Skip to main content

Advertisement

Log in

Hereditary Sensory and Autonomic Neuropathies: Adding More to the Classification

  • Autonomic Dysfunction (L.H. Weimer, Section Editor)
  • Published:
Current Neurology and Neuroscience Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Hereditary sensory and autonomic neuropathies (HSANs) are a clinically heterogeneous group of inherited neuropathies featuring prominent sensory and autonomic involvement. Classification of HSAN is based on mode of inheritance, genetic mutation, and phenotype. In this review, we discuss the recent additions to this classification and the important updates on management with a special focus on the recently investigated disease-modifying agents.

Recent Findings

In this past decade, three more HSAN types were added to the classification creating even more diversity in the genotype–phenotype. Clinical trials are underway for disease-modifying and symptomatic therapeutics, targeting mainly HSAN type III.

Summary

Obtaining genetic testing leads to accurate diagnosis and guides focused management in the setting of such a diverse and continuously growing phenotype. It also increases the wealth of knowledge on HSAN pathophysiologies which paves the way toward development of targeted genetic treatments in the era of precision medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Alejandra González-Duarte, Maria Cotrina-Vidal, … Lucy Norcliffe-Kaufmann

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Nelaton M. Affection singuliere des os du pied. Gaz Hop Civ Milit 1852;4:13–12.

  2. Ota M, Ellefson RD, Lambert EH, Dyck PJ. Hereditary sensory neuropathy, type II. Clinical, electrophysiologic, histologic, and biochemical studies of a Quebec kinship. Arch Neurol. 1973;29:23–37.

    Article  CAS  Google Scholar 

  3. Dyck PJ. Neuronal atrophy and degeneration predominantly affecting peripheral sensory and autonomic neurons. In: Dyck PJ, Thomas PK, Griffin JW, Low PA, Poduslo JF, editors. Peripheral neuropathy. 3rd ed. Philadelphia: WB Saunders Co; 1993. p. 1065–93.

    Google Scholar 

  4. Verhoeven K, Timmerman V, Mauko B, Pieber TR, De Jonghe P, Auer-Grumbach M. Recent advances in hereditary sensory and autonomic neuropathies. Curr Opin Neurol. 2006;19:474–80. https://doi.org/10.1097/01.wco.0000245370.82317.f6.

    Article  PubMed  CAS  Google Scholar 

  5. Houlden H, Blake J, Reilly MM. Hereditary sensory neuropathies. Curr Opin Neurol. 2004;17:569–77.

    Article  CAS  Google Scholar 

  6. Nicholson GA, Dawkins JL, Blair IP, Kennerson ML, Gordon MJ, Cherryson AK, et al. The gene for hereditary sensory neuropathy type I (HSN-I) maps to chromosome 9q22.1-q22.3. Nat Genet. 1996;13:101–4. https://doi.org/10.1038/ng0596-101.

    Article  PubMed  CAS  Google Scholar 

  7. Denny-Brown D. Hereditary sensory radicular neuropathy. J Neurol Neurosurg Psychiatry. 1951;14:237–52.

    Article  CAS  Google Scholar 

  8. Leplat M, editor. Dictionnaire de medecine en 30 volumes 1846; Paris.

  9. Nelaton M, editor. Affection singuliere des os du pied. Gazette des Hopitaux Civils et Militaires 1852; Paris.

  10. Bejaoui K, Uchida Y, Yasuda S, Ho M, Nishijima M, Brown RH Jr, et al. Hereditary sensory neuropathy type 1 mutations confer dominant negative effects on serine palmitoyltransferase, critical for sphingolipid synthesis. J Clin Invest. 2002;110:1301–8. https://doi.org/10.1172/JCI16450.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Ho KW, Jerath NU. V144D mutation of SPTLC1 can present with both painful and painless phenotypes in hereditary sensory and autonomic neuropathies type I. Case Reports in Genetics. 2018;2018:1898151. https://doi.org/10.1155/2018/1898151.

