1255–1259

    PubMed Central  PubMed  CAS  Google Scholar 

  567. Reeves JJ, Jarvis JE, Sheehan MJ, Strong P (1995) Further investigations into adenosine A1 receptor-mediated contraction in rat colonic muscularis mucosae and its augmentation by certain alkylxanthine antagonists. Br J Pharmacol 114:999–1004

    PubMed Central  PubMed  CAS  Google Scholar 

  568. Reiser S, Christiansen PA (1971) Inhibition of amino acid uptake by ATP in isolated intestinal epithelial cells. Biochim Biophys Acta 233:480–484

    PubMed  CAS  Google Scholar 

  569. Ren J, Bertrand PP (2008) Purinergic receptors and synaptic transmission in enteric neurons. Purinergic Signal 4:255–266

    PubMed Central  PubMed  CAS  Google Scholar 

  570. Ren J, Galligan JJ (2005) Dynamics of fast synaptic excitation during trains of stimulation in myenteric neurons of guinea-pig ileum. Auton Neurosci 117:67–78

    PubMed Central  PubMed  Google Scholar 

  571. Ren J, Galligan JJ (2007) A novel calcium-sensitive potassium conductance is coupled to P2X3 subunit containing receptors in myenteric neurons of guinea pig ileum. Neurogastroenterol Motil 19:912–922

    PubMed Central  PubMed  CAS  Google Scholar 

  572. Ren J, Bian X, DeVries M, Schnegelsberg B, Cockayne DA, Ford AP, Galligan JJ (2003) P2X2 subunits contribute to fast synaptic excitation in myenteric neurons of the mouse small intestine. J Physiol 552:809–821

    PubMed Central  PubMed  CAS  Google Scholar 

  573. Ren T, Grants I, Alhaj M, McKiernan M, Jacobson M, Hassanain HH, Frankel W, Wunderlich J, Christofi FL (2011) Impact of disrupting adenosine A3 receptors (A3 −/− AR) on colonic motility or progression of colitis in the mouse. Inflamm Bowel Dis 17:1698–1713

    PubMed Central  PubMed  Google Scholar 

  574. Reyes JP, Pérez-Cornejo P, Hernández-Carballo CY, Srivastava A, Romanenko VG, Gonzalez-Begne M, Melvin JE, Arreola J (2008) Na+ modulates anion permeation and block of P2X7 receptors from mouse parotid glands. J Membr Biol 223:73–85

    PubMed Central  PubMed  CAS  Google Scholar 

  575. Reymann A, Gniess A (1988) Evidence for adenosine A1 receptor action in rat jejunal mucosa. Eur J Pharmacol 149:155–158

    PubMed  CAS  Google Scholar 

  576. Richard CL, Tan EY, Blay J (2006) Adenosine upregulates CXCR4 and enhances the proliferative and migratory responses of human carcinoma cells to CXCL12/SDF-1α. Int J Cancer 119:2044–2053

    PubMed  CAS  Google Scholar 

  577. Richards NW, Allbee WE, Gaginella TS, Wallace LJ (1987) Exogenous ATP-stimulated calcium uptake in isolated rat intestinal epithelial cells. Life Sci 40:1665–1672

    PubMed  CAS  Google Scholar 

  578. Richardson J (1975) Pharmacologic studies of Hirschsprung's disease on a murine model. J Pediatr Surg 10:875–884

    PubMed  CAS  Google Scholar 

  579. Riegler M, Castagliuolo I, Wang C, Wlk M, Sogukoglu T, Wenzl E, Matthews JB, Pothoulakis C (2000) Neurotensin stimulates Cl secretion in human colonic mucosa in vitro: role of adenosine. Gastroenterology 119:348–357

    PubMed  CAS  Google Scholar 

  580. Robaye B, Ghanem E, Wilkin F, Fokan D, Van DW, Schurmans S, Boeynaems JM, Beauwens R (2003) Loss of nucleotide regulation of epithelial chloride transport in the jejunum of P2Y4-null mice. Mol Pharmacol 63:777–783

    PubMed  CAS  Google Scholar 

  581. Roberts JA, Durnin L, Sharkey KA, Mutafova-Yambolieva VN, Mawe GM (2013) Oxidative stress disrupts purinergic neuromuscular transmission in the inflamed colon. J Physiol 591:3725–3737

    PubMed  CAS  Google Scholar 

  582. Rogawski MA, Goodrich JT, Gershon MD, Touloukian RJ (1978) Hirschsprung's disease: absence of serotonergic neurons in the aganglionic colon. J Pediatr Surg 13:608–615

    PubMed  CAS  Google Scholar 

  583. Roman RM, Fitz JG (1999) Emerging roles of purinergic signaling in gastrointestinal epithelial secretion and hepatobiliary function. Gastroenterology 116:964–979

    PubMed  CAS  Google Scholar 

  584. Roman RM, Feranchak AP, Salter KD, Wang Y, Fitz JG (1999) Endogenous ATP release regulates Cl secretion in cultured human and rat biliary epithelial cells. Am J Physiol 276:G1391–G1400

    PubMed  CAS  Google Scholar 

  585. Rong W, Keating C, Sun B, Dong L, Grundy D (2009) Purinergic contribution to small intestinal afferent hypersensitivity in a murine model of postinfectious bowel disease. Neurogastroenterol Motil 21(665–71):e32

    Google Scholar 

  586. Rózsai B, Lázár Z, Benkó R, Barthó L (2001) Inhibition of the NANC relaxation of the guinea-pig proximal colon longitudinal muscle by the purinoceptor antagonist PPADS, inhibition of nitric oxide synthase, but not by a PACAP/VIP antagonist. Pharmacol Res 43:83–87

    PubMed  Google Scholar 

  587. Ruan H-Z, Burnstock G (2005) The distribution of P2X 5 purinergic receptors in the enteric nervous system. Cell Tissue Res 319:191–200

    PubMed  CAS  Google Scholar 

  588. Rühl A (2005) Glial cells in the gut. Neurogastroenterol Motil 17:777–790

    PubMed  Google Scholar 

  589. Rybaczyk L, Rozmiarek A, Circle K, Grants I, Needleman B, Wunderlich JE, Huang K, Christofi FL (2009) New bioinformatics approach to analyze gene expressions and signaling pathways reveals unique purine gene dysregulation profiles that distinguish between CD and UC. Inflamm Bowel Dis 15:971–984

    PubMed Central  PubMed  Google Scholar 

  590. Ryu SY, Peixoto PM, Won JH, Yule DI, Kinnally KW (2010) Extracellular ATP and P2Y2 receptors mediate intercellular Ca2+ waves induced by mechanical stimulation in submandibular gland cells: role of mitochondrial regulation of store operated Ca2+ entry. Cell Calcium 47:65–76

    PubMed Central  PubMed  CAS  Google Scholar 

  591. Sachs G, Wallmark B, Saccomani G, Rabon E, Stewart HB, DiBona DR, Berglindh T (1982) The ATP-dependent component of gastric acid secretion. Current topics in membrane and transport. Academic, San Diego, pp 135–159

    Google Scholar 

  592. Saha A, Hammond CE, Gooz M, Smolka AJ (2008) The role of Sp1 in IL-1β and H. pylori-mediated regulation of H, K-ATPase gene transcription. Am J Physiol Gastrointest Liver Physiol 295:G977–G986

    PubMed Central  PubMed  CAS  Google Scholar 

  593. Saitoh M, Nagai K, Nakagawa K, Yamamura T, Yamamoto S, Nishizaki T (2004) Adenosine induces apoptosis in the human gastric cancer cells via an intrinsic pathway relevant to activation of AMP-activated protein kinase. Biochem Pharmacol 67:2005–2011

    PubMed  CAS  Google Scholar 

  594. Saito M, Yaguchi T, Yasuda Y, Nakano T, Nishizaki T (2010) Adenosine suppresses CW2 human colonic cancer growth by inducing apoptosis via A1 adenosine receptors. Cancer Lett 290:211–215

    PubMed  CAS  Google Scholar 

  595. Sakai K, Akima M, Matsushita H (1979) Analysis of the contractile responses of the ileal segment of the isolated blood-perfused small intestine of rats to adenosine triphosphate and related compounds. Eur J Pharmacol 58:157–162

    PubMed  CAS  Google Scholar 

  596. Sakai Y, Ishida Y, Nobe H (2009) Regulation of gastric emptying related to nucleotides and purinoceptors in rat pyloric sphincter. IUPS 2009 July 27–Auguat 1, 2009, Kyoto:472

  597. Salter KD, Fitz JG, Roman RM (2000) Domain-specific purinergic signaling in polarized rat cholangiocytes. Am J Physiol Gastrointest Liver Physiol 278:G492–G500

    PubMed  CAS  Google Scholar 

  598. Sarosi GA, Barnhart DC, Turner DJ, Mulholland MW (1998) Capacitative Ca2+ entry in enteric glia induced by thapsigargin and extracellular ATP. Am J Physiol 275:G550–G555

    PubMed  CAS  Google Scholar 

  599. Satchell DG, Maguire MH (1975) Inhibitory effects of adenine nucleotide analogs on the isolated guinea-pig taenia coli. J Pharmacol Exp Ther 195:540–548

    PubMed  CAS  Google Scholar 

  600. Satchell DG, Maguire MH (1982) Evidence for separate receptors for ATP and adenosine in the guinea-pig taenia coli. Eur J Pharmacol 81:669–672

    PubMed  CAS  Google Scholar 

  601. Sathe MN, Woo K, Kresge C, Bugde A, Luby-Phelps K, Lewis MA, Feranchak AP (2011) Regulation of purinergic signaling in biliary epithelial cells by exocytosis of SLC17A9-dependent ATP-enriched vesicles. J Biol Chem 286:25363–25376

    PubMed Central  PubMed  CAS  Google Scholar 

  602. Sato C, Tsujioka Y, Katsuragi T (1999) Cross desensitizations on contractions by P2-agonists of guinea pig ileum. Jpn J Pharmacol 80:311–317

    PubMed  CAS  Google Scholar 

  603. Savegnago L, Nogueira CW, Fachinetto R, Rocha JBT (2005) Characterization of ATP and ADP hydrolysis activity in rat gastric mucosa. Cell Biol Int 29:559–566

    PubMed  CAS  Google Scholar 

  604. Sawmiller DR, Chou CC (1991) Adenosine is a vasodilator in the intestinal mucosa. Am J Physiol 261:G9–G15

    PubMed  CAS  Google Scholar 

  605. Sawynok J, Jhamandas KH (1976) Inhibition of acetylcholine release from cholinergic nerves by adenosine, adenine nucleotides and morphine: antagonism by theophylline. J Pharmacol Exp Ther 197:379–390

    PubMed  CAS  Google Scholar 

  606. Scarpignato C, Tramacere R, Zappia L, Del Soldato P (1987) Inhibition of gastric acid secretion by adenosine receptor stimulation in the rat. Pharmacology 34:264–268

    PubMed  CAS  Google Scholar 

  607. Schenck LP, Hirata SA, Potentier MS, Li Y, Armstrong GD, MacDonald JA (2011) CD73-Mediated liberation of adenosine protects intestinal epithelial cells from C. difficile toxin-induced damage. Gastroenterology 140:S498

    Google Scholar 

  608. Schepp W, Soll AH, Walsh JH (1990) Dual modulation by adenosine of gastrin release from canine G-cells in primary culture. Am J Physiol 259:G556–G563

    PubMed  CAS  Google Scholar 

  609. Schlenker T, Romac JM, Sharara AI, Roman RM, Kim SJ, LaRusso N, Liddle RA, Fitz JG (1997) Regulation of biliary secretion through apical purinergic receptors in cultured rat cholangiocytes. Am J Physiol 273:G1108–G1117

    PubMed  CAS  Google Scholar 

  610. Schrader AM, Camden JM, Weisman GA (2005) P2Y2 nucleotide receptor up-regulation in submandibular gland cells from the NOD.B10 mouse model of Sjögren's syndrome. Arch Oral Biol 50:533–540

    PubMed  CAS  Google Scholar 

  611. Schweickhardt C, Sabolic I, Brown D, Burckhardt G (1995) Ecto-adenosinetriphosphatase in rat small intestinal brush-border membranes. Am J Physiol 268:G663–G672

    PubMed  CAS  Google Scholar 

  612. Seil M, Fontanils U, Etxebarria IG, Pochet S, Garcia-Marcos M, Marino A, Dehaye JP (2008) Pharmacological evidence for the stimulation of NADPH oxidase by P2X7 receptors in mouse submandibular glands. Purinergic Signal 4:347–355

    PubMed Central  PubMed  CAS  Google Scholar 

  613. Selzner N, Selzner M, Graf R, Ungethuem U, Fitz JG, Clavien PA (2004) Water induces autocrine stimulation of tumor cell killing through ATP release and P2 receptor binding. Cell Death Differ 11(Suppl 2):S172–S180

    PubMed  CAS  Google Scholar 

  614. Sharir H, Hershfinkel M (2005) The extracellular zinc-sensing receptor mediates intercellular communication by inducing ATP release. Biochem Biophys Res Commun 332:845–852

    PubMed  CAS  Google Scholar 

  615. Shim JO, Shin CY, Lee TS, Yang SJ, An JY, Song HJ, Kim TH, Huh IH, Sohn UD (2002) Signal transduction mechanism via adenosine A1 receptor in the cat esophageal smooth muscle cells. Cell Signal 14:365–372

    PubMed  CAS  Google Scholar 

  616. Shimo Y, Ishii T (1978) Effects of morphine on non-adrenergic inhibitory responses of the guinea-pig taenia coli. J Pharm Pharmacol 30:596–597

    PubMed  CAS  Google Scholar 

  617. Shinozuka K, Maeda T, Hayashi E (1985) Effects of adenosine on 45Ca uptake and [3H]acetylcholine release in synaptosomal preparation from guinea-pig ileum myenteric plexus. Eur J Pharmacol 113:417–424

    PubMed  CAS  Google Scholar 

  618. Shinozuka K, Maeda T, Hayashi E (1985) Possibilities for adenosine modulation of peristaltic reflex in guinea pig isolated ileum. J Pharmacobiodyn 8:877–884

    PubMed  CAS  Google Scholar 

  619. Shitara A, Tanimura A, Sato A, Tojyo Y (2009) Spontaneous oscillations in intracellular Ca2+ concentration via purinergic receptors elicit transient cell swelling in rat parotid ducts. Am J Physiol Gastrointest Liver Physiol 297:G1198–G1205

    PubMed  CAS  Google Scholar 

  620. Shuba MF, Vladimirova IA (1980) Effect of apamin on the electrical responses of smooth muscle to adenosine 5′-triphosphate and to non-adrenergic, non-cholinergic nerve stimulation. Neuroscience 5:853–859

    PubMed  CAS  Google Scholar 

  621. Siegmund B, Rieder F, Albrich S, Wolf K, Bidlingmaier C, Firestein GS, Boyle D, Lehr HA, Loher F, Hartmann G, Endres S, Eigler A (2001) Adenosine kinase inhibitor GP515 improves experimental colitis in mice. J Pharmacol Exp Ther 296:99–105

    PubMed  CAS  Google Scholar 

  622. Sitaraman SV, Merlin D, Wang L, Wong M, Gewirtz AT, Si-Tahar M, Madara JL (2001) Neutrophil-epithelial crosstalk at the intestinal lumenal surface mediated by reciprocal secretion of adenosine and IL-6. J Clin Invest 107:861–869

    PubMed Central  PubMed  CAS  Google Scholar 

  623. Sjöblom-Widfeldt N, Gustafsson H, Nilsson H (1990) Transmitter characteristics of small mesenteric arteries from the rat. Acta Physiol Scand 138:203–212

    PubMed  Google Scholar 

  624. Skoglund ML, Nies AS, Gerber JG (1982) Inhibition of acid secretion in isolated canine parietal cells by prostaglandins. J Pharmacol Exp Ther 220:371–374

    PubMed  CAS  Google Scholar 

  625. Smith AB, Hansen MA, Liu DM, Adams DJ (2001) Pre- and postsynaptic actions of ATP on neurotransmission in rat submandibular ganglia. Neuroscience 107:283–291

    PubMed  CAS  Google Scholar 

  626. Smitham JE, Barrett KE (2001) Differential effects of apical and basolateral uridine triphosphate on intestinal epithelial chloride secretion. Am J Physiol Cell Physiol 280:C1431–C1439

    PubMed  CAS  Google Scholar 

  627. Smits GJ, Lefebvre RA (1996) ATP and nitric oxide: inhibitory NANC neurotransmitters in the longitudinal muscle-myenteric plexus preparation of the rat ileum. Br J Pharmacol 118:695–703

    PubMed Central  PubMed  CAS  Google Scholar 

  628. Sneddon JD, Smythe A, Satchell D, Burnstock G (1973) An investigation of the identity of the transmitter substance released by non-adrenergic, non-cholinergic excitatory nerves supplying the small intestine of some lower vertebrates. Comp Gen Pharmacol 4:53–60

    Google Scholar 

  629. Soediono P, Burnstock G (1994) Contribution of ATP and nitric oxide to NANC inhibitory transmission in rat pyloric sphincter. Br J Pharmacol 113:681–686

    PubMed Central  PubMed  CAS  Google Scholar 

  630. Soltoff SP, McMillian MK, Talamo BR (1989) Coomassie Brilliant Blue G is a more potent antagonist of P2 purinergic responses than Reactive Blue 2 (Cibacron Blue 3GA) in rat parotid acinar cells. Biochem Biophys Res Commun 165:1279–1285

    PubMed  CAS  Google Scholar 

  631. Soltoff SP, McMillian MK, Lechleiter JD, Cantley LC, Talamo BR (1990) Elevation of [Ca2+]i and the activation of ion channels and fluxes by extracellular ATP and phospholipase C-linked agonists in rat parotid acinar cells. Ann N Y Acad Sci 603:76–90

    PubMed  CAS  Google Scholar 

  632. Soltoff SP, McMillian MK, Talamo B (1992) ATP activates a cation-permeable pathway in rat parotid acinar cells. Am J Physiol 262:C934–C940

    PubMed  CAS  Google Scholar 

  633. Soltoff SP, McMillian MK, Talamo BR, Cantley LC (1993) Blockade of ATP binding site of P2 purinoceptors in rat parotid acinar cells by isothiocyanate compounds. Biochem Pharmacol 45:1936–1940

    PubMed  CAS  Google Scholar 

  634. Somers GR, Hammet FM, Trute L, Southey MC, Venter DJ (1998) Expression of the P2Y6 purinergic receptor in human T cells infiltrating inflammatory bowel disease. Lab Invest 78:1375–1383

    PubMed  CAS  Google Scholar 

  635. Souza CO, Santoro GF, Figliuolo VR, Nanini HF, de Souza HS, Castelo-Branco MT, Abalo AA, Paiva MM, Coutinho CM, Coutinho-Silva R (2012) Extracellular ATP induces cell death in human intestinal epithelial cells. Biochim Biophys Acta 1820:1867–1878

    PubMed  CAS  Google Scholar 

  636. Souza VC, Schlemmer KB, Noal CB, Jaques JA, Bagatini MD, Pimentel VC, Carli LF, Leal CA, Fleck J, Moretto MB, Schetinger MR, Leal DB (2012) Purinergic system ecto-enzymes participate in the thromboregulation of patients with indeterminate form of Chagas disease. Purinergic Signal 8:753–762

    PubMed Central  CAS  Google Scholar 

  637. Souza VC, Schlemmer KB, Noal CB, Jaques JA, Zimmermann CE, Leal CA, Fleck J, Casali EA, Morsch VM, Schetinger MR, Leal DB (2012) E-NTPDase and E-ADA activities are altered in lymphocytes of patients with indeterminate form of Chagas' disease. Parasitol Int 61:690–696

    CAS  Google Scholar 

  638. Spencer NJ, Walsh M, Smith TK (2000) Purinergic and cholinergic neuro-neuronal transmission underlying reflexes activated by mucosal stimulation in the isolated guinea-pig ileum. J Physiol 522:321–331

    PubMed Central  PubMed  CAS  Google Scholar 

  639. Sperlágh B, Vizi ES (1990) Stimulation of presynaptic P1 and P2 receptors at ATP in Auerbach's plexus. Eur J Pharmacol 183:1680

    Google Scholar 

  640. Sperlágh B, Vizi ES (1991) Effect of presynaptic P2 receptor stimulation on transmitter release. J Neurochem 56:1466–1470

    PubMed  Google Scholar 

  641. Spychala J (2000) Tumor-promoting functions of adenosine. Pharmacol Ther 87:161–173

    PubMed  CAS  Google Scholar 

  642. Stemmer SM, Shani A, Klein B, Silverman MH, Lorber I, Farbstein M, Shmueli E, Figer A (2004) A phase II, multi-center study of a new non-cytotoxic A3 adenosine receptor agonist CF101, dose-finding (randomized blinded) in patients (pts) with refractory metastatic colorectal cancer. J Clin Oncol 22:232S

    Google Scholar 

  643. Stone TW (1981) Actions of adenine dinucleotides on the vas deferens, guinea-pig taenia caeci and bladder. Eur J Pharmacol 75:93–102

    PubMed  CAS  Google Scholar 

  644. Storr M, Franck H, Saur D, Schusdziarra V, Allescher HD (2000) Mechanisms of α, β-methylene ATPS-induced inhibition in rat ileal smooth muscle: involvement of intracellular Ca2+ stores in purinergic inhibition. Clin Exp Pharmacol Physiol 27:771–779

    PubMed  CAS  Google Scholar 

  645. Strong DS, Cornbrooks CF, Roberts JA, Hoffman JM, Sharkey KA, Mawe GM (2010) Purinergic neuromuscular transmission is selectively attenuated in ulcerated regions of inflamed guinea pig distal colon. J Physiol 588:847–859

    PubMed Central  PubMed  CAS  Google Scholar 

  646. Su C (1983) Purinergic neurotransmission and neuromodulation. Annu Rev Pharmacol Toxicol 23:397–411

    PubMed  CAS  Google Scholar 

  647. Su C, Bevan JA, Burnstock G (1971) [3H]adenosine triphosphate: release during stimulation of enteric nerves. Science 173:337–339

    Google Scholar 

  648. Surprenant A (1994) Control of the gastrointestinal tract by enteric neurons. Annu Rev Physiol 56:117–140

    PubMed  CAS  Google Scholar 

  649. Szentpáli K, Kaszaki J, Tiszlavicz L, Lázár G, Balogh Á, Boros M (2001) Bile-induced adenosine triphosphate depletion and mucosal damage during reflux esophagitis. Scand J Gastroenterol 36:459–466

    PubMed  Google Scholar 

  650. Taha MO, Miranda-Ferreira R, Fagundes DJ, Simões RS, Monteiro HP, Oliveira-Júnior IS, Soares KR, Martins MC, Monteiro HP, Balbino AT, Rodrigues FF, Arruda TB, Abrão MS, Jurkiewicz A, Caricati-Neto A (2010) Effects of 5′-adenosine triphosphate on intestinal ischemia–reperfusion in rabbits. Transplant Proc 42:461–464

    PubMed  CAS  Google Scholar 

  651. Takahashi T, Kusunoki M, Ishikawa Y, Kantoh M, Yamamura T, Utsunomiya J (1987) Adenosine 5′-triphosphate release evoked by electrical nerve stimulation from the guinea-pig gallbladder. Eur J Pharmacol 134:77–82

    PubMed  CAS  Google Scholar 

  652. Tamada H, Hashitani H (2013) Calcium responses in subserosal interstitial cells of the guinea-pig proximal colon. Neurogastroenterology & Motility. doi:10.1111/nmo.12240

  653. Tanaka J, Murate M, Wang CZ, Seino S, Iwanaga T (1996) Cellular distribution of the P2X4 ATP receptor mRNA in the brain and non-neuronal organs of rats. Arch Histol Cytol 59:485–490

    PubMed  CAS  Google Scholar 

  654. Tansey MF, Probst SJ, Martin JS (1975) Evidence of nonvagal neural stimulation of canine gastric acid secretion. Surg Gynecol Obstet 140:861–867

    Google Scholar 

  655. Tarasiuk A, Bar Shimon M, Gheber L, Korngreen A, Grossman Y, Priel Z (1995) Extracellular ATP induces hyperpolarization and motility stimulation of ciliary cells. Biophys J 68:1163–1169

    PubMed Central  PubMed  CAS  Google Scholar 

  656. Taylor EM, Parsons ME (1989) Adrenergic and purinergic neurotransmission in arterial resistance vessels of the cat intestinal circulation. Eur J Pharmacol 164:23–33

    PubMed  CAS  Google Scholar 

  657. Taylor EM, Parsons ME (1991) Effects of α, β-methylene ATP on resistance and capacitance blood vessels of the cat intestinal circulation; a comparison with other vasoconstrictor agents and sympathetic nerve stimulation. Eur J Pharmacol 205:35–41

    PubMed  CAS  Google Scholar 

  658. ten Kate J, Wijnen JT, van der Goes RG, Quadt R, Griffioen G, Bosman FT, Khan PM (1984) Quantitative changes in adenosine deaminase isoenzymes in human colorectal adenocarcinomas. Cancer Res 44:4688–4692

    PubMed  Google Scholar 

  659. Tenneti L, Gibbons SJ, Talamo BR (1998) Expression and trans-synaptic regulation of P2x4 and P2z receptors for extracellular ATP in parotid acinar cells. Effects of parasympathetic denervation. J Biol Chem 273:26799–26808

    PubMed  CAS  Google Scholar 

  660. Tetens J, Venugopal CS, Holmes EP, Koch CE, Hosgood G, Moore RM (2001) In vitro responses of equine colonic arterial and venous rings to adenosine triphosphate. Am J Vet Res 62:1928–1933

    PubMed  CAS  Google Scholar 

  661. Thornton PD, Gwynne RM, McMillan DJ, Bornstein JC (2013) Transmission to interneurons is via slow excitatory synaptic potentials mediated by P2Y1 receptors during descending inhibition in guinea-pig ileum. PLoS One 8:e40840

    PubMed Central  PubMed  CAS  Google Scholar 

  662. Tojyo Y, Tanimura A, Matsui S, Matsumoto Y (1997) Effects of extracellular ATP on cytosolic Ca2+ concentration and secretory responses in rat parotid acinar cells. Arch Oral Biol 42:393–399

    PubMed  CAS  Google Scholar 

  663. Tojyo Y, Tanimura A, Nezu A, Morita T (2001) Possible mechanisms regulating ATP- and thimerosal-induced Ca2+ oscillations in the HSY salivary duct cell line. Biochim Biophys Acta 1539:114–121

    PubMed  CAS  Google Scholar 

  664. Tomaru A, Ishii A, Kishibayashi N, Shimada J, Suzuki F, Karasawa A (1994) Possible physiological role of endogenous adenosine in defecation in rats. Eur J Pharmacol 264:91–94

    PubMed  CAS  Google Scholar 

  665. Turner JT, Weisman GA, Camden JM (1997) Upregulation of P2Y2 nucleotide receptors in rat salivary gland cells during short-term culture. Am J Physiol 273:C1100–C1107

    PubMed  CAS  Google Scholar 

  666. Turner JT, Weisman GA, Landon LA, Park M, Camden JM (1998) Salivary gland nucleotide receptors: evidence for functional expression of both P2X and P2Y subtypes. Eur J Morphol 36:170–175

    PubMed  Google Scholar 

  667. Turner JT, Landon LA, Gibbons SJ, Talamo BR (1999) Salivary gland P2 nucleotide receptors. Crit Rev Oral Biol Med 10:210–224

    PubMed  CAS  Google Scholar 

  668. Ullrich N, Caplanusi A, Brône B, Hermans D, Larivière E, Nilius B, Van Driessche W, Eggermont J (2006) Stimulation by caveolin-1 of the hypotonicity-induced release of taurine and ATP at basolateral, but not apical, membrane of Caco-2 cells. Am J Physiol Cell Physiol 290:C1287–C1296

    PubMed  CAS  Google Scholar 

  669. Undi S, Benko R, Wolf M, Illenyi L, Vereczkei A, Kelemen D, Cseke L, Csontos Z, Horvath ÖP, Bartho L (2009) The NANC relaxation of the human ileal longitudinal and circular muscles is inhibited by MRS 2179, a P2 purinoceptor antagonist. Life Sci 84:871–875

    PubMed  CAS  Google Scholar 

  670. Ushijima I, Mizuki Y, Yamada M (1985) Development of stress-induced gastric lesions involves central adenosine A1-receptor stimulation. Brain Res 339:351–355

    PubMed  CAS  Google Scholar 

  671. Valdez-Morales E, Guerrero-Alba R, Liñan-Rico A, Espinosa-Luna R, Zarazua-Guzman S, Miranda-Morales M, Montaño LM, Barajas-López C (2011) P2X7 receptors contribute to the currents induced by ATP in guinea pig intestinal myenteric neurons. Eur J Pharmacol 668:366–372

    PubMed  CAS  Google Scholar 

  672. Vallejo AI, Bo X, Burnstock G (1996) P2Y-purinoceptors in gastric gland plasma membranes. Eur J Pharmacol 312:209–214

    PubMed  CAS  Google Scholar 

  673. Van Crombruggen K, Lefebvre RA (2004) Nitrergic-purinergic interactions in rat distal colon motility. Neurogastroenterol Motil 16:81–98

    PubMed  Google Scholar 

  674. Van Crombruggen K, Van Nassauw L, Timmermans JP, Lefebvre RA (2007) Inhibitory purinergic P2 receptor characterisation in rat distal colon. Neuropharmacology 53:257–271

    PubMed  Google Scholar 

  675. Van Nassauw L, Brouns I, Adriaensen D, Burnstock G, Timmermans J-P (2002) Neurochemical identification of enteric neurons expressing P2X3 receptors in the guinea-pig ileum. Histochem Cell Biol 118:193–203

    PubMed  Google Scholar 

  676. Van Nassauw L, Van Crombruggen K, De Jonge F, Burnstock G, Lefebvre RA, Timmermans J-P (2005) Distribution of P2Y receptor subtypes in the rat distal colon. Neurogastroenterol Motil 17:1

    Google Scholar 

  677. Van Nassauw L, Costagliola A, Van Op den bosch J, Cecio A, Vanderwinden J-M, Burnstock G, Timmermans J-P (2006) Region-specific distribution of the P2Y4 receptor in enteric glial cells and interstitial cells of Cajal within the guinea-pig gastrointestinal tract. Autonomic Neuroscience: Basic and Clinical 126–127:299–306

    Google Scholar 

  678. Van Nueten JM, Fontaine J, Helsen L, Janssen PA (1977) Inhibition by purines of peristaltic activity in the guinea-pig ileum. Arch Int Pharmacodyn Ther 227:168–170

    PubMed  CAS  Google Scholar 

  679. Vanderwinden JM, Timmermans JP, Schiffmann SN (2003) Glial cells, but not interstitial cells, express P2X7, an ionotropic purinergic receptor, in rat gastrointestinal musculature. Cell Tissue Res 312:149–154

    PubMed  Google Scholar 

  680. Vank C, Frömter E, Kottra G (1999) Activation of an apical Cl conductance by extracellular ATP in Necturus gallbladder is mediated by cAMP and not by [Ca2+]i. Pflugers Arch 438:486–496

    PubMed  CAS  Google Scholar 

  681. Vanner S, Surprenant A (1996) Neural reflexes controlling intestinal microcirculation. Am J Physiol 271:G223–G230

    PubMed  CAS  Google Scholar 

  682. Venglarik CJ, Singh AK, Wang R, Bridges RJ (1993) Trinitrophenyl-ATP blocks colonic Cl channels in planar phospholipid bilayers. Evidence for two nucleotide binding sites. J Gen Physiol 101:545–569

    PubMed  CAS  Google Scholar 

  683. Vial C, Evans RJ (2001) Smooth muscles does not have a common P2x receptor phenotype: expression, ontogeny and function of P2x1 receptors in mouse ileum, bladder and reproductive systems. Auton Neurosci 92:56–64

    PubMed  CAS  Google Scholar 

  684. Vieira C, Ferreirinha F, Silva I, Duarte-Araújo M, Correia-de-Sá P (2011) Localization and function of adenosine receptor subtypes at the longitudinal muscle—myenteric plexus of the rat ileum. Neurochem Int 59:1043–1055

    PubMed  CAS  Google Scholar 

  685. Vigne P, Pacaud P, Loirand G, Breittmayer JP (1998) PPADS inhibits P2Y1 purinoceptors in rat brain capillary endothelial cells and in rat ileal myocytes by an indirect mechanism. Biochem Biophys Res Commun 244:332–335

    PubMed  CAS  Google Scholar 

  686. Virginio C, Robertson G, Surprenant A, North RA (1998) Trinitrophenyl-substituted nucleotides are potent antagonists selective for P2X1, P2X3, and heteromeric P2X2/3 receptors. Mol Pharmacol 53:969–973

    PubMed  CAS  Google Scholar 

  687. Vizi ES, Knoll J (1976) The inhibitory effect of adenosine and related nucleotides on the release of acetylcholine. Neuroscience 1:391–398

    PubMed  CAS  Google Scholar 

  688. Vogalis F, Goyal RK (1997) Activation of small conductance Ca2+-dependent K+ channels by purinergic agonists in smooth muscle cells of the mouse ileum. J Physiol 502:497–508

    PubMed Central  PubMed  CAS  Google Scholar 

  689. von Kügelgen I, Starke K (1985) Noradrenaline and adenosine triphosphate as co-transmitters of neurogenic vasoconstriction in rabbit mesenteric artery. J Physiol 367:435–455

    Google Scholar 

  690. Wang GD, Wang XY, Hu HZ, Liu S, Gao N, Fang X, Xia Y, Wood JD (2007) Inhibitory neuromuscular transmission mediated by the P2Y1 purinergic receptor in guinea pig small intestine. Am J Physiol Gastrointest Liver Physiol 292:G1483–G1489

