Skip to main content
Log in

Stress and Its Role in Sympathetic Nervous System Activation in Hypertension and the Metabolic Syndrome

  • Published:
Current Hypertension Reports Aims and scope Submit manuscript

Abstract

Stress in several guises is evident in individuals with hypertension and in those with the metabolic syndrome and may account, at least in part, for the extent and pattern of sympathetic nervous activation. Importantly, elevated activity of the sympathetic nervous system is related to the development of obesity-related illnesses including hypertension, insulin resistance, and renal, cardiac, and vascular impairment. Notably, evidence of subclinical organ damage is evident even in young, normotensive, overweight persons, thereby reinforcing the need to develop and implement effective early intervention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Anagnostis P, Athyros VG, Tziomalos K, et al. Clinical review: the pathogenetic role of cortisol in the metabolic syndrome: a hypothesis. J Clin Endocrinol Metab. 2009;94:2692–701.

    Article  PubMed  CAS  Google Scholar 

  2. Dimsdale JE. Psychological stress and cardiovascular disease. J Am Coll Cardiol. 2008;51:1237–46.

    Article  PubMed  Google Scholar 

  3. Esler M, Eikelis N, Schlaich M, et al. Chronic mental stress is a cause of essential hypertension: presence of biological markers of stress. Clin Exp Pharmacol Physiol. 2008;35:498–502.

    Article  PubMed  CAS  Google Scholar 

  4. Chandola T, Brunner E, Marmot M. Chronic stress at work and the metabolic syndrome: prospective study. BMJ. 2006;332:521–5.

    Article  PubMed  Google Scholar 

  5. Esler M, Jennings G, Lambert G. Measurement of overall and cardiac norepinephrine release into plasma during cognitive challenge. Psychoneuroendocrinology. 1989;14:477–81.

    Article  PubMed  CAS  Google Scholar 

  6. Grassi G, Seravalle G, Dell’Oro R, et al. Adrenergic and reflex abnormalities in obesity-related hypertension. Hypertension. 2000;36:538–42.

    PubMed  CAS  Google Scholar 

  7. Lambert E, Straznicky N, Eikelis N, et al. Gender differences in sympathetic nervous activity: influence of body mass and blood pressure. J Hypertens. 2007;25:1411–9.

    Article  PubMed  CAS  Google Scholar 

  8. •• Lambert E, Sari CI, Dawood T, et al. Sympathetic nervous system activity is associated with obesity-induced subclinical organ damage in young adults. Hypertension. 2010;56:351–8. This article documents the association between sympathetic nervous activation and preclinical signs of end-organ damage in young, overweight, yet normotensive individuals, thereby highlighting the need for early detection and possible intervention.

    Article  PubMed  CAS  Google Scholar 

  9. Rumantir MS, Jennings GL, Lambert GW, et al. The ‘adrenaline hypothesis’ of hypertension revisited: evidence for adrenaline release from the heart of patients with essential hypertension. J Hypertens. 2000;18:717–23.

    Article  PubMed  CAS  Google Scholar 

  10. Micutkova L, Krepsova K, Sabban E, et al. Modulation of catecholamine-synthesizing enzymes in the rat heart by repeated immobilization stress. Ann NY Acad Sci. 2004;1018:424–9.

    Article  PubMed  CAS  Google Scholar 

  11. Wallin BG, Esler M, Dorward P, et al. Simultaneous measurements of cardiac noradrenaline spillover and sympathetic outflow to skeletal muscle in humans. J Physiol. 1992;453:45–58.

    PubMed  CAS  Google Scholar 

  12. Lucini D, Di Fede G, Parati G, Pagani M. Impact of chronic psychosocial stress on autonomic cardiovascular regulation in otherwise healthy subjects. Hypertension. 2005;46:1201–6.

    Article  PubMed  CAS  Google Scholar 

  13. • Flaa A, Aksnes TA, Kjeldsen SE, et al. Increased sympathetic reactivity may predict insulin resistance: an 18-year follow-up study. Metabolism. 2008;57:1422–7. Sympathetic reactivity was shown to be predictive of subsequent development of insulin resistance.

    Article  PubMed  CAS  Google Scholar 

  14. Marmot MG, Bosma H, Hemingway H, et al. Contribution of job control and other risk factors to social variations in coronary heart disease incidence. Lancet. 1997;350:235–9.

    Article  PubMed  CAS  Google Scholar 

  15. Rosengren A, Hawken S, Ounpuu S, et al. Association of psychosocial risk factors with risk of acute myocardial infarction in 11119 cases and 13648 controls from 52 countries (the INTERHEART study): case-control study. Lancet. 2004;364:953–62.