    Google Scholar 

  12. Houlden H, King R, Blake J, Groves M, Love S, Woodward C, et al. Clinical, pathological and genetic characterization of hereditary sensory and autonomic neuropathy type 1 (HSAN I). Brain. 2006;129:411–25. https://doi.org/10.1093/brain/awh712.

    Article  PubMed  Google Scholar 

  13. Rotthier A, Auer-Grumbach M, Janssens K, Baets J, Penno A, Almeida-Souza L, et al. Mutations in the SPTLC2 subunit of serine palmitoyltransferase cause hereditary sensory and autonomic neuropathy type I. Am J Hum Genet. 2010;87:513–22. https://doi.org/10.1016/j.ajhg.2010.09.010.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Spring PJ, Kok C, Nicholson GA, Ing AJ, Spies JM, Bassett ML, et al. Autosomal dominant hereditary sensory neuropathy with chronic cough and gastro-oesophageal reflux: clinical features in two families linked to chromosome 3p22-p24. Brain. 2005;128:2797–810. https://doi.org/10.1093/brain/awh653.

    Article  PubMed  Google Scholar 

  15. Guelly C, Zhu PP, Leonardis L, Papic L, Zidar J, Schabhuttl M, et al. Targeted high-throughput sequencing identifies mutations in atlastin-1 as a cause of hereditary sensory neuropathy type I. Am J Hum Genet. 2011;88:99–105. https://doi.org/10.1016/j.ajhg.2010.12.003.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Kornak U, Mademan I, Schinke M, Voigt M, Krawitz P, Hecht J, et al. Sensory neuropathy with bone destruction due to a mutation in the membrane-shaping atlastin GTPase 3. Brain. 2014;137:683–92. https://doi.org/10.1093/brain/awt357.

    Article  PubMed  Google Scholar 

  17. Zheng W, Yan Z, He R, Huang Y, Lin A, Huang W, et al. Identification of a novel DNMT1 mutation in a Chinese patient with hereditary sensory and autonomic neuropathy type IE. BMC Neurol. 2018;18:174. https://doi.org/10.1186/s12883-018-1177-2.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Klein CJ, Botuyan MV, Wu Y, Ward CJ, Nicholson GA, Hammans S, et al. Mutations in DNMT1 cause hereditary sensory neuropathy with dementia and hearing loss. Nat Genet. 2011;43:595–600. https://doi.org/10.1038/ng.830.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Axelrod FB. Hereditary sensory and autonomic neuropathies. Familial dysautonomia and other HSANs. Clin Auton Res. 2002;12(Suppl 1):I2–14.

    Article  Google Scholar 

  20. Axelrod FB, Gold-von Simson G. Hereditary sensory and autonomic neuropathies: types II, III, and IV. Orphanet J Rare Dis. 2007;2:39. https://doi.org/10.1186/1750-1172-2-39.

  21. Shekarabi M, Girard N, Riviere JB, Dion P, Houle M, Toulouse A, et al. Mutations in the nervous system—specific HSN2 exon of WNK1 cause hereditary sensory neuropathy type II. J Clin Invest. 2008;118:2496–505. https://doi.org/10.1172/JCI34088.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Wakil SM, Monies D, Hagos S, Al-Ajlan F, Finsterer J, Al Qahtani A, et al. Exome sequencing: mutilating sensory neuropathy with spastic paraplegia due to a mutation in FAM134B gene. Case Reports in Genetics. 2018;2018:9468049. https://doi.org/10.1155/2018/9468049.

    Article  Google Scholar 

  23. Erlich Y, Edvardson S, Hodges E, Zenvirt S, Thekkat P, Shaag A, et al. Exome sequencing and disease-network analysis of a single family implicate a mutation in KIF1A in hereditary spastic paraparesis. Genome Res. 2011;21:658–64. https://doi.org/10.1101/gr.117143.110.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Yuan J, Matsuura E, Higuchi Y, Hashiguchi A, Nakamura T, Nozuma S, et al. Hereditary sensory and autonomic neuropathy type IID caused by an SCN9A mutation. Neurology. 2013;80:1641–9. https://doi.org/10.1212/WNL.0b013e3182904fdd.

