Skip to main content

Advertisement

Log in

Analgesic Effect of Intrathecal Administration of Chemokine Receptor CCR2 Antagonist is Related to Change in Spinal NR2B, nNOS, and SIGIRR Expression in Rat with Bone Cancer Pain

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

The purpose of this study is to investigate the analgesic effect of intrathecal injection of chemokine receptor CCR2 antagonist RS102895, and its effect on spinal expression of N-methyl-d-aspartate (NMDA) receptor NR2B subunit, neuronal nitric oxide synthase (nNOS), and SIGIRR in a rat model of bone cancer pain (BCP). A rat model of BCP was established by intro-tibial inoculation of W256 breast cancer cells. Female SD rats were randomly divided into five groups (n = 10 each): Sham group, Sham + RS102895 group, BCP group, BCP + RS102895 group, and BCP + DMSO group. Rats received intrathecal injections of either RS102895 (3 g/l) 10 μl or 10 % DMSO 10 μl on day 9 to day 20 after operation. Pain thresholds of mechanical stimulation and thermal stimulation of each group were measured one day before and at 3rd, 6th, 9th, 12th, 15th, and 20th days after surgery. Spinal expression of NR2B, nNOS, and SIGIRR was detected by RT-PCR and Western blot. CCR2 antagonist RS102895 can suppress the pain induced by both mechanical and thermal stimulation in rats with BCP. Spinal expression of CCR2, NR2B, and nNOS was significantly up-regulated, while SIGIRR was down-regulated in BCP rats, and intrathecal injection of RS102895 effectively reversed the pattern of NR2B, nNOS, and SIGIRR expression in spinal cord. Analgesic effects of CCR2 antagonist RS102895 in BCP rats may be related to its downregulation of signal transduction pathway of NMDAR/nNOS and upregulation of Toll–interleukin-1 receptor member SIGIRR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Honore, P., et al. (2000). Osteoprotegerin blocks bone cancer-induced skeletal destruction, skeletal pain and pain-related neurochemical reorganization of the spinal cord. Nature Medicine, 6(5), 521–528.

    Article  CAS  PubMed  Google Scholar 

  2. Coleman, R. E. (2006). Clinical features of metastatic bone disease and risk of skeletal morbidity. Clinical Cancer Research, 12(20 Pt 2), 6243s–6249s.

    Article  PubMed  Google Scholar 

  3. Jimenez-Andrade, J. M., et al. (2010). Bone cancer pain. Annals of the New York Academy of Sciences, 1198, 173–181.

    Article  PubMed  Google Scholar 

  4. Xiaoping, G., et al. (2010). Involvement of the spinal NMDA receptor/PKCgamma signaling pathway in the development of bone cancer pain. Brain Research, 1335, 83–90.

    Article  PubMed  Google Scholar 

  5. Green, C. R., Montague, L., & Hart-Johnson, T. A. (2009). Consistent and breakthrough pain in diverse advanced cancer patients: A longitudinal examination. Journal of Pain and Symptom Management, 37(5), 831–847.

    Article  PubMed  Google Scholar 

  6. Mercadante, S. (1997). Malignant bone pain: Pathophysiology and treatment. Pain, 69(1–2), 1–18.

    Article  CAS  PubMed  Google Scholar 

  7. Goblirsch, M. J., Zwolak, P., & Clohisy, D. R. (2005). Advances in understanding bone cancer pain. Journal of Cellular Biochemistry, 96(4), 682–688.

    Article  CAS  PubMed  Google Scholar 

  8. Ghilardi, J. R., et al. (2005). Selective blockade of the capsaicin receptor TRPV1 attenuates bone cancer pain. Journal of Neuroscience, 25(12), 3126–3131.

    Article  CAS  PubMed  Google Scholar 

  9. Hu, J. H., et al. (2013). Changes in protein expression and distribution of spinal CCR2 in a rat model of bone cancer pain. Brain Research, 1509, 1–7.

    Article  CAS  PubMed  Google Scholar 

  10. Old, E. A., & Malcangio, M. (2012). Chemokine mediated neuron-glia communication and aberrant signalling in neuropathic pain states. Current Opinion in Pharmacology, 12(1), 67–73.

    Article  CAS  PubMed  Google Scholar 

  11. Abbadie, C., et al. (2003). Impaired neuropathic pain responses in mice lacking the chemokine receptor CCR2. Proceedings of the National Academy of Sciences of the United States of America, 100(13), 7947–7952.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Gao, Y. J., et al. (2009). JNK-induced MCP-1 production in spinal cord astrocytes contributes to central sensitization and neuropathic pain. Journal of Neuroscience, 29(13), 4096–4108.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Knerlich-Lukoschus, F., et al. (2008). Force-dependent development of neuropathic central pain and time-related CCL2/CCR2 expression after graded spinal cord contusion injuries of the rat. Journal of Neurotrauma, 25(5), 427–448.

    Article  PubMed  Google Scholar 

  14. Menetski, J., et al. (2007). Mice overexpressing chemokine ligand 2 (CCL2) in astrocytes display enhanced nociceptive responses. Neuroscience, 149(3), 706–714.

    Article  CAS  PubMed  Google Scholar 

  15. Hu, J. H., et al. (2012). Involvement of spinal monocyte chemoattractant protein-1 (MCP-1) in cancer-induced bone pain in rats. Neuroscience Letters, 517(1), 60–63.

    Article  CAS  PubMed  Google Scholar 

  16. Pienta, K. J., et al. (2013). Phase 2 study of carlumab (CNTO 888), a human monoclonal antibody against CC-chemokