Skip to main content

Advertisement

Log in

Inflammation in Patients with Schizophrenia: The Therapeutic Benefits of Risperidone Plus Add-On Dextromethorphan

  • ORIGINAL ARTICLE
  • Published:
Journal of Neuroimmune Pharmacology Aims and scope Submit manuscript

An Erratum to this article was published on 25 July 2012

Abstract

Increasing evidence suggests that inflammation contributes to the etiology and progression of schizophrenia. Molecules that initiate inflammation, such as virus- and toxin-induced cytokines, are implicated in neuronal degeneration and schizophrenia-like behavior. Using therapeutic agents with anti-inflammatory or neurotrophic effects may be beneficial for treating schizophrenia. One hundred healthy controls and 95 Han Chinese patients with schizophrenia were tested in this double-blind study. Their PANSS scores, plasma interleukin (IL)-1β, tumor necrosis factor-α (TNF-α) and brain-derived neurotrophic factor (BDNF) levels were measured before and after pharmacological treatment. Pretreatment, plasma levels of IL-1β and TNF-α were significantly higher in patients with schizophrenia than in controls, but plasma BDNF levels were significantly lower. Patients were treated with the atypical antipsychotic risperidone (Risp) only or with Risp+ dextromethorphan (DM). PANSS scores and plasma IL-1β levels significantly decreased, but plasma TNF-α and BDNF levels significantly increased after 11 weeks of Risp treatment. Patients in the Risp+ DM group showed a greater and earlier reduction of symptoms than did those in the Risp-only group. Moreover, Risp+ DM treatment attenuated Risp-induced plasma increases in TNF-α. Patients with schizophrenia had a high level of peripheral inflammation and a low level of peripheral BDNF. Long-term Risp treatment attenuated inflammation and potentiated the neurotrophic function but also produced a certain degree of toxicity. Risp+ DM was more beneficial and less toxic than Risp-only treatment.

Clinical Trial Registration: Protocol Record: HR-93-50; Trial Registration number: NCT01189006; URL: http://www.clinicaltrials.gov

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Barcia C, de Pablos V, Bautista-Hernandez V, Sanchez-Bahillo A, Bernal I, Fernandez-Villalba E, Martin J, Banon R, Fernandez-Barreiro A, Herrero MT (2005) Increased plasma levels of TNF-alpha but not of IL1-beta in MPTP-treated monkeys one year after the MPTP administration. Parkinsonism Relat Disord 11(7):435–439. doi:10.1016/j.parkreldis.2005.05.006

    Article  PubMed  Google Scholar 

  • Boyer EW (2004) Dextromethorphan abuse. Pediatr Emerg Care 20(12):858–863

    Article  PubMed  Google Scholar 

  • Buckley PF, Pillai A, Evans D, Stirewalt E, Mahadik S (2007) Brain derived neurotropic factor in first-episode psychosis. Schizophr Res 91(1–3):1–5

    PubMed  Google Scholar 

  • Carrasco MA, Castro P, Sepulveda FJ, Tapia JC, Gatica K, Davis MI, Aguayo LG (2007) Regulation of glycinergic and GABAergic synaptogenesis by brain-derived neurotrophic factor in developing spinal neurons. Neuroscience 145(2):484–494

    Article  PubMed  CAS  Google Scholar 

  • Church J, Sawyer D, McLarnon JG (1994) Interactions of dextromethorphan with the N-methyl-D-aspartate receptor-channel complex: single channel recordings. Brain Res 666(2):189–194

    Article  PubMed  CAS  Google Scholar 

  • Cirulli F, Francia N, Branchi I, Antonucci MT, Aloe L, Suomi SJ, Alleva E (2009) Changes in plasma levels of BDNF and NGF reveal a gender-selective vulnerability to early adversity in rhesus macaques. Psychoneuroendocrinology 34(2):172–180. doi:10.1016/j.psyneuen.2008.08.020