    Article  PubMed  CAS  Google Scholar 

  25. Riley CM, Day RL, et al. Central autonomic dysfunction with defective lacrimation; report of five cases. Pediatrics. 1949;3:468–78.

    PubMed  CAS  Google Scholar 

  26. Slaugenhaupt SA, Blumenfeld A, Gill SP, Leyne M, Mull J, Cuajungco MP, et al. Tissue-specific expression of a splicing mutation in the IKBKAP gene causes familial dysautonomia. Am J Hum Genet. 2001;68:598–605.

    Article  CAS  Google Scholar 

  27. Carmi S, Hui KY, Kochav E, Liu X, Xue J, Grady F, et al. Sequencing an Ashkenazi reference panel supports population-targeted personal genomics and illuminates Jewish and European origins. Nat Commun. 2014;5:4835. https://doi.org/10.1038/ncomms5835.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Maayan C, Kaplan E, Shachar S, Peleg O, Godfrey S. Incidence of familial dysautonomia in Israel 1977–1981. Clin Genet. 1987;32:106–8.

    Article  CAS  Google Scholar 

  29. Close P, Hawkes N, Cornez I, Creppe C, Lambert CA, Rogister B, et al. Transcription impairment and cell migration defects in elongator-depleted cells: implication for familial dysautonomia. Mol Cell. 2006;22:521–31. https://doi.org/10.1016/j.molcel.2006.04.017.

    Article  PubMed  CAS  Google Scholar 

  30. Creppe C, Malinouskaya L, Volvert ML, Gillard M, Close P, Malaise O, et al. Elongator controls the migration and differentiation of cortical neurons through acetylation of alpha-tubulin. Cell. 2009;136:551–64. https://doi.org/10.1016/j.cell.2008.11.043.

    Article  PubMed  CAS  Google Scholar 

  31. Anderson SL, Coli R, Daly IW, Kichula EA, Rork MJ, Volpi SA, et al. Familial dysautonomia is caused by mutations of the IKAP gene. Am J Hum Genet. 2001;68:753–8. https://doi.org/10.1086/318808.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Norcliffe-Kaufmann L, Slaugenhaupt SA, Kaufmann H. Familial dysautonomia: history, genotype, phenotype and translational research. Prog Neurobiol. 2017;152:131–48. https://doi.org/10.1016/j.pneurobio.2016.06.003.

    Article  PubMed  Google Scholar 

  33. Dong J, Edelmann L, Bajwa AM, Kornreich R, Desnick RJ. Familial dysautonomia: detection of the IKBKAP IVS20(+6T → C) and R696P mutations and frequencies among Ashkenazi Jews. Am J Med Genet. 2002;110:253–7. https://doi.org/10.1002/ajmg.10450.

    Article  PubMed  Google Scholar 

  34. Lehavi O, Aizenstein O, Bercovich D, Pavzner D, Shomrat R, Orr-Urtreger A, et al. Screening for familial dysautonomia in Israel: evidence for higher carrier rate among Polish Ashkenazi Jews. Genet Test. 2003;7:139–42. https://doi.org/10.1089/109065703322146830.

    Article  PubMed  CAS  Google Scholar 

  35. Dyck PJ, Kawamura Y, Low PA, Shimono M, Solovy JS. The number and sizes of reconstructed peripheral autonomic, sensory and motor neurons in a case or dysautonomia. J Neuropathol Exp Neurol. 1978;37:741–55.

    Article  CAS  Google Scholar 

  36. Axelrod FB, Iyer K, Fish I, Pearson J, Sein ME, Spielholz N. Progressive sensory loss in familial dysautonomia. Pediatrics. 1981;67:517–22.

    PubMed  CAS  Google Scholar 

  37. Pearson J, Pytel BA. Quantitative studies of sympathetic ganglia and spinal cord intermedio-lateral gray columns in familial dysautonomia. J Neurol Sci. 1978;39:47–59.

    Article  CAS  Google Scholar 

  38. Pearson J, Brandeis L, Goldstein M. Tyrosine hydroxylase immunoreactivity in familial dysautonomia. Science. 1979;206:71–2.