    PubMed  CAS  Google Scholar 

  691. Wang L, Yao H, Yang Y-E, Song I, Owyang C (2004) Enhanced purinergic pathway occurs in postoperative ileus: reversal by orphanin FQ. Gastroenterology 126:75

    Google Scholar 

  692. Wang MX, Ren LM (2006) Growth inhibitory effect and apoptosis induced by extracellular ATP and adenosine on human gastric carcinoma cells: involvement of intracellular uptake of adenosine. Acta Pharmacol Sin 27:1085–1092

    PubMed  CAS  Google Scholar 

  693. Wang ZJ, Neuhuber WL (2003) Intraganglionic laminar endings in the rat esophagus contain purinergic P2X2 and P2X3 receptor immunoreactivity. Anat Embryol (Berl) 207:363–371

    CAS  Google Scholar 

  694. Watanabe C, Akiba Y, Nakano T, Guth PH, Engel E, Khurana S, Kaunitz JD (2009) Extracellular ATP synthase generates extracellular ATP, regulating bicarbonate secretion in rat duodenum. Gastroenterology 136:A-690

    Google Scholar 

  695. Weiss T, Gheber L, Shoshan Barmatz V, Priel Z (1992) Possible mechanism of ciliary stimulation by extracellular ATP: involvement of calcium-dependent potassium channels and exogenous Ca2+. J Membr Biol 127:185–193

    PubMed  CAS  Google Scholar 

  696. Welford LA, Cusack NJ, Hourani SMO (1986) ATP analogues and the guinea-pig taenia coli: a comparison of the structure-activity relationships of ectonucleotidases with those of the P2-purinoceptor. Eur J Pharmacol 129:217–224

    PubMed  CAS  Google Scholar 

  697. Westerberg VS, Geiger JD (1987) Central effects of adenosine analogs on stress-induced gastric ulcer formation. Life Sci 41:2201–2205

    PubMed  CAS  Google Scholar 

  698. Westerberg VS, Geiger JD (1988) Adenosine and gastric function. Trends Pharmacol Sci 9:345–347

    PubMed  CAS  Google Scholar 

  699. Westerberg VS, Geiger JD (1989) Adenosine analogs inhibit gastric acid secretion. Eur J Pharmacol 160:275–281

    PubMed  CAS  Google Scholar 

  700. White TD (1988) Role of adenine compounds in autonomic neurotransmission. Pharmacol Ther 38:129–168

    PubMed  CAS  Google Scholar 

  701. Whitehouse PA, Knight LA, Di NF, Mercer SJ, Sharma S, Cree IA (2003) Heterogeneity of chemosensitivity of colorectal adenocarcinoma determined by a modified ex vivo ATP-tumor chemosensitivity assay (ATP-TCA). Anticancer Drugs 14:369–375

    PubMed  CAS  Google Scholar 

  702. Wiklund NP, Gustafsson LE (1988) Agonist and antagonist characterization of the P2-purinoceptors in the guinea pig ileum. Acta Physiol Scand 132:15–22

    PubMed  CAS  Google Scholar 

  703. Wiklund NP, Gustafsson LE (1988) Indications for P2-purinoceptor subtypes in guinea pig smooth muscle. Eur J Pharmacol 148:361–370

    PubMed  CAS  Google Scholar 

  704. Will S, Triggle CR, Bieger D (1990) Mastocyte and smooth muscle purinoceptors of the rat oesophagus. Abstracts of IUPHAR Satellite Symposium, Noordwijk, July 6–8, 1990. p 33

  705. Windscheif U, Pfaff O, Ziganshin AU, Hoyle CHV, Bäumert HG, Mutschler E, Burnstock G, Lambrecht G (1995) Inhibitory action of PPADS on relaxant responses to adenine nucleotides or electrical field stimulation in guinea-pig taenia coli and rat duodenum. Br J Pharmacol 115:1509–1517

    PubMed Central  PubMed  CAS  Google Scholar 

  706. Wolkoff LI, Perrone RD, Grubman SA, Lee DW, Soltoff SP, Rogers LC, Beinborn M, Fang SL, Cheng SH, Jefferson DM (1995) Purinoceptor P2U identification and function in human intrahepatic biliary epithelial cell lines. Cell Calcium 17:375–383

    PubMed  CAS  Google Scholar 

  707. Woo K, Dutta AK, Patel V, Kresge C, Feranchak AP (2008) Fluid flow induces mechanosensitive ATP release, calcium signalling and Cl transport in biliary epithelial cells through a PKCzeta-dependent pathway. J Physiol 586:2779–2798

    PubMed Central  PubMed  CAS  Google Scholar 

  708. Woo K, Sathe MN, Kresge C, Parameswara V, Esser V, Ueno Y, Venter J, Alpini G, Feranchak AP (2008) Functional differences in ATP release and P2 receptor-mediated secretion between small and large mouse cholangiocytes: potential existence of purinergic signaling axis along the intrahepatic biliary tract. Hepatology 48:795

    Google Scholar 

  709. Woo K, Sathe M, Kresge C, Esser V, Ueno Y, Venter J, Glaser SS, Alpini G, Feranchak AP (2010) Adenosine triphosphate release and purinergic (P2) receptor-mediated secretion in small and large mouse cholangiocytes. Hepatology 52:1819–1828

    PubMed Central  PubMed  CAS  Google Scholar 

  710. Wood JD (2006) The enteric purinergic P2Y1 receptor. Curr Opin Pharmacol 6:564–570

    PubMed  CAS  Google Scholar 

  711. Woods CM, Toouli J, Saccone GT (2003) A2A and A3 receptors mediate the adenosine-induced relaxation in spontaneously active possum duodenum in vitro. Br J Pharmacol 138:1333–1339

    PubMed Central  PubMed  CAS  Google Scholar 

  712. Woods CM, Toouli J, Saccone GT (2006) Exogenous adenosine triphosphate and adenosine stimulate proximal sphincter of Oddi motility via neural mechanisms in the anesthetized Australian possum. Dig Dis Sci 51:1347–1356

    PubMed  CAS  Google Scholar 

  713. Woods CM, Toouli J, Saccone GT (2007) Exogenous purines induce differential responses in the proximal and distal regions of the possum sphincter of Oddi. Auton Autacoid Pharmacol 27:27–38

    PubMed  CAS  Google Scholar 

  714. Woods LT, Camden JM, Batek JM, Petris MJ, Erb L, Weisman GA (2012) P2X7 receptor activation induces inflammatory responses in salivary gland epithelium. Am J Physiol Cell Physiol 303:C790–C801

    PubMed Central  PubMed  CAS  Google Scholar 

  715. Wróbel J, Michalska L (1977) The effect of exogenous ATP on intestinal calcium transport. Comp Biochem Physiol 58A:421–425

