Skip to main content

Advertisement

Log in

Recent advances in the genetics of amyotrophic lateral sclerosis

  • Published:
Current Neurology and Neuroscience Reports Aims and scope Submit manuscript

Abstract

Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disorder with a low survival rate beyond 5 years from symptom onset. Although the genes that cause most cases of ALS are still unknown, several important genetic discoveries have been made recently that will bring substantial insight into some of the mechanisms involved in ALS. Mutations in two genes with related functions were recently reported in patients with familial ALS: the FUS/TLS gene at the ALS6 locus on chromosome 16 and the TARDBP gene at the ALS10 locus on chromosome 1. In addition, the first wave of genomewide association studies in ALS has been published. While these studies clearly show that there is no definitive and common highly penetrant allele that causes ALS, some interesting candidate genes emerged from these studies. The findings help to better delineate the types of genes and genetic variants that are involved in ALS and provide substantial material for future research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References and Recommended Reading

  1. Valdmanis PN, Rouleau GA: Genetics of familial amyotrophic lateral sclerosis. Neurology 2008, 70:144–152.

    Article  PubMed  Google Scholar 

  2. Rosen DR, Siddique T, Patterson D, et al.: Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 1993, 362:59–62.

    Article  PubMed  CAS  Google Scholar 

  3. Ezzi SA, Urushitani M, Julien JP: Wild-type superoxide dismutase acquires binding and toxic properties of ALSlinked mutant forms through oxidation. J Neurochem 2007, 102:170–178.

    Article  PubMed  Google Scholar 

  4. Rakhit R, Robertson J, Vande Velde C, et al.: An immunological epitope selective for pathological monomermisfolded SOD1 in ALS. Nat Med 2007, 13:754–759.

    Article  PubMed  CAS  Google Scholar 

  5. Hadano S, Hand CK, Osuga H, et al.: A gene encoding a putative GTPase regulator is mutated in familial amyotrophic lateral sclerosis 2. Nat Genet 2001, 29:166–173.

    Article  PubMed  CAS  Google Scholar 

  6. Chen YZ, Bennett CL, Huynh HM, et al.: DNA/RNA helicase gene mutations in a form of juvenile amyotrophic lateral sclerosis (ALS4). Am J Hum Genet 2004, 74:1128–1135.

    Article  PubMed  CAS  Google Scholar 

  7. Greenway MJ, Andersen PM, Russ C, et al.: ANG mutations segregate with familial and ’sporadic’ amyotrophic lateral sclerosis. Nat Genet 2006, 38:411–413.

    Article  PubMed  CAS  Google Scholar 

  8. Gellera C, Colombrita C, Ticozzi N, et al.: Identification of new ANG gene mutations in a large cohort of Italian patients with amyotrophic lateral sclerosis. Neurogenetics 2008, 9:33–40.

    Article  PubMed  CAS  Google Scholar 

  9. Wu D, Yu W, Kishikawa H, et al.: Angiogenin loss-of-function mutations in amyotrophic lateral sclerosis. Ann Neurol 2007, 62:609–617.

    Article  PubMed  CAS  Google Scholar 

  10. Paubel A, Violette J, Amy M, et al.: Mutations of the ANG gene in French patients with sporadic amyotrophic lateral sclerosis. Arch Neurol 2008, 65:1333–1336.

    Article  PubMed  Google Scholar 

  11. Subramanian V, Crabtree B, Acharya KR: Human angiogenin is a neuroprotective factor and amyotrophic lateral sclerosis associated angiogenin variants affect neurite extension/pathfinding and survival of motor neurons. Hum Mol Genet 2008, 17:130–149.

    Article  PubMed  CAS  Google Scholar 

  12. Nishimura AL, Mitne-Neto M, Silva HC, et al.: A mutation in the vesicle-trafficking protein VAPB causes late-onset spinal muscular atrophy and amyotrophic lateral sclerosis. Am J Hum Genet 2004, 75:822–831.

    Article  PubMed  CAS  Google Scholar 

  13. Landers JE, Leclerc AL, Shi L, et al.: New VAPB deletion variant and exclusion of VAPB mutations in familial ALS. Neurology 2008, 70:1179–1185.

    Article  PubMed  CAS  Google Scholar 

  14. Chai A, Withers J, Koh YH, et al.: hVAPB, the causative gene of a heterogeneous group of motor neuron diseases in humans, is functionally interchangeable with its Drosophila homologue DVAP-33A at the neuromuscular junction. Hum Mol Genet 2008, 17:266–280.

    Article  PubMed  CAS  Google Scholar 

  15. Kanekura K, Nishimoto I, Aiso S, Matsuoka M: Characterization of amyotrophic lateral sclerosis-linked P56S mutation of vesicle-associated membrane protein-associated protein B (VAPB/ALS8). J Biol Chem 2006, 281:30223–30233.