    Article  CAS  Google Scholar 

  39. Bickel A, Axelrod FB, Schmelz M, Marthol H, Hilz MJ. Dermal microdialysis provides evidence for hypersensitivity to noradrenaline in patients with familial dysautonomia. J Neurol Neurosurg Psychiatry. 2002;73:299–302.

    Article  CAS  Google Scholar 

  40. Goldstein DS, Eldadah B, Sharabi Y, Axelrod FB. Cardiac sympathetic hypo-innervation in familial dysautonomia. Clin Auton Res. 2008;18:115–9. https://doi.org/10.1007/s10286-008-0464-1.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Pearson J, Pytel B. Quantitative studies of ciliary and sphenopalatine ganglia in familial dysautonomia. J Neurol Sci. 1978;39:123–30.

    Article  CAS  Google Scholar 

  42. Goadsby PJ. Sphenopalatine ganglion stimulation increases regional cerebral blood flow independent of glucose utilization in the cat. Brain Res. 1990;506:145–8.

    Article  CAS  Google Scholar 

  43. Axelrod FB, Hilz MJ, Berlin D, Yau PL, Javier D, Sweat V, et al. Neuroimaging supports central pathology in familial dysautonomia. J Neurol. 2010;257:198–206. https://doi.org/10.1007/s00415-009-5293-1.

    Article  PubMed  Google Scholar 

  44. Axelrod FB. Familial dysautonomia. Muscle Nerve. 2004;29:352–63. https://doi.org/10.1002/mus.10499.

    Article  PubMed  Google Scholar 

  45. Bernardi L, Hilz M, Stemper B, Passino C, Welsch G, Axelrod FB. Respiratory and cerebrovascular responses to hypoxia and hypercapnia in familial dysautonomia. Am J Respir Crit Care Med. 2003;167:141–9. https://doi.org/10.1164/rccm.200207-677OC.

    Article  PubMed  Google Scholar 

  46. Axelrod FB, Nachtigal R, Dancis J. Familial dysautonomia: diagnosis, pathogenesis and management. Adv Pediatr Infect Dis. 1974;21:75–96.

    CAS  Google Scholar 

  47. Hilz MJ, Stemper B, Axelrod FB. Sympathetic skin response differentiates hereditary sensory autonomic neuropathies III and IV. Neurology. 1999;52:1652–7.

    Article  CAS  Google Scholar 

  48. Macefield VG, Norcliffe-Kaufmann L, Axelrod FB, Kaufmann H. Cardiac-locked bursts of muscle sympathetic nerve activity are absent in familial dysautonomia. J Physiol. 2013;591:689–700. https://doi.org/10.1113/jphysiol.2012.246264.

    Article  PubMed  CAS  Google Scholar 

  49. Norcliffe-Kaufmann L, Axelrod F, Kaufmann H. Afferent baroreflex failure in familial dysautonomia. Neurology. 2010;75:1904–11. https://doi.org/10.1212/WNL.0b013e3181feb283.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Norcliffe-Kaufmann L, Kaufmann H. Familial dysautonomia (Riley-Day syndrome): when baroreceptor feedback fails. Auton Neurosci. 2012;172:26–30. https://doi.org/10.1016/j.autneu.2012.10.012.

    Article  PubMed  CAS  Google Scholar 

  51. Norcliffe-Kaufmann L, Martinez J, Axelrod F, Kaufmann H. Hyperdopaminergic crises in familial dysautonomia: a randomized trial of carbidopa. Neurology. 2013;80:1611–7. https://doi.org/10.1212/WNL.0b013e31828f18f0.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Axelrod FB, Zupanc M, Hilz MJ, Kramer EL. Ictal SPECT during autonomic crisis in familial dysautonomia. Neurology. 2000;55:122–5.

    Article  CAS  Google Scholar 

  53. Clayson D, Welton W, Axelrod FB. Personality development and familial dysautonomia. Pediatrics. 1980;65(2):269–74.

    PubMed  CAS  Google Scholar 

  54. Indo Y, Tsuruta M, Hayashida Y, Karim MA, Ohta K, Kawano T, et al. Mutations in the TRKA/NGF receptor gene in patients with congenital insensitivity to pain with anhidrosis. Nat Genet. 1996;13:485–8. https://doi.org/10.1038/ng0896-485.