    Google Scholar 

  716. Wunderlich JE, Xue J, Kim M, Javed NH, Christofi F, Suntres Z, Yu JG, Grants I, Cooke HJ (2004) Mechanical stimulation of human enterochromaffin-BON cells release adenosine to act at A3 receptors to modulate 5-HT release. Gastroenterology 126:A-160

    Google Scholar 

  717. Wunderlich JE, Needleman BJ, Chen Z, Yu JG, Wang Y, Grants I, Mikami DJ, Melvin WS, Cooke HJ, Christofi FL (2008) Dual purinergic synaptic transmission in the human enteric nervous system. Am J Physiol Gastrointest Liver Physiol 294:G554–G566

    PubMed  CAS  Google Scholar 

  718. Wynn G, Rong W, Xiang Z, Burnstock G (2003) Purinergic mechanisms contribute to mechanosensory transduction in the rat colorectum. Gastroenterology 125:1398–1409

    PubMed  CAS  Google Scholar 

  719. Wynn G, Bei M, Ruan H-Z, Burnstock G (2004) Purinergic component of mechanosensory transduction is increased in a rat model of colitis. Am J Physiol Gastrointest Liver Physiol 287:G647–G657

    PubMed  CAS  Google Scholar 

  720. Xia Y, Fertel RH, Wood JD (1997) Suppression of cAMP formation by adenosine in myenteric ganglia from guinea-pig small intestine. Eur J Pharmacol 320:95–101

    PubMed  CAS  Google Scholar 

  721. Xiang Z, Burnstock G (2004) Development of nerves expressing P2X3 receptors in the myenteric plexus of rat stomach. Histochem Cell Biol 122:111–119

    PubMed  CAS  Google Scholar 

  722. Xiang Z, Burnstock G (2004) P2X2 and P2X3 purinoceptors in the rat enteric nervous system. Histochem Cell Biol 121:169–179

    PubMed  CAS  Google Scholar 

  723. Xiang Z, Burnstock G (2005) Distribution of P2Y2 receptors in the guinea pig enteric nervous system and its coexistence with P2X2 and P2X3 receptors, neuropeptide Y, nitric oxide synthase and calretinin. Histochem Cell Biol 124:379–390

    PubMed  CAS  Google Scholar 

  724. Xiang Z, Burnstock G (2006) Distribution of P2Y6 and P2Y12 receptor: their colocalization with calbindin, calretinin and nitric oxide synthase in the guinea pig enteric nervous system. Histochem Cell Biol 125:327–336

    PubMed  CAS  Google Scholar 

  725. Xu GY, Shenoy M, Winston JH, Mittal S, Pasricha PJ (2008) P2X receptor-mediated visceral hyperalgesia in a rat model of chronic visceral hypersensitivity. Gut 57:1230–1237

    PubMed  CAS  Google Scholar 

  726. Xue J, Askwith C, Javed NH, Cooke HJ (2007) Autonomic nervous system and secretion across the intestinal mucosal surface. Auton Neurosci 133:55–63

    PubMed Central  PubMed  CAS  Google Scholar 

  727. Xue L, Suzuki H (1997) Electrical responses of gastric smooth muscles in streptozotocin-induced diabetic rats. Am J Physiol 272:G77–G83

    PubMed  CAS  Google Scholar 

  728. Xue L, Imaeda Y, Suzuki H (1998) Effects of suramin on electrical and mechanical activities in antrum smooth muscle of guinea-pig stomach. J Auton Pharmacol 18:325–331

    PubMed  CAS  Google Scholar 

  729. Xue L, Farrugia G, Sarr MG, Szurszewski JH (1999) ATP is a mediator of the fast inhibitory junction in human jejunal circular smooth muscle. Am J Physiol 276:G1373–G1379

    PubMed  CAS  Google Scholar 

  730. Yagasaki O, Nabata H, Yanagiya I (1983) Effects of desensitization to adenosine 5′-triphosphate and vasoactive intestinal polypeptide on non-adrenergic inhibitory responses of longitudinal and circular muscles in the rat ileum. J Pharm Pharmacol 35:818–820

    PubMed  CAS  Google Scholar 

  731. Yamamoto T, Suzuki Y (2002) Role of luminal ATP in regulating electrogenic Na+ absorption in guinea pig distal colon. Am J Physiol Gastrointest Liver Physiol 283:G300–G308

    PubMed  CAS  Google Scholar 

  732. Yang GK, Ming G, Kieffer T, Kwok YN (2007) Purinergic control of gastric somatostatin release. FASEB J 21:A809

    Google Scholar 

  733. Yang J, Ip PS, Yeung JH, Che CT (2011) Inhibitory effect of schisandrin on spontaneous contraction of isolated rat colon. Phytomedicine 18:998–1005

    PubMed Central  PubMed  CAS  Google Scholar 

  734. Yano S, Fujiwara A, Ozaki Y, Harada M (1983) Gastric blood flow responses to autonomic nerve stimulation and related pharmacological studies in rats. J Pharm Pharmacol 35:641–646

    PubMed  CAS  Google Scholar 

  735. Yasuda Y, Saito M, Yamamura T, Yaguchi T, Nishizaki T (2009) Extracellular adenosine induces apoptosis in Caco-2 human colonic cancer cells by activating caspase-9/-3 via A2a adenosine receptors. J Gastroenterol 44:56–65

    PubMed  CAS  Google Scholar 

  736. Ye JH, Rajendran VM (2009) Adenosine: an immune modulator of inflammatory bowel diseases. World J Gastroenterol 15:4491–4498

    PubMed Central  PubMed  CAS  Google Scholar 

  737. Yiangou Y, Facer P, Baecker PA, Ford AP, Knowles CH, Chan CL, Williams NS, Anand P (2001) ATP-gated ion channel P2X3 is increased in human inflammatory bowel disease. Neurogastroenterol Motil 13:365–369

    PubMed  CAS  Google Scholar 

  738. Yip L, Kwok YN (2004) Role of adenosine A2A receptor in the regulation of gastric somatostatin release. J Pharmacol Exp Ther 309:804–815

    PubMed  CAS  Google Scholar 

  739. Yip L, Leung HC, Kwok YN (2004) Role of adenosine A1 receptor in the regulation of gastrin release. J Pharmacol Exp Ther 310:477–487

    PubMed  CAS  Google Scholar 

  740. Yu HX, Turner JT (1991) Functional studies in the human submandibular duct cell line, HSG-PA, suggest a second salivary gland receptor subtype for nucleotides. J Pharmacol Exp Ther 259:1344–1350

    PubMed  CAS  Google Scholar 

  741. Yu J, Lavoie ÉG, Sheung N, Tremblay JJ, Sévigny J, Dranoff JA (2008) IL-6 downregulates transcription of NTPDase2 via specific promoter elements. Am J Physiol Gastrointest Liver Physiol 294:G748–G756