    Article  PubMed  Google Scholar 

  16. Bjorntorp P. Neuroendocrine abnormalities in human obesity. Metabolism. 1995;44:38–41.

    Article  PubMed  CAS  Google Scholar 

  17. Vicennati V, Pasqui F, Cavazza C, et al. Stress-related development of obesity and cortisol in women. Obesity (Silver Spring). 2009;17:1678–83.

    Article  CAS  Google Scholar 

  18. Zhang J, Niaura R, Dyer JR, et al. Hostility and urine norepinephrine interact to predict insulin resistance: the VA normative aging study. Psychosom Med. 2006;68:718–26.

    Article  PubMed  CAS  Google Scholar 

  19. Fowler-Brown AG, Bennett GG, Goodman MS, et al. Psychosocial stress and 13-year BMI change among blacks: the Pitt county study. Obesity (Silver Spring). 2009;17:2106–9.

    Article  Google Scholar 

  20. Block JP, He Y, Zaslavsky AM, et al. Psychosocial stress and change in weight among US adults. Am J Epidemiol. 2009;170:181–92.

    Article  PubMed  Google Scholar 

  21. van Jaarsveld CH, Fidler JA, Steptoe A, et al. Perceived stress and weight gain in adolescence: a longitudinal analysis. Obesity (Silver Spring). 2009;17:2155–61.

    Article  Google Scholar 

  22. Zhao G, Ford ES, Dhingra S, et al. Depression and anxiety among US adults: associations with body mass index. Int J Obes (Lond). 2009;33:257–66.

    Article  CAS  Google Scholar 

  23. Kopf D, Westphal S, Luley CW, et al. Lipid metabolism and insulin resistance in depressed patients: significance of weight, hypercortisolism, and antidepressant treatment. J Clin Psychopharmacol. 2004;24:527–31.

    Article  PubMed  CAS  Google Scholar 

  24. Ljung T, Ahlberg AC, Holm G, et al. Treatment of abdominally obese men with a serotonin reuptake inhibitor: a pilot study. J Intern Med. 2001;250:219–24.

    Article  PubMed  CAS  Google Scholar 

  25. Barton DA, Dawood T, Lambert EA, et al. Sympathetic activity in major depressive disorder: identifying those at increased cardiac risk? J Hypertens. 2007;25:2117–24.

    Article  PubMed  CAS  Google Scholar 

  26. Luppino FS, de Wit LM, Bouvy PF, et al. Overweight, obesity, and depression: a systematic review and meta-analysis of longitudinal studies. Arch Gen Psychiatry. 2010;67:220–9.

    Article  PubMed  Google Scholar 

  27. Vogelzangs N, Suthers K, Ferrucci L, et al. Hypercortisolemic depression is associated with the metabolic syndrome in late-life. Psychoneuroendocrinology. 2007;32:151–9.

    Article  PubMed  CAS  Google Scholar 

  28. Vogelzangs N, Kritchevsky SB, Beekman AT, et al. Depressive symptoms and change in abdominal obesity in older persons. Arch Gen Psychiatry. 2008;65:1386–93.

    Article  PubMed  Google Scholar 

  29. Skilton MR, Moulin P, Terra JL, Bonnet F. Associations between anxiety, depression, and the metabolic syndrome. Biol Psychiatry. 2007;62:1251–7.

    Article  PubMed  CAS  Google Scholar 

  30. Lambert GW, Straznicky NE, Lambert EA, et al. Sympathetic nervous activation in obesity and the metabolic syndrome-causes, consequences and therapeutic implications. Pharmacol Ther. 2010;126:159–72.

    Article  PubMed  CAS  Google Scholar 

  31. Kuo LE, Kitlinska JB, Tilan JU, et al. Neuropeptide Y acts directly in the periphery on fat tissue and mediates stress-induced obesity and metabolic syndrome. Nat Med. 2007;13:803–11.

    Article  PubMed  CAS  Google Scholar 

  32. Morris MJ, Cox HS, Lambert GW, et al. Region-specific neuropeptide Y overflows at rest and during sympathetic activation in humans. Hypertension. 1997;29:137–43.

    PubMed  CAS  Google Scholar 

  33. Grassi G, Seravalle G, Cattaneo BM, et al. Sympathetic activation in obese normotensive subjects. Hypertension. 1995;25:560–3.

    PubMed  CAS  Google Scholar 

  34. Straznicky NE, Lambert EA, Lambert GW, et al. Effects of dietary weight loss on sympathetic activity and cardiac risk factors associated with the metabolic syndrome. J Clin Endocrinol Metab. 2005;90:5998–6005.