    Article  PubMed  CAS  Google Scholar 

  16. Hand CK, Khoris J, Salachas F, et al.: A novel locus for familial amyotrophic lateral sclerosis, on chromosome 18q. Am J Hum Genet 2002, 70:251–256.

    Article  PubMed  CAS  Google Scholar 

  17. Sapp PC, Hosler BA, McKenna-Yasek D, et al.: Identification of two novel loci for dominantly inherited familial amyotrophic lateral sclerosis. Am J Hum Genet 2003, 73:397–403.

    Article  PubMed  CAS  Google Scholar 

  18. Morita M, Al-Chalabi A, Andersen PM, et al.: A locus on chromosome 9p confers susceptibility to ALS and frontotemporal dementia. Neurology 2006, 66:839–844.

    Article  PubMed  CAS  Google Scholar 

  19. Valdmanis PN, Dupre N, Bouchard JP, et al.: Three families with amyotrophic lateral sclerosis and frontotemporal dementia with evidence of linkage to chromosome 9p. Arch Neurol 2007, 64:240–245.

    Article  PubMed  Google Scholar 

  20. Vance C, Al-Chalabi A, Ruddy D, et al.: Familial amyotrophic lateral sclerosis with frontotemporal dementia is linked to a locus on chromosome 9p13.2–21.3. Brain 2006, 129:868–876.

    Article  PubMed  Google Scholar 

  21. Luty AA, Kwok JB, Thompson EM, et al.: Pedigree with frontotemporal lobar degeneration—motor neuron disease and Tar DNA binding protein-43 positive neuropathology: genetic linkage to chromosome 9. BMC Neurol 2008, 8:32.

    Article  PubMed  Google Scholar 

  22. Neumann M, Sampathu DM, Kwong LK, et al.: Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 2006, 314:130–133.

    Article  PubMed  CAS  Google Scholar 

  23. Arai T, Hasegawa M, Akiyama H, et al.: TDP-43 is a component of ubiquitin-positive tau-negative inclusions in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Biochem Biophys Res Commun 2006, 351:602–611.

    Article  PubMed  CAS  Google Scholar 

  24. Hasegawa M, Arai T, Nonaka T, et al.: Phosphorylated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Ann Neurol 2008, 64:60–70.

    Article  PubMed  CAS  Google Scholar 

  25. Strong MJ, Volkening K, Hammond R, et al.: TDP43 is a human low molecular weight neurofilament (hNFL) mRNAbinding protein. Mol Cell Neurosci 2007, 35:320–327.

    Article  PubMed  CAS  Google Scholar 

  26. Mackenzie IR, Bigio EH, Ince PG, et al.: Pathological TDP-43 distinguishes sporadic amyotrophic lateral sclerosis from amyotrophic lateral sclerosis with SOD1 mutations. Ann Neurol 2007, 61:427–434.

    Article  PubMed  CAS  Google Scholar 

  27. Cairns NJ, Neumann M, Bigio EH, et al.: TDP-43 in familial and sporadic frontotemporal lobar degeneration with ubiquitin inclusions. Am J Pathol 2007, 171:227–240.

    Article  PubMed  CAS  Google Scholar 

  28. Fujita Y, Mizuno Y, Takatama M, Okamoto K: Anterior horn cells with abnormal TDP-43 immunoreactivities show fragmentation of the Golgi apparatus in ALS. J Neurol Sci 2008, 269:30–34.

    Article  PubMed  CAS  Google Scholar 

  29. Cairns NJ, Bigio EH, Mackenzie IR, et al.: Neuropathologic diagnostic and nosologic criteria for frontotemporal lobar degeneration: consensus of the Consortium for Frontotemporal Lobar Degeneration. Acta Neuropathol 2007, 114:5–22.

    Article  PubMed  Google Scholar 

  30. Sreedharan J, Blair IP, Tripathi VB, et al.: TDP-43 mutations in familial and sporadic amyotrophic lateral sclerosis. Science 2008, 319:1668–1672.

    Article  PubMed  CAS  Google Scholar 

  31. Kabashi E, Valdmanis PN, Dion P, et al.: TARDBP mutations in individuals with sporadic and familial amyotrophic lateral sclerosis. Nat Genet 2008, 40:572–574.

    Article  PubMed  CAS  Google Scholar 

  32. Rutherford NJ, Zhang YJ, Baker M, et al.: Novel mutations in TARDBP (TDP-43) in patients with familial amyotrophic lateral sclerosis. PLoS Genet 2008, 4:e1000193.

