Skip to main content

Advertisement

Log in

SIRT1 Transcription Is Decreased in Visceral Adipose Tissue of Morbidly Obese Patients with Severe Hepatic Steatosis

  • Basic Science Research
  • Published:
Obesity Surgery Aims and scope Submit manuscript

An Erratum to this article was published on 03 March 2010

Abstract

Background

Visceral adipose tissue is known to release greater amounts of adipokines and free fatty acids into the portal vein, being one of the most predictive factors of nonalcoholic fatty liver disease (NAFLD). Our study has the purpose to evaluate sirtuin 1 (SIRT1), adiponectin, Forkhead/winged helix (FOXO1), peroxisome proliferator-activated receptor (PPAR)γ1–3, and PPARβ/δ mRNA expression in morbidly obese patients in three different lipid depots: visceral (VAT), subcutaneous (SAT), and retroperitoneal (RAT). Recent studies suggest that SIRT1, a NAD+-dependent deacetylase, protects rats from NAFLD.

Methods

We divided the patients in two groups: those with slight or moderate steatosis (hepatic steatosis, HS) and other comprising individuals with severe steatosis associated or not with necroinflammation and fibrosis (severe hepatic steatosis, SHS). The adipose tissue depots were obtained during bariatric surgery. Total RNAs were extracted using TRIzol. The amount of genes of interest was determined by quantitative real-time polymerase chain reaction.

Results

When comparing the two groups of patients, a decrease in SIRT1 was observed in VAT of morbidly obese patients in SHS group (p = 0.006). The mRNA expression of the other genes showed no differences in VAT. No difference was found either in SAT or in RAT for all genes in the study. In addition, the homeostasis model assessment for insulin resistance (HOMA-IR) value was higher in SHS group compared to HS (p = 0.006). Also, our results show that the mRNA expression of SIRT1 and the value of HOMA-IR were positively correlated in VAT of SHS patients (r = 0.654; p = 0.048).

Conclusions

Downregulation of SIRT1 mRNA expression in VAT of SHS could be possible impairing mitochondria biogenesis and fatty acid oxidation, promoting severe steatosis in obese patients. Our results provide a possible proof of SIRT1 protective potential in VAT against NAFLD in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

NAFLD:

Nonalcoholic fatty liver disease

NASH:

Nonalcoholic steatohepatitis

AT:

Adipose tissue

FFA:

Free fatty acid

RAT:

Retroperitoneal adipose tissue

SAT:

Subcutaneous adipose tissue

VAT:

Visceral adipose tissue

FOXO1:

Forkhead/winged helix

SIRT1:

Sirtuin 1

PPAR:

Peroxisome proliferator-activated receptors

qRT-PCR:

Quantitative real-time polymerase chain reaction

References

  1. Spiegelman BM, Flier JS. Obesity and the regulation of energy balance. Cell. 2001;104:531–43.

    Article  PubMed  CAS  Google Scholar 

  2. Cota D, Proulx K, Seeley RJ. The role of CNS sensing in energy and glucose regulation. Gastroenterology. 2007;132:2158–68.

    Article  PubMed  CAS  Google Scholar 

  3. Levvraz C, Verdumo C, Giustu V. Localization of adipose tissue: clinical implications. Rev Med Suisse. 2008;4:844–7.

    Google Scholar 

  4. Misra A, Vikram NK. Clinical and pathophysiological consequences of abdominal adiposity and abdominal adipose tissue depots. Nutrition. 2003;19:457–66.

    Article  PubMed  Google Scholar 

  5. Arner P. Regional differences in protein production by human adipose tissue. Biochem Soc Trans. 2001;29:72–5.

    Article  PubMed  CAS  Google Scholar 

  6. Guilherme A, Virbasius JV, Puri V, et al. Adipocyte dysfunctions linking obesity to insulin resistance and type 2 diabetes. Nat Rev Mol Cell Biol. 2008;9:367–77.

    Article  PubMed  CAS  Google Scholar 

  7. Marchesini G, Moscatiello S, Domizio SD, et al. Obesity-associated liver disease. J Clin Endocrinol Metab. 2008;93:S74–80.

    Article  PubMed  CAS  Google Scholar 

  8. Busetto L, Tregnaghi A, Marchi FD, et al. Liver volume and visceral obesity in women with hepatic steatosis undergoing gastric banding. Obes Res. 2002;10:408–11.

    Article  PubMed  Google Scholar 

  9. Shifflet A, Wu GY. Non-alcoholic steatohepatitis: an overview. J Formos Med Assoc. 2009;108:4–12.

    Article  PubMed  Google Scholar 

  10. Chen CH, Huang MH, Yang JC, et al. Prevalence and risk factors of nonalcoholic fatty liver disease in an adult population of Taiwan: metabolic significance of nonalcoholic fatty liver disease in non-obese adults. J Clin Gastroenterol. 2006;40:745–52.