    Article  PubMed  CAS  Google Scholar 

  55. Rekhtman Y, Bomback AS, Nash MA, Cohen SD, Matalon A, Jan DM, et al. Renal transplantation in familial dysautonomia: report of two cases and review of the literature. Clin J Am Soc Nephrol. 2010;5:1676–80. https://doi.org/10.2215/CJN.01750210.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Low PA, Burke WJ, McLeod JG. Congenital sensory neuropathy with selective loss of small myelinated fibers. Ann Neurol. 1978;3:179–82. https://doi.org/10.1002/ana.410030215.

    Article  PubMed  CAS  Google Scholar 

  57. Einarsdottir E, Carlsson A, Minde J, Toolanen G, Svensson O, Solders G, et al. A mutation in the nerve growth factor beta gene (NGFβ) causes loss of pain perception. Hum Mol Genet. 2004;13:799–805. https://doi.org/10.1093/hmg/ddh096.

    Article  PubMed  CAS  Google Scholar 

  58. Minde J, Toolanen G, Andersson T, Nennesmo I, Remahl IN, Svensson O, et al. Familial insensitivity to pain (HSAN V) and a mutation in the NGFβ gene. A neurophysiological and pathological study. Muscle Nerve. 2004;30:752–60. https://doi.org/10.1002/mus.20172.

    Article  PubMed  Google Scholar 

  59. Carvalho OP, Thornton GK, Hertecant J, Houlden H, Nicholas AK, Cox JJ, et al. A novel NGF mutation clarifies the molecular mechanism and extends the phenotypic spectrum of the HSAN5 neuropathy. J Med Genet. 2011;48:131–5. https://doi.org/10.1136/jmg.2010.081455.

    Article  PubMed  CAS  Google Scholar 

  60. Minde J, Svensson O, Holmberg M, Solders G, Toolanen G. Orthopedic aspects of familial insensitivity to pain due to a novel nerve growth factor beta mutation. Acta Orthop. 2006;77:198–202. https://doi.org/10.1080/17453670610045911.

    Article  PubMed  Google Scholar 

  61. Edvardson S, Cinnamon Y, Jalas C, Shaag A, Maayan C, Axelrod FB, et al. Hereditary sensory autonomic neuropathy caused by a mutation in dystonin. Ann Neurol. 2012;71:569–72. https://doi.org/10.1002/ana.23524.

    Article  PubMed  CAS  Google Scholar 

  62. • Manganelli F, Parisi S, Nolano M, Tao F, Paladino S, Pisciotta C, et al. Novel mutations in dystonin provide clues to the pathomechanisms of HSAN-VI. Neurology. 2017;88:2132–40. https://doi.org/10.1212/WNL.0000000000003992 The authors described another HSAN-VI family harboring two novel heterozygous mutations of DST expanding the phenotype to include a nonlethal and non-syndromic form due to a different involved isoform of dystonin other than the one Evardson et al. described in 2012.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Ichikawa H, Terayama R, Yamaai T, De Repentigny Y, Kothary R, Sugimoto T. Dystonin deficiency reduces taste buds and fungiform papillae in the anterior part of the tongue. Brain Res. 2007;1129:142–6. https://doi.org/10.1016/j.brainres.2006.04.044.

    Article  PubMed  CAS  Google Scholar 

  64. Leipold E, Liebmann L, Korenke GC, Heinrich T, Giesselmann S, Baets J, et al. A de novo gain-of-function mutation in SCN11A causes loss of pain perception. Nat Genet. 2013;45:1399–404. https://doi.org/10.1038/ng.2767.

    Article  PubMed  CAS  Google Scholar 

  65. Cummins TR, Dib-Hajj SD, Black JA, Akopian AN, Wood JN, Waxman SG. A novel persistent tetrodotoxin-resistant sodium current in SNS-null and wild-type small primary sensory neurons. J Neurosci. 1999;19:RC43.