    Article  PubMed  Google Scholar 

  33. Van Deerlin VM, Leverenz JB, Bekris LM, et al.: TARDBP mutations in amyotrophic lateral sclerosis with TDP-43 neuropathology: a genetic and histopathological analysis. Lancet Neurol 2008, 7:409–416.

    Article  PubMed  Google Scholar 

  34. Kuhnlein P, Sperfeld AD, Vanmassenhove B, et al.: Two German kindreds with familial amyotrophic lateral sclerosis due to TARDBP mutations. Arch Neurol 2008, 65:1185–1189.

    Article  PubMed  Google Scholar 

  35. Yokoseki A, Shiga A, Tan CF, et al.: TDP-43 mutation in familial amyotrophic lateral sclerosis. Ann Neurol 2008, 63:538–542.

    Article  PubMed  CAS  Google Scholar 

  36. Gitcho MA, Baloh RH, Chakraverty S, et al.: TDP-43 A315T mutation in familial motor neuron disease. Ann Neurol 2008, 63:535–538.

    Article  PubMed  CAS  Google Scholar 

  37. Daoud H, Valdmanis PN, Kabashi E, et al.: Contribution of TARDBP mutations to sporadic amyotrophic lateral sclerosis. J Med Genet 2009, 46:112–114.

    Article  PubMed  CAS  Google Scholar 

  38. Kwiatkowski TJ, Bosco DA, LeClerc AL, et al.: Mutations in the FUS/TLS gene on chromosome 16 cause familial amyotrophic lateral sclerosis. Science 2009, 323:1205–1208.

    Article  PubMed  CAS  Google Scholar 

  39. Vance C, Rogelj B, Hortobagvi T, et al.: Mutations in FUS, an RNA processing protein, cause familial amyotrophic lateral sclerosis. Science 2009, 323:1208–1211.

    Article  PubMed  CAS  Google Scholar 

  40. Crozat A, Aman P, Mandahl N, Ron D: Fusion of CHOP to a novel RNA-binding protein in human myxoid liposarcoma. Nature 1993, 363:640–644.

    Article  PubMed  CAS  Google Scholar 

  41. Rabbitts TH, Forster A, Larson R, Nathan P: Fusion of the dominant negative transcription regulator CHOP with a novel gene FUS by translocation t(12;16) in malignant liposarcoma. Nat Genet 1993, 4:175–180.

    Article  PubMed  CAS  Google Scholar 

  42. Hicks GG, Singh N, Nashabi A, et al.: Fus deficiency in mice results in defective B-lymphocyte development and activation, high levels of chromosomal instability and perinatal death. Nat Genet 2000, 24:175–179.

    Article  PubMed  CAS  Google Scholar 

  43. Kuroda M, Sok J, Webb L, et al.: Male sterility and enhanced radiation sensitivity in TLS(−/−) mice. EMBO J 2000, 19:453–462.

    Article  PubMed  CAS  Google Scholar 

  44. Fujii R, Okabe S, Urushido T, et al.: The RNA binding protein TLS is translocated to dendritic spines by mGluR5 activation and regulates spine morphology. Curr Biol 2005, 15:587–593.

    Article  PubMed  CAS  Google Scholar 

  45. Fujii R, Takumi T: TLS facilitates transport of mRNA encoding an actin-stabilizing protein to dendritic spines. J Cell Sci 2005, 118:5755–5765.

    Article  PubMed  CAS  Google Scholar 

  46. Wang X, Arai S, Song X, et al.: Induced ncRNAs allosterically modify RNA-binding proteins in cis to inhibit transcription. Nature 2008, 454:126–130.

    Article  PubMed  CAS  Google Scholar 

  47. Schymick JC, Scholz SW, Fung HC, et al.: Genome-wide genotyping in amyotrophic lateral sclerosis and neurologically normal controls: first stage analysis and public release of data. Lancet Neurol 2007, 6:322–328.

    Article  PubMed  CAS  Google Scholar 

  48. Dunckley T, Huentelman MJ, Craig DW, et al.: Whole-genome analysis of sporadic amyotrophic lateral sclerosis. N Engl J Med 2007, 357:775–788.

    Article  PubMed  CAS  Google Scholar 

  49. van Es MA, Van Vught PW, Blauw HM, et al.: ITPR2 as a susceptibility gene in sporadic amyotrophic lateral sclerosis: a genome-wide association study. Lancet Neurol 2007, 6:869–877.

    Article  PubMed  Google Scholar 

  50. Cronin S, Berger S, Ding J, et al.: A genome-wide association study of sporadic ALS in a homogenous Irish population. Hum Mol Genet 2008, 17:768–774.

    Article  PubMed  CAS  Google Scholar 

  51. van Es MA, van Vught PW, Blauw HM, et al.: Genetic variation in DPP6 is associated with susceptibility to amyotrophic lateral sclerosis. Nat Genet 2008, 40:29–31.