    Article  PubMed  CAS  Google Scholar 

  • Crespo-Facorro B, Barbadillo L, Pelayo-Teran JM, Rodriguez-Sanchez JM (2007) Neuropsychological functioning and brain structure in schizophrenia. Int Rev Psychiatry 19(4):325–336. doi:10.1080/09540260701486647

    Article  PubMed  Google Scholar 

  • Durany N, Michel T, Zochling R, Boissl KW, Cruz-Sanchez FF, Riederer P, Thome J (2001) Brain-derived neurotrophic factor and neurotrophin 3 in schizophrenic psychoses. Schizophr Res 52(1–2):79–86

    Article  PubMed  CAS  Google Scholar 

  • Endicott J, Forman JB, Spitzer RL (1978) Research approaches to diagnostic classification in schizophrenia. Birth Defects Orig Artic Ser 14(5):41–57

    PubMed  CAS  Google Scholar 

  • Fumagalli F, Bedogni F, Perez J, Racagni G, Riva MA (2004) Corticostriatal brain-derived neurotrophic factor dysregulation in adult rats following prenatal stress. Eur J Neurosci 20(5):1348–1354

    Article  PubMed  Google Scholar 

  • Galderisi S, Quarantelli M, Volpe U, Mucci A, Cassano GB, Invernizzi G, Rossi A, Vita A, Pini S, Cassano P, Daneluzzo E, De Peri L, Stratta P, Brunetti A, Maj M (2008) Patterns of structural MRI abnormalities in deficit and nondeficit schizophrenia. Schizophr Bull 34(2):393–401. doi:10.1093/schbul/sbm097

    Article  PubMed  Google Scholar 

  • Grunblatt E, Mandel S, Youdim MB (2000) Neuroprotective strategies in Parkinson’s disease using the models of 6-hydroxydopamine and MPTP. Ann N Y Acad Sci 899:262–273

    Article  PubMed  CAS  Google Scholar 

  • Hashimoto K, Iyo M (2002) Glutamate hypothesis of schizophrenia and targets for new antipsychotic drugs. Nihon Shinkei Seishin Yakurigaku Zasshi 22(1):3–13

    PubMed  CAS  Google Scholar 

  • Hope S, Melle I, Aukrust P, Steen NE, Birkenaes AB, Lorentzen S, Agartz I, Ueland T, Andreassen OA (2009) Similar immune profile in bipolar disorder and schizophrenia: selective increase in soluble tumor necrosis factor receptor I and von Willebrand factor. Bipolar Disord 11(7):726–734. doi:10.1111/j.1399-5618.2009.00757.x

    Article  PubMed  CAS  Google Scholar 

  • Hu WT, Chen-Plotkin A, Arnold SE, Grossman M, Clark CM, Shaw LM, Pickering E, Kuhn M, Chen Y, McCluskey L, Elman L, Karlawish J, Hurtig HI, Siderowf A, Lee VM, Soares H, Trojanowski JQ (2010) Novel CSF biomarkers for Alzheimer’s disease and mild cognitive impairment. Acta Neuropathol 119(6):669–678. doi:10.1007/s00401-010-0667-0

    Article  PubMed  CAS  Google Scholar 

  • Huang SY, Lin WW, Ko HC, Lee JF, Wang TJ, Chou YH, Yin SJ, Lu RB (2004) Possible interaction of alcohol dehydrogenase and aldehyde dehydrogenase genes with the dopamine D2 receptor gene in anxiety-depressive alcohol dependence. Alcohol Clin Exp Res 28(3):374–384

    Article  PubMed  CAS  Google Scholar 

  • Hyman C, Hofer M, Barde YA, Juhasz M, Yancopoulos GD, Squinto SP, Lindsay RM (1991) BDNF is a neurotrophic factor for dopaminergic neurons of the substantia nigra. Nature 350(6315):230–232