    Article  PubMed  CAS  Google Scholar 

  11. Yang Y, Fu W, Chen J, et al. SIRT1 sumoylation regulates its deacetylase activity and cellular response to genotoxic stress. Nat Cell Biol. 2007;9:1253–62.

    Article  PubMed  CAS  Google Scholar 

  12. Westphal CH, Dipp MA, Guarente L. A therapeutic role for sirtuins in disease of aging? Trends Biochem Sci. 2007;32:555–60.

    Article  PubMed  CAS  Google Scholar 

  13. Yang T, Fu M, Pestell R, et al. Sirt1 and endocrine signaling. Trends Endocrinol Metab. 2006;17:186–91.

    Article  PubMed  CAS  Google Scholar 

  14. Picard F, Guarente L. Molecular links between aging and adipose tissue. Int J Obes. 2005;29:36S–9.

    Article  CAS  Google Scholar 

  15. Rodgers JT, Lerin C, Haas W, et al. Nutrient control of glucose homeostasis through a complex of PGC-1a and SIRT1. Nature. 2005;434:113–8.

    Article  PubMed  CAS  Google Scholar 

  16. Milne JC, Lambert PD, Schenk S, et al. Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes. Nature. 2007;450:712–6.

    Article  PubMed  CAS  Google Scholar 

  17. Pfluger PT, Herranz D, Miguel SV, et al. Sirt1 protects against high-fat diet-induced metabolic damage. PNAS. 2008;105:9793–8.

    Article  PubMed  Google Scholar 

  18. Deng XQ, Chen LL, Li NX. The expression of SIRT1 in nonalcoholic fatty liver disease induced by high-fat diet in rats. Liver Int. 2007;27:708–15.

    Article  PubMed  CAS  Google Scholar 

  19. Paschos P, Paletas K. Non alcoholic fatty liver disease and metabolic syndrome. Hippokratia. 2009;13:9–19.

    PubMed  CAS  Google Scholar 

  20. Tsai YS, Maeda N. PPARγ: a critical determinant of body fat distribution in human and mice. Trends Cardiovasc Med. 2005;15:81–5.

    Article  PubMed  CAS  Google Scholar 

  21. Hasegawa K, Wakino S, Yoshioka K, et al. Sirt1 protects against oxidative stress-induced renal tubular cell apoptosis by the bidirectional regulation of catalase expression. Biochem Biophys Res Commun. 2008;372:51–6.

    Article  PubMed  CAS  Google Scholar 

  22. Alcendor RR, Gao S, Zhai P, et al. Sirt1 regulated aging and resistance to oxidative stress in the heart. Circ Res. 2007;100:1512–21.

    Article  PubMed  CAS  Google Scholar 

  23. Ma H, Gomez V, Lu L, et al. Expression of adiponectin and its receptors in livers of morbidly obese patients with non-alcoholic fatty liver disease. Hepatology. 2009;24:233–7.

    CAS  Google Scholar 

  24. Aygun C, Senturk O, Hulagu S. Serum levels of hepatoprotective peptide adiponectin in non-alcoholic fatty liver disease. Eur J Gastroenterol Hepatol. 2006;18:175–80.

    Article  PubMed  CAS  Google Scholar 

  25. Calvert VS, Collantes R, Elariny H, et al. A systems biology approach to the pathogenesis of obesity-related nonalcoholic fatty liver disease using reverse phase protein microarrays for multiplexed cell signaling analysis. Hepatology. 2007;46:166–72.

    Article  PubMed  CAS  Google Scholar 

  26. Qu S, Altomonte J, Perdomo G, et al. Aberrant Forkhead box O1 function is associated with impaired hepatic metabolism. Endocrinology. 2006;147:5641–52.

    Article  PubMed  CAS  Google Scholar 

  27. Fan WQ, Imamura T, Sonoda N, et al. FOXO1 transrepresses PPARγ transactivation, coordinating an insulin-induced feed-forward response in adipocytes. J Biol Chem. 2009;284:12188–97.

    Article  PubMed  CAS  Google Scholar 

  28. Valenti L, Rametta R, Dongiovanni P, et al. Increased expression and activity of transcriptional factor FOXO1 in nonalcoholic steatohepatitis. Diabetes. 2008;57:1355–62.

    Article  PubMed  CAS  Google Scholar 

  29. Semple RK, Krishna V, Chatterjee VKK, et al. PPARγ and human metabolic disease. J Clin Invest. 2006;116:581–9.

    Article  PubMed  CAS  Google Scholar 

  30. Kota BP, Huang THW, Roufogalis BD. An overview on biological mechanisms of PPARs. Pharmacol Res. 2005;51:85–94.

    Article  PubMed  CAS  Google Scholar 

  31. Sharma AM, Staels B. Review: peroxisome proliferator-activated receptor γ and adipose tissue—understanding obesity-related change in regulation of lipid and glucose metabolism. J Clin Endocrinol Metab. 2007;92:386–95.

    Article  PubMed  CAS  Google Scholar 

  32. Picard F, Kurtev M, Chungn N, et al. Sirt1 promotes fat mobilization in white adipocytes by repressing PPARγ. Nature. 2004;429:771–6.

    Article  PubMed  CAS  Google Scholar 

  33. Gavrilova O, Haluzik M, Matsusue K, et al. Liver peroxisome proliferator-activated receptor γ contributes to hepatic steatosis, triglyceride clearance, and regulation of body fat mass. J Biochem Chem. 2003;278:34258–76.

    Google Scholar 

  34. Qin X, Xie X, Fan Y, et al. Peroxisome proliferator-activated receptor-delta induces insulin-induced gene-1 and suppresses hepatic lipogenesis in obese diabetic mice. Hepatology. 2008;48:432–41.

    Article  PubMed  CAS  Google Scholar 

  35. Padoin AV, Mottin CC, Moretto M, et al. A comparison of wedge and needle hepatic biopsy in open bariatric surgery. Obesity Surgery. 2006;16:178–82.

    Article  PubMed  Google Scholar 

  36. Burt AD, Mutton A, Day CP. Diagnosis and interpretation of steatosis and steatohepatitis. Semin Diagn Pathol. 1998;15:246–58.

    PubMed  CAS  Google Scholar 

  37. Livak K, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods. 2001;25:402–8.

    Article  PubMed  CAS  Google Scholar 

  38. Matthews DR, Hosker JR, Rudenski AS, et al. Homeostasis model assessment: insulin resistance and fl-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985;28:412–9.

    Article  PubMed  CAS  Google Scholar 

  39. Clark JM. The epidemiology of nonalcoholic fatty liver disease in adults. J Clin Gastroenterol. 2006;40:S5–10.

    PubMed  Google Scholar 

  40. Wang YX, Lee CH, Tiep S, et al. Peroxisome proliferator-activated receptor delta activates fat metabolism to prevent obesity. Cell. 2003;113:159–70.

    Article  PubMed  CAS  Google Scholar 

  41. Bortolotto JW, Margis R, Ferreira AC, et al. Adipose tissue distribution and quantification of PPARβ/δ and PPARγ1-3 mRNAS: discordant gene expression in subcutaneous, retroperitoneal and visceral adipose tissue of morbidly obese patients. Obes Surg. 2007;17:934–40.

    Article  PubMed  Google Scholar 

  42. Baranova A, Gowder SJ, Schlauch K, et al. Gene expression of leptin, resistin, and adiponectin in the white adipose tissue of obese patients with non-alcoholic fatty liver disease and insulin resistance. Obes Surg. 2006;16:1118–25.

    Article  PubMed  Google Scholar 

  43. Yamazaki Y, Usui I, Kanatani Y. Treatment with SRT1720, a SIRT1 Activator, ameliorates fatty liver with reduced expression of lipogenic enzymes in MSG mice. Am J Physiol Endocrinol Metab. 2009;297:E1179–86.

    Article  CAS  Google Scholar 

  44. Wei Y, Rector RS, Thyfault JP, et al. Nonalcoholic fatty liver disease and mitochondrial dysfunction. Word J Gastroelterol. 2008;14:193–9.

    Article  CAS  Google Scholar 

  45. Maassen JA, Romijn JA, Heine RJ. Fatty acid-induced mitochondrial uncoupling in adipocytes as a key protective factor against insulin resistance and beta cell dysfunction: do adipocytes consume sufficient amounts of oxygen to oxidize fatty acids? Diabetologia. 2008;51:907–8.

    Article  PubMed  CAS  Google Scholar 

  46. Pitt HÁ. Hepato-pancreato-biliary fat: the good, the bad and the ugly. HPB. 2007;9:92–7.

    Article  PubMed  Google Scholar 

  47. Park SH, Jeon WK, Kim HJ, et al. Prevalence and risk factors of non-alcoholic fatty liver disease among Korean adults. J Gastro Hepatol. 2006;21:138–43.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by research grants from the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and the Fundação de Apoio à Pesquisa do Rio Grande do Sul (FAPERGS). Dr. R. Margis is recipient of a research fellowship from the CNPq.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Regina Maria Guaragna.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s11695-010-0099-x

Rights and permissions

Reprints and permissions

About this article

Cite this article

Costa, C.d.S., Hammes, T.O., Rohden, F. et al. SIRT1 Transcription Is Decreased in Visceral Adipose Tissue of Morbidly Obese Patients with Severe Hepatic Steatosis. OBES SURG 20, 633–639 (2010). https://doi.org/10.1007/s11695-009-0052-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11695-009-0052-z

Keywords

Navigation