    PubMed  CAS  Google Scholar 

  742. Yu J, Sheung N, Soliman EM, Spirli C, Dranoff JA (2009) Transcriptional regulation of IL-6 in bile duct epithelia by extracellular ATP. Am J Physiol Gastrointest Liver Physiol 296:G563–G571

    PubMed Central  PubMed  CAS  Google Scholar 

  743. Yuan S, Costa M, Brookes SJ (1998) Neuronal pathways and transmission to the lower esophageal sphincter of the guinea pig. Gastroenterology 115:661–671

    PubMed  CAS  Google Scholar 

  744. Yuan W, Wang Z, Li J, Li D, Liu D, Bai G, Walsh MP, Gui Y, Zheng XL (2013) Uridine adenosine tetraphosphate induces contraction of circular and longitudinal gastric smooth muscle by distinct signaling pathways. IUBMB Life 65:623–632

    PubMed  CAS  Google Scholar 

  745. Zafirov DH, Palmer JM, Wood JD (1985) Adenosine inhibits forskolin-induced excitation in myenteric neurons. Eur J Pharmacol 113:143–144

    PubMed  CAS  Google Scholar 

  746. Zagorodnyuk V, Maggi CA (1994) Electrophysiological evidence for different release mechanism of ATP and NO as inhibitory NANC transmitters in guinea-pig colon. Br J Pharmacol 112:1077–1082

    PubMed Central  PubMed  CAS  Google Scholar 

  747. Zagorodnyuk V, Maggi CA (1998) Pharmacological evidence for the existence of multiple P2 receptors in the circular muscle of guinea-pig colon. Br J Pharmacol 123:122–128

    PubMed Central  PubMed  CAS  Google Scholar 

  748. Zagorodnyuk VP, Shuba MF (1986) Nature of non-adrenergic inhibition in the smooth muscles of the human intestine. Neirofiziologiia 18:373–381

    CAS  Google Scholar 

  749. Zagorodnyuk VP, Vladimirova IA, Vovk EV, Shuba MF (1989) Studies of the inhibitory non-adrenergic neuromuscular transmission in the smooth muscle of the normal human intestine and from a case of Hirschsprung's disease. J Auton Nerv Syst 26:51–60

    PubMed  CAS  Google Scholar 

  750. Zagorodnyuk V, Hoyle CHV, Burnstock G (1993) An electrophysiological study of developmental changes in the innervation of the guinea-pig taenia coli. Pflugers Arch 423:427–433

    PubMed  CAS  Google Scholar 

  751. Zagorodnyuk V, Santicioli P, Maggi CA, Giachetti A (1996) The possible role of ATP and PACAP as mediators of apaminsensitive NANC inhibitory junction potentials in circular muscle of guinea-pig colon. Br J Pharmacol 119:779–786

    PubMed Central  PubMed  CAS  Google Scholar 

  752. Zeng W, Lee MG, Muallem S (1997) Membrane-specific regulation of Cl channels by purinergic receptors in rat submandibular gland acinar and duct cells. J Biol Chem 272:32956–32965

    PubMed  CAS  Google Scholar 

  753. Zhang J, Halm ST, Halm DR (2009) Adrenergic activation of electrogenic K+ secretion in guinea pig distal colonic epithelium: desensitization via the Y2-neuropeptide receptor. Am J Physiol Gastrointest Liver Physiol 297:G278–G291

    PubMed Central  PubMed  CAS  Google Scholar 

  754. Zhang W, Roomans GM (1997) Regulation of ion transport by P2U purinoceptors and α2A adrenoceptors in HT29 cells. Cell Biol Int 4:195–200

    Google Scholar 

  755. Zhang W, Segura BJ, Lin TR, Hu Y, Mulholland MW (2003) Intercellular calcium waves in cultured enteric glia from neonatal guinea pig. Glia 42:252–262

    PubMed  Google Scholar 

  756. Zhang Y, Lomax AE, Paterson WG (2010) P2Y1 receptors mediate apamin-sensitive and -insensitive inhibitory junction potentials in murine colonic circular smooth muscle. J Pharmacol Exp Ther 333:602–611

    PubMed  CAS  Google Scholar 

  757. Zhou X, Galligan JJ (1996) P2X purinoceptors in cultured myenteric neurons of guinea-pig small intestine. J Physiol 496:719–729

    PubMed Central  PubMed  CAS  Google Scholar 

  758. Zhou X, Galligan JJ (1998) Non-additive interaction between nicotinic cholinergic and P2X purine receptors in guinea-pig enteric neurons in culture. J Physiol 513:685–697

    PubMed Central  PubMed  CAS  Google Scholar 

  759. Ziganshin AU, Berdnikov EA, Ziganshina LE, Tantasheva FR, Hoyle CH, Burnstock G (1995) Effects of α, β-unsaturated sulphones and phosphonium salts on ecto-ATPase activity and contractile responses mediated via P2 chi- purinoceptors. Gen Pharmacol 26:527–532

    PubMed  CAS  Google Scholar 

  760. Zimmermann H (1994) Signalling via ATP in the nervous system. Trends Neurosci 17:420–426

    PubMed  CAS  Google Scholar 

  761. Zizzo MG, Mulè F, Serio R (2007) Evidence that ATP or a related purine is an excitatory neurotransmitter in the longitudinal muscle of mouse distal colon. Br J Pharmacol 151:73–81

    PubMed  CAS  Google Scholar 

  762. Zizzo MG, Mastropaolo M, Lentini L, Mulè F, Serio R (2011) Adenosine negatively regulates duodenal motility in mice: role of A1 and A2A receptors. Br J Pharmacol 164:1580–1589

    PubMed Central  PubMed  CAS  Google Scholar 

  763. Zizzo MG, Mastropaolo M, Grahlert J, Mule F, Serio R (2012) Pharmacological characterization of uracil nucleotide-preferring P2Y receptors modulating intestinal motility: a study on mouse ileum. Purinergic Signal 8:275–285

    PubMed Central  PubMed  CAS  Google Scholar 

  764. Zoppellaro C, Bin A, Brun P, Banzato S, Macchi V, Castagliuolo I, Giron MC (2013) Adenosine-mediated enteric neuromuscular function is affected during herpes simplex virus type 1 infection of rat enteric nervous system. PLoS One 8:e72648

    PubMed Central  PubMed  CAS  Google Scholar 

  765. Zsembery A, Spirlì C, Granato A, LaRusso NF, Okolicsanyi L, Crepaldi G, Strazzabosco M (1998) Purinergic regulation of acid/base transport in human and rat biliary epithelial cell lines. Hepatology 28:914–920

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

John Furness and Jean-Pierre Timmermans made helpful suggestions that improved the first draft of this review. The author is very grateful to Dr Gillian E. Knight for her invaluable assistance in the preparation of this review article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geoffrey Burnstock.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burnstock, G. Purinergic signalling in the gastrointestinal tract and related organs in health and disease. Purinergic Signalling 10, 3–50 (2014). https://doi.org/10.1007/s11302-013-9397-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11302-013-9397-9

Keywords

Navigation