    Article  PubMed  CAS  Google Scholar 

  • Iritani S, Niizato K, Nawa H, Ikeda K, Emson PC (2003) Immunohistochemical study of brain-derived neurotrophic factor and its receptor, TrkB, in the hippocampal formation of schizophrenic brains. Prog Neuropsychopharmacol Biol Psychiatry 27(5):801–807. doi:10.1016/S0278-5846(03)00112-X

    Article  PubMed  CAS  Google Scholar 

  • Javitt DC (2007) Glutamate and schizophrenia: phencyclidine, N-methyl-D-aspartate receptors, and dopamine-glutamate interactions. Int Rev Neurobiol 78:69–108. doi:10.1016/S0074-7742(06)78003-5

    Article  PubMed  CAS  Google Scholar 

  • Jentsch JD, Roth RH (1999) The neuropsychopharmacology of phencyclidine: from NMDA receptor hypofunction to the dopamine hypothesis of schizophrenia. Neuropsychopharmacology 20(3):201–225. doi:10.1016/S0893-133X(98)00060-8

    Article  PubMed  CAS  Google Scholar 

  • Johnson JE, Barde YA, Schwab M, Thoenen H (1986) Brain-derived neurotrophic factor supports the survival of cultured rat retinal ganglion cells. J Neurosci 6(10):3031–3038

    PubMed  CAS  Google Scholar 

  • Karege F, Schwald M, Cisse M (2002) Postnatal developmental profile of brain-derived neurotrophic factor in rat brain and platelets. Neurosci Lett 328(3):261–264

    Article  PubMed  CAS  Google Scholar 

  • Kato T, Monji A, Hashioka S, Kanba S (2007) Risperidone significantly inhibits interferon-gamma-induced microglial activation in vitro. Schizophr Res 92(1–3):108–115. doi:10.1016/j.schres.2007.01.019

    Article  PubMed  Google Scholar 

  • Kay SR, Fiszbein A, Opler LA (1987) The positive and negative syndrome scale (PANSS) for schizophrenia. Schizophr Bull 13(2):261–276

    PubMed  CAS  Google Scholar 

  • Kay SR, Opler IA, Fishbein A (1992) Positive and negative syndrome scale (PANSS) rating manual. Multihealth System, Toronto

    Google Scholar 

  • Laske C, Stransky E, Leyhe T, Eschweiler GW, Wittorf A, Richartz E, Bartels M, Buchkremer G, Schott K (2006) Stage-dependent BDNF serum concentrations in Alzheimer’s disease. J Neural Transm 113(9):1217–1224

    Article  PubMed  CAS  Google Scholar 

  • Lee BH, Kim YK (2009) Increased plasma brain-derived neurotropic factor, not nerve growth factor-Beta, in schizophrenia patients with better response to risperidone treatment. Neuropsychobiology 59(1):51–58. doi:10.1159/000205518

    Article  PubMed  CAS  Google Scholar 

  • Li G, Cui G, Tzeng NS, Wei SJ, Wang T, Block ML, Hong JS (2005) Femtomolar concentrations of dextromethorphan protect mesencephalic dopaminergic neurons from inflammatory damage. FASEB J 19(6):489–496

    Article  PubMed  CAS  Google Scholar 

  • Lipska BK, Khaing ZZ, Weickert CS, Weinberger DR (2001) BDNF mRNA expression in rat hippocampus and prefrontal cortex: effects of neonatal ventral hippocampal damage and antipsychotic drugs. Eur J Neurosci 14(1):135–144

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Qin L, Li G, Zhang W, An L, Liu B, Hong JS (2003) Dextromethorphan protects dopaminergic neurons against inflammation-mediated degeneration through inhibition of microglial activation. J Pharmacol Exp Ther 305(1):212–218. doi:10.1124/jpet.102.043166