    Article  PubMed  Google Scholar 

  52. Del Bo R, Ghezzi S, Corti S, et al.: DPP6 gene variability confers increased risk of developing sporadic amyotrophic lateral sclerosis in Italian patients. J Neurol Neurosurg Psychiatry 2008, 79:1085.

    Article  PubMed  Google Scholar 

  53. Cronin S, Tomik B, Bradley DG, et al.: Screening for replication of genome-wide SNP associations in sporadic ALS. Eur J Hum Genet 2009, 17:213–218.

    Article  PubMed  CAS  Google Scholar 

  54. Chio A, Schymick JC, Restagno G, et al.: A two-stage genomewide association study of sporadic amyotrophic lateral sclerosis. Hum Mol Genet 2009 Feb 4 (Epub ahead of print).

  55. Blauw HM, Veldink JH, van Es MA, et al.: Copy-number variation in sporadic amyotrophic lateral sclerosis: a genome-wide screen. Lancet Neurol 2008, 7:319–326.

    Article  PubMed  CAS  Google Scholar 

  56. Cronin S, Blauw HM, Veldink JH, et al.: Analysis of genome-wide copy number variation in Irish and Dutch ALS populations. Hum Mol Genet 2008, 17:3392–3398.

    Article  PubMed  CAS  Google Scholar 

  57. Simpson CL, Lemmens R, Miskiewicz K, et al.: Variants of the elongator protein 3 (ELP3) gene are associated with motor neuron degeneration. Hum Mol Genet 2009, 18:472–481.

    Article  PubMed  CAS  Google Scholar 

  58. Lemmens R, Van Hoecke A, Hersmus N, et al.: Overexpression of mutant superoxide dismutase 1 causes a motor axonopathy in the zebrafish. Hum Mol Genet 2007, 16:2359–2365.

    Article  PubMed  CAS  Google Scholar 

  59. Gros-Louis F, Kriz J, Kabashi E, et al.: Als2 mRNA splicing variants detected in KO mice rescue severe motor dysfunction phenotype in Als2 knock-down zebrafish. Hum Mol Genet 2008, 17:2691–2702.

    Article  PubMed  CAS  Google Scholar 

  60. Slowik A, Tomik B, Wolkow PP, et al.: Paraoxonase gene polymorphisms and sporadic ALS. Neurology 2006, 67:766–770.

    Article  PubMed  CAS  Google Scholar 

  61. Saeed M, Siddique N, Hung WY, et al.: Paraoxonase cluster polymorphisms are associated with sporadic ALS. Neurology 2006, 67:771–776.

    Article  PubMed  CAS  Google Scholar 

  62. Morahan JM, Yu B, Trent RJ, Pamphlett R: A gene-environment study of the paraoxonase 1 gene and pesticides in amyotrophic lateral sclerosis. Neurotoxicology 2007, 28:532–540.

    Article  PubMed  CAS  Google Scholar 

  63. Cronin S, Greenway MJ, Prehn JH, Hardiman O: Paraoxonase promoter and intronic variants modify risk of sporadic amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry 2007, 78:984–986.

    Article  PubMed  Google Scholar 

  64. Landers JE, Shi L, Cho TJ, et al.: A common haplotype within the PON1 promoter region is associated with sporadic ALS. Amyotroph Lateral Scler 2008, 9:306–314.

    Article  PubMed  CAS  Google Scholar 

  65. Valdmanis PN, Kabashi E, Dyck A, et al.: Association of paraoxonase gene cluster polymorphisms with ALS in France, Quebec, and Sweden. Neurology 2008, 71:514–520.

    Article  PubMed  CAS  Google Scholar 

  66. Rainier S, Bui M, Mark E, et al.: Neuropathy target esterase gene mutations cause motor neuron disease. Am J Hum Genet 2008, 82:780–785.

    Article  PubMed  CAS  Google Scholar 

  67. Hentati A, Ouahchi K, Pericak-Vance MA, et al.: Linkage of a commoner form of recessive amyotrophic lateral sclerosis to chromosome 15q15-q22 markers. Neurogenetics 1998, 2:55–60.

    Article  PubMed  CAS  Google Scholar 

  68. Hosler BA, Siddique T, Sapp PC, et al.: Linkage of familial amyotrophic lateral sclerosis with frontotemporal dementia to chromosome 9q21–q22. JAMA 2000, 284:1664–1669.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guy A. Rouleau.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Valdmanis, P.N., Daoud, H., Dion, P.A. et al. Recent advances in the genetics of amyotrophic lateral sclerosis. Curr Neurol Neurosci Rep 9, 198–205 (2009). https://doi.org/10.1007/s11910-009-0030-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11910-009-0030-9

Keywords

Navigation