    Article  CAS  Google Scholar 

  66. Woods CG, Babiker MO, Horrocks I, Tolmie J, Kurth I. The phenotype of congenital insensitivity to pain due to the NaV1.9 variant p.L811P. Eur J Hum Genet. 2015;23:1434. https://doi.org/10.1038/ejhg.2015.163.

    Article  PubMed  PubMed Central  Google Scholar 

  67. •• Salvatierra J, Diaz-Bustamante M, Meixiong J, Tierney E, Dong X, Bosmans F. A disease mutation reveals a role for NaV1.9 in acute itch. J Clin Invest. 2018;128:5434–47. https://doi.org/10.1172/JCI122481 The authors studied the role of Na V 1.9 in itching by using a Na V 1.9 −/− and Na V 1.9 L799P/WT mouse models. In the latter, pruritogens altered action potential parameters. Na V 1.9 −/− mice exhibited reduction in scratching behavior in response to pruritogens, whereas Na V 1.9 L799P/WT mice had increased spontaneous scratching.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Chen YC, Auer-Grumbach M, Matsukawa S, Zitzelsberger M, Themistocleous AC, Strom TM, et al. Transcriptional regulator PRDM12 is essential for human pain perception. Nat Genet. 2015;47:803–8. https://doi.org/10.1038/ng.3308.

    Article  PubMed  CAS  Google Scholar 

  69. • Zhang S, Malik Sharif S, Chen YC, Valente EM, Ahmed M, Sheridan E, et al. Clinical features for diagnosis and management of patients with PRDM12 congenital insensitivity to pain. J Med Genet. 2016;53:533–5. https://doi.org/10.1136/jmedgenet-2015-103646 The authors provide a thorough description of the phenotype and natural history of HSAN-VIII in five cases of PRDM12 mutations following the initial description in 2015 by Chen et al.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Auer-Grumbach M, De Jonghe P, Wagner K, Verhoeven K, Hartung HP, Timmerman V. Phenotype–genotype correlations in a CMT2B family with refined 3q13–q22 locus. Neurology. 2000;55:1552–7.

    Article  CAS  Google Scholar 

  71. Schuster R, Stewart D, Schuster L, Greaney G, Waxman K. Preoperative oral rofecoxib and postoperative pain in patients after laparoscopic cholecystectomy: a prospective, randomized, double-blinded, placebo-controlled trial. Am Surg. 2005;71:827–9.

    PubMed  Google Scholar 

  72. Auer-Grumbach M, De Jonghe P, Verhoeven K, Timmerman V, Wagner K, Hartung HP, et al. Autosomal dominant inherited neuropathies with prominent sensory loss and mutilations: a review. Arch Neurol. 2003;60:329–34.

    Article  Google Scholar 

  73. Mauermann MLaK, C. J. Hereditary sensory and autonomic neuropathies and miscellaneous inherited neuropathies with autonomic involvement. In: Low PA and Benarroch EE, editors. Clinical autonomic disorders. 3rd ed. Philadelphia: Lippincott Williams and Wilkins; 2008: 468–481.

  74. Axelrod FB KH. Hereditary Sensory and Autonomic Neuropathies. In: Basil Darras H. Royden Jones JMRDDV, editor. Neuromuscular disorders of infancy, childhood, and adolescence. 2nd ed.: Elsevier; 2015.:340–353.

  75. Nolano M, Crisci C, Santoro L, Barbieri F, Casale R, Kennedy WR, et al. Absent innervation of skin and sweat glands in congenital insensitivity to pain with anhidrosis. Clin Neurophysiol. 2000;111:1596–601.

    Article  CAS  Google Scholar 

  76. Dyck PJ. Histologic measurements and fine structure of biopsied sural nerve: normal, and in peroneal muscular atrophy, hypertrophic neuropathy, and congenital sensory neuropathy. Mayo Clin Proc. 1966;41:742–74.