    Article  PubMed  CAS  Google Scholar 

  • Liu L, Jia F, Yuan G, Chen Z, Yao J, Li H, Fang C (2010) Tyrosine hydroxylase, interleukin-1beta and tumor necrosis factor-alpha are overexpressed in peripheral blood mononuclear cells from schizophrenia patients as determined by semi-quantitative analysis. Psychiatry Res 176(1):1–7. doi:10.1016/j.psychres.2008.10.024

    Article  PubMed  CAS  Google Scholar 

  • Mizuno K, Carnahan J, Nawa H (1994) Brain-derived neurotrophic factor promotes differentiation of striatal GABAergic neurons. Dev Biol 165(1):243–256

    Article  PubMed  CAS  Google Scholar 

  • Ohira K, Hayashi M (2009) A new aspect of the TrkB signaling pathway in neural plasticity. Current neuropharmacology 7(4):276–285

    Article  PubMed  CAS  Google Scholar 

  • Oppenheim RW, Yin QW, Prevette D, Yan Q (1992) Brain-derived neurotrophic factor rescues developing avian motoneurons from cell death. Nature 360(6406):755–757

    Article  PubMed  CAS  Google Scholar 

  • Pan W, Banks WA, Fasold MB, Bluth J, Kastin AJ (1998) Transport of brain-derived neurotrophic factor across the blood-brain barrier. Neuropharmacology 37(12):1553–1561

    Article  PubMed  CAS  Google Scholar 

  • Peng HB, Yang JF, Dai Z, Lee CW, Hung HW, Feng ZH, Ko CP (2003) Differential effects of neurotrophins and schwann cell-derived signals on neuronal survival/growth and synaptogenesis. J Neurosci 23(12):5050–5060

    PubMed  CAS  Google Scholar 

  • Pickering M, O’Connor JJ (2007) Pro-inflammatory cytokines and their effects in the dentate gyrus. Prog Brain Res 163:339–354. doi:10.1016/S0079-6123(07)63020-9

    Article  PubMed  CAS  Google Scholar 

  • Qin L, Wu X, Block ML, Liu Y, Breese GR, Hong JS, Knapp DJ, Crews FT (2007) Systemic LPS causes chronic neuroinflammation and progressive neurodegeneration. Glia 55(5):453–462. doi:10.1002/glia.20467

    Article  PubMed  Google Scholar 

  • Quan N, Banks WA (2007) Brain-immune communication pathways. Brain Behav Immun 21(6):727–735. doi:10.1016/j.bbi.2007.05.005

    Article  PubMed  CAS  Google Scholar 

  • Ribeiro Do Couto B, Aguilar MA, Manzanedo C, Rodriguez-Arias M, Minarro J (2004) Effects of NMDA receptor antagonists (MK-801 and memantine) on the acquisition of morphine-induced conditioned place preference in mice. Prog Neuropsychopharmacol Biol Psychiatry 28(6):1035–1043. doi:10.1016/j.pnpbp.2004.05.038

    Article  PubMed  Google Scholar 

  • Ribeiro Do Couto B, Aguilar MA, Manzanedo C, Rodriguez-Arias M, Minarro J (2005) NMDA glutamate but not dopamine antagonists blocks drug-induced reinstatement of morphine place preference. Brain Res Bull 64(6):493–503. doi:10.1016/j.brainresbull.2004.10.005

    Article  PubMed  CAS  Google Scholar 

  • Rimol LM, Nesvag R, Hagler DJ Jr, Bergmann O, Fennema-Notestine C, Hartberg CB, Haukvik UK, Lange E, Pung CJ, Server A, Melle I, Andreassen OA, Agartz I, Dale AM (2012) Cortical volume, surface area, and thickness in schizophrenia and bipolar disorder. Biol Psychiatry 71(6):552–560. doi:10.1016/j.biopsych.2011.11.026

    Article  PubMed  Google Scholar 

  • Rizos EN, Papadopoulou A, Laskos E, Michalopoulou PG, Kastania A, Vasilopoulos D, Katsafouros K, Lykouras L (2008) Reduced serum BDNF levels in patients with chronic schizophrenic disorder in relapse, who were treated with typical or atypical antipsychotics. World J Biol Psychiatry:1-5