    Article  PubMed  CAS  Google Scholar 

  35. Straznicky NE, Eikelis N, Lambert EA, Esler MD. Mediators of sympathetic activation in metabolic syndrome obesity. Curr Hypertens Rep. 2008;10:440–7.

    Article  PubMed  CAS  Google Scholar 

  36. Lambert E, Straznicky N, Schlaich M, et al. Differing pattern of sympathoexcitation in normal-weight and obesity-related hypertension. Hypertension. 2007;50:862–8.

    Article  PubMed  CAS  Google Scholar 

  37. Alvarez GE, Beske SD, Ballard TP, Davy KP. Sympathetic neural activation in visceral obesity. Circulation. 2002;106:2533–6.

    Article  PubMed  Google Scholar 

  38. Straznicky NE, Grima MT, Eikelis N, et al: The effects of weight loss versus weight loss maintenance on sympathetic nervous system activity and metabolic syndrome components. J Clin Endocrinol Metab 2010 Dec 22 (Epub ahead of print).

  39. Mathieu P, Poirier P, Pibarot P, et al. Visceral obesity: the link among inflammation, hypertension, and cardiovascular disease. Hypertension. 2009;53:577–84.

    Article  PubMed  CAS  Google Scholar 

  40. Grassi G. Sympathetic overdrive and cardiovascular risk in the metabolic syndrome. Hypertens Res. 2006;29:839–47.

    Article  PubMed  CAS  Google Scholar 

  41. Wirtz PH, Ehlert U, Bartschi C, et al. Changes in plasma lipids with psychosocial stress are related to hypertension status and the norepinephrine stress response. Metabolism. 2009;58:30–7.

    Article  PubMed  CAS  Google Scholar 

  42. •• Lambert E, Dawood T, Straznicky N, et al. Association between the sympathetic firing pattern and anxiety level in patients with the metabolic syndrome and elevated blood pressure. J Hypertens. 2010;28:543–50. This paper highlights the importance of psychosocial stress in influencing the pattern of sympathetic nerve firing.

    Article  PubMed  CAS  Google Scholar 

  43. Lambert E, Hotchkin E, Alvarenga M, et al. Single-unit analysis of sympathetic nervous discharges in patients with panic disorder. J Physiol. 2006;570:637–43.

    Article  PubMed  CAS  Google Scholar 

  44. Lambert E, Dawood T, Schlaich M, et al. Single-unit sympathetic discharge pattern in pathological conditions associated with elevated cardiovascular risk. Clin Exp Pharmacol Physiol. 2008;35:503–7.

    Article  PubMed  CAS  Google Scholar 

  45. Macefield VG, Rundqvist B, Sverrisdottir YB, et al. Firing properties of single muscle vasoconstrictor neurons in the sympathoexcitation associated with congestive heart failure. Circulation. 1999;100:1708–13.

    PubMed  CAS  Google Scholar 

  46. Shibao C, Gamboa A, Diedrich A, et al. Autonomic contribution to blood pressure and metabolism in obesity. Hypertension. 2007;49:27–33.

    Article  PubMed  CAS  Google Scholar 

  47. Rumantir MS, Vaz M, Jennings GL, et al. Neural mechanisms in human obesity-related hypertension. J Hypertens. 1999;17:1125–33.

    Article  PubMed  CAS  Google Scholar 

  48. Schlaich MP, Sobotka PA, Krum H, et al. Renal sympathetic-nerve ablation for uncontrolled hypertension. N Engl J Med. 2009;361:932–4.

    Article  PubMed  CAS  Google Scholar 

  49. Straznicky NE, Lambert EA, Nestel PJ, et al. Sympathetic neural adaptation to hypocaloric diet with or without exercise training in obese metabolic syndrome subjects. Diabetes. 2010;59:71–9.

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

This work was supported by grants from the National Health and Medical Research Council of Australia (NHMRC).

Disclosure

The investigators (or their laboratory) have received research funding from commercial sponsors including Abbot (formerly Solvay Pharmaceuticals), Servier, Ardian Inc, Allergan, and Scientific Intake. Dr. Gavin Lambert has received honoraria or travel support for presentations from Servier, Wyeth Pharmaceuticals, and Pfizer. No other potential conflicts of interest relevant to this article were reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisabeth A. Lambert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lambert, E.A., Lambert, G.W. Stress and Its Role in Sympathetic Nervous System Activation in Hypertension and the Metabolic Syndrome. Curr Hypertens Rep 13, 244–248 (2011). https://doi.org/10.1007/s11906-011-0186-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11906-011-0186-y

Keywords

Navigation