    PubMed  CAS  Google Scholar 

  77. Minde J, Andersson T, Fulford M, Aguirre M, Nennesmo I, Remahl IN, et al. A novel NGFβ point mutation: a phenotype study of heterozygous patients. J Neurol Neurosurg Psychiatry. 2009;80:188–95. https://doi.org/10.1136/jnnp.2007.136051.

    Article  PubMed  CAS  Google Scholar 

  78. Norcliffe-Kaufmann L, Axelrod FB, Kaufmann H. Developmental abnormalities, blood pressure variability and renal disease in Riley Day syndrome. J Hum Hypertens. 2013;27:51–5. https://doi.org/10.1038/jhh.2011.107.

    Article  PubMed  CAS  Google Scholar 

  79. Axelrod FB, Liebes L, Gold-Von Simson G, Mendoza S, Mull J, Leyne M, et al. Kinetin improves IKBKAP mRNA splicing in patients with familial dysautonomia. Pediatr Res. 2011;70:480–3. https://doi.org/10.1203/PDR.0b013e31822e1825.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Slaugenhaupt SA, Mull J, Leyne M, Cuajungco MP, Gill SP, Hims MM, et al. Rescue of a human mRNA splicing defect by the plant cytokinin kinetin. Hum Mol Genet. 2004;13:429–36. https://doi.org/10.1093/hmg/ddh046.

    Article  PubMed  CAS  Google Scholar 

  81. Axelrod FB, Berlin D. Pregabalin: a new approach to treatment of the dysautonomic crisis. Pediatrics. 2009;124:743–6. https://doi.org/10.1542/peds.2008-3318.

    Article  PubMed  Google Scholar 

  82. Axelrod FB. Familial dysautonomia: a review of the current pharmacological treatments. Expert Opin Pharmacother. 2005;6:561–7. https://doi.org/10.1517/14656566.6.4.561.

    Article  PubMed  CAS  Google Scholar 

  83. Axelrod FB M. Familial dysautonomia. 17th ed. Gellis and Kagen’s current pediatric therapy. 2002.

  84. • Spalink CL, Barnes E, Palma JA, Norcliffe-Kaufmann L, Kaufmann H. Intranasal dexmedetomidine for adrenergic crisis in familial dysautonomia. Clin Auton Res. 2017;27:279–82. https://doi.org/10.1007/s10286-017-0442-6 The authors reported in this pilot study that Intranasal dexmedetomidine is safe and feasible in acute treatment of adrenergic crisis in patients with HSAN-III.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Axelrod FB, Goldberg JD, Rolnitzky L, Mull J, Mann SP, Gold von Simson G, et al. Fludrocortisone in patients with familial dysautonomia—assessing effect on clinical parameters and gene expression. Clin Auton Res. 2005;15:284–91. https://doi.org/10.1007/s10286-005-0288-1.

    Article  PubMed  Google Scholar 

  86. Auer-Grumbach M. Hereditary sensory neuropathy type I. Orphanet J Rare Dis. 2008;3:7. https://doi.org/10.1186/1750-1172-3-7.

  87. Kazachkov M, Palma JA, Norcliffe-Kaufmann L, Bar-Aluma BE, Spalink CL, Barnes EP, et al. Respiratory care in familial dysautonomia: systematic review and expert consensus recommendations. Respir Med. 2018;141:37–46. https://doi.org/10.1016/j.rmed.2018.06.017.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Mass E. A review of the oro-dento-facial characteristics of hereditary sensory and autonomic neuropathy type III (familial dysautonomia). Spec Care Dentist. 2012;32:15–20. https://doi.org/10.1111/j.1754-4505.2011.00225.x.

    Article  Google Scholar 

  89. Sands SA, Giarraffa P, Jacobson CM, Axelrod FB. Familial dysautonomia’s impact on quality of life in childhood, adolescence, and adulthood. Acta Paediatr. 2006;95:457–62. https://doi.org/10.1080/08035250500440386.

    Article  PubMed  Google Scholar 

  90. Anderson SL, Qiu J, Rubin BY. Tocotrienols induce IKBKAP expression: a possible therapy for familial dysautonomia. Biochem Biophys Res Commun. 2003;306:303–9.