  • Schmitt A, Bertsch T, Tost H, Bergmann A, Henning U, Klimke A, Falkai P (2005) Increased serum interleukin-1beta and interleukin-6 in elderly, chronic schizophrenic patients on stable antipsychotic medication. Neuropsychiatr Dis Treat 1(2):171–177

    Article  PubMed  CAS  Google Scholar 

  • Segal RA, Takahashi H, McKay RD (1992) Changes in neurotrophin responsiveness during the development of cerebellar granule neurons. Neuron 9(6):1041–1052

    Article  PubMed  CAS  Google Scholar 

  • Shepherd AM, Laurens KR, Matheson SL, Carr VJ, Green MJ (2012) Systematic meta-review and quality assessment of the structural brain alterations in schizophrenia. Neurosci Biobehav Rev 36(4):1342–1356. doi:10.1016/j.neubiorev.2011.12.015

    Article  PubMed  Google Scholar 

  • Shimizu E, Hashimoto K, Watanabe H, Komatsu N, Okamura N, Koike K, Shinoda N, Nakazato M, Kumakiri C, Okada S, Iyo M (2003) Serum brain-derived neurotrophic factor (BDNF) levels in schizophrenia are indistinguishable from controls. Neurosci Lett 351(2):111–114

    Article  PubMed  CAS  Google Scholar 

  • Simard AR, Rivest S (2005) Do pathogen exposure and innate immunity cause brain diseases? Neurol Res 27(7):717–725

    Article  PubMed  CAS  Google Scholar 

  • Soderlund J, Schroder J, Nordin C, Samuelsson M, Walther-Jallow L, Karlsson H, Erhardt S, Engberg G (2009) Activation of brain interleukin-1beta in schizophrenia. Mol Psychiatry 14(12):1069–1071. doi:10.1038/mp.2009.52

    Article  PubMed  CAS  Google Scholar 

  • Soderlund J, Olsson SK, Samuelsson M, Walther-Jallow L, Johansson C, Erhardt S, Landen M, Engberg G (2010) Elevation of cerebrospinal fluid interleukin-1ss in bipolar disorder. Journal of Psychiatry & Neuroscience 35(6):100080. doi:10.1503/jpn.100080

    Google Scholar 

  • Song XQ, Lv LX, Li WQ, Hao YH, Zhao AP (2009) The interaction of nuclear factor-kappa B and cytokines is associated with schizophrenia. Biol Psychiatry 65(6):481–488

    Article  PubMed  CAS  Google Scholar 

  • Sowell ER, Levitt J, Thompson PM, Holmes CJ, Blanton RE, Kornsand DS, Caplan R, McCracken J, Asarnow R, Toga AW (2000) Brain abnormalities in early-onset schizophrenia spectrum disorder observed with statistical parametric mapping of structural magnetic resonance images. Am J Psychiatry 157(9):1475–1484

    Article  PubMed  CAS  Google Scholar 

  • Sugino H, Futamura T, Mitsumoto Y, Maeda K, Marunaka Y (2009) Atypical antipsychotics suppress production of proinflammatory cytokines and up-regulate interleukin-10 in lipopolysaccharide-treated mice. Prog Neuropsychopharmacol Biol Psychiatry 33(2):303–307. doi:10.1016/j.pnpbp.2008.12.006

    Article  PubMed  CAS  Google Scholar 

  • Takahashi M, Shirakawa O, Toyooka K, Kitamura N, Hashimoto T, Maeda K, Koizumi S, Wakabayashi K, Takahashi H, Someya T, Nawa H (2000) Abnormal expression of brain-derived neurotrophic factor and its receptor in the corticolimbic system of schizophrenic patients. Mol Psychiatry 5(3):293–300

    Article  PubMed  CAS  Google Scholar 

  • Thompson RM, Weickert CS, Wyatt E, Webster MJ (2011) Decreased BDNF, trkB-TK+ and GAD(67) mRNA expression in the hippocampus of individuals with schizophrenia and mood disorders. J Psychiatry Neurosci 36(1). doi:10.1503/jpn.100048

  • Toyooka K, Asama K, Watanabe Y, Muratake T, Takahashi M, Someya T, Nawa H (2002) Decreased levels of brain-derived neurotrophic factor in serum of chronic schizophrenic patients. Psychiatry Res 110(3):249–257

    Article  PubMed  CAS  Google Scholar 

  • Viviani B, Gardoni F, Marinovich M (2007) Cytokines and neuronal ion channels in health and disease. Int Rev Neurobiol 82:247–263. doi:10.1016/S0074-7742(07)82013-7

    Article  PubMed  CAS  Google Scholar 

  • Wang SC, Chou DT, Wallenstein MC (1977) Studies on the potency of various antitussive agents. Agents Actions 7(3):337–340

    Article  PubMed  CAS  Google Scholar 

  • Weickert CS, Hyde TM, Lipska BK, Herman MM, Weinberger DR, Kleinman JE (2003) Reduced brain-derived neurotrophic factor in prefrontal cortex of patients with schizophrenia. Mol Psychiatry 8(6):592–610

    Article  PubMed  CAS  Google Scholar 

  • Yoshimura R, Hori H, Sugita A, Ueda N, Kakihara S, Umene W, Nakano Y, Shinkai K, Mitoma M, Ohta M, Shinkai T, Nakamura J (2007) Treatment with risperidone for 4 weeks increased plasma 3-methoxy-4-hydroxypnenylglycol (MHPG) levels, but did not alter plasma brain-derived neurotrophic factor (BDNF) levels in schizophrenic patients. Prog Neuropsychopharmacol Biol Psychiatry 31(5):1072–1077. doi:10.1016/j.pnpbp.2007.03.010

    Article  PubMed  CAS  Google Scholar 

  • Zhang W, Wang T, Qin L, Gao HM, Wilson B, Ali SF, Hong JS, Liu B (2004) Neuroprotective effect of dextromethorphan in the MPTP Parkinson’s disease model: role of NADPH oxidase. FASEB J 18(3):589–591. doi:10.1096/fj.03-0983fje03-0983fje

    PubMed  CAS  Google Scholar 

  • Zhang W, Qin L, Wang T, Wei SJ, Gao HM, Liu J, Wilson B, Liu B, Kim HC, Hong JS (2005) 3-hydroxymorphinan is neurotrophic to dopaminergic neurons and is also neuroprotective against LPS-induced neurotoxicity. FASEB J 19(3):395–397. doi:10.1096/fj.04-1586fje

    PubMed  CAS  Google Scholar 

  • Zhang W, Shin EJ, Wang T, Lee PH, Pang H, Wie MB, Kim WK, Kim SJ, Huang WH, Wang Y, Zhang W, Hong JS, Kim HC (2006) 3-Hydroxymorphinan, a metabolite of dextromethorphan, protects nigrostriatal pathway against MPTP-elicited damage both in vivo and in vitro. FASEB J 20(14):2496–2511

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported in part by the grant DOH95-TD-I-111-004 from the Taiwan Ministry of Health (to RBL), the Taiwan National Science Council NSC98-2627-B-006-017 (to RBL) and by a grant from the National Cheng Kung University Project to Promote Academic Excellence and Develop a World-Class Research Center, Taiwan.

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ru-Band Lu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, SL., Lee, SY., Chang, YH. et al. Inflammation in Patients with Schizophrenia: The Therapeutic Benefits of Risperidone Plus Add-On Dextromethorphan. J Neuroimmune Pharmacol 7, 656–664 (2012). https://doi.org/10.1007/s11481-012-9382-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11481-012-9382-z

Keywords

Navigation