    Article  CAS  Google Scholar 

  91. Lee G, Papapetrou EP, Kim H, Chambers SM, Tomishima MJ, Fasano CA, et al. Modelling pathogenesis and treatment of familial dysautonomia using patient-specific iPSCs. Nature. 2009;461:402–6. https://doi.org/10.1038/nature08320.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Hims MM, Ibrahim EC, Leyne M, Mull J, Liu L, Lazaro C, et al. Therapeutic potential and mechanism of kinetin as a treatment for the human splicing disease familial dysautonomia. J Mol Med (Berlin). 2007;85:149–61. https://doi.org/10.1007/s00109-006-0137-2.

    Article  CAS  Google Scholar 

  93. Keren H, Donyo M, Zeevi D, Maayan C, Pupko T, Ast G. Phosphatidylserine increases IKBKAP levels in familial dysautonomia cells. PLoS One. 2010;5:e15884. https://doi.org/10.1371/journal.pone.0015884.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Cheishvili D, Maayan C, Holzer N, Tsenter J, Lax E, Petropoulos S, et al. Tocotrienol treatment in familial dysautonomia: open-label pilot study. J Mol Neurosci. 2016;59:382–91. https://doi.org/10.1007/s12031-016-0760-5.

    Article  PubMed  CAS  Google Scholar 

  95. Boone N, Loriod B, Bergon A, Sbai O, Formisano-Treziny C, Gabert J, et al. Olfactory stem cells, a new cellular model for studying molecular mechanisms underlying familial dysautonomia. PLoS One. 2010;5:e15590. https://doi.org/10.1371/journal.pone.0015590.

    Article  CAS  Google Scholar 

  96. Gold-von Simson G, Goldberg JD, Rolnitzky LM, Mull J, Leyne M, Voustianiouk A, et al. Kinetin in familial dysautonomia carriers: implications for a new therapeutic strategy targeting mRNA splicing. Pediatr Res. 2009;65:341–6. https://doi.org/10.1203/PDR.0b013e318194fd52.

    Article  PubMed  CAS  Google Scholar 

  97. Gold-von Simson G, Leyne M, Mull J, Rolnitzky LM, Goldberg JD, Berlin D, et al. IKBKAP mRNA in peripheral blood leukocytes: a molecular marker of gene expression and splicing in familial dysautonomia. Pediatr Res. 2008;63:186–90. https://doi.org/10.1203/PDR.0b013e31815ef74b.

    Article  PubMed  CAS  Google Scholar 

  98. Jun BK, Chandra A, Kuljis D, Schmidt BP, Eichler FS. Substrate availability of mutant SPT alters neuronal branching and growth cone dynamics in dorsal root ganglia. J Neurosci. 2015;35:13713–9. https://doi.org/10.1523/JNEUROSCI.1403-15.2015.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Garofalo K, Penno A, Schmidt BP, Lee HJ, Frosch MP, von Eckardstein A, et al. Oral L-serine supplementation reduces production of neurotoxic deoxysphingolipids in mice and humans with hereditary sensory autonomic neuropathy type 1. J Clin Invest. 2011;121:4735–45. https://doi.org/10.1172/JCI57549.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. •• Fridman V, Suriyanarayanan S, Novak P, David W, Macklin EA, McKenna-Yasek D, et al. Randomized trial of l-serine in patients with hereditary sensory and autonomic neuropathy type 1. Neurology. 2019;92:e359–e70. https://doi.org/10.1212/WNL.0000000000006811 This randomized, placebo-controlled trial proved that high-dose oral l -serine is safe and potentially effective at slowing disease progression in patients with HSAN1 (Class I evidence).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Kazamel.

Ethics declarations

Conflict of Interest

M.K. reports personal fees from Akcea Therapeutics, outside the submitted work. C.S. declares no potential conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Autonomic Dysfunction

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schwartzlow, C., Kazamel, M. Hereditary Sensory and Autonomic Neuropathies: Adding More to the Classification. Curr Neurol Neurosci Rep 19, 52 (2019). https://doi.org/10.1007/s11910-019-0974-3

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11910-019-0974-3

Keywords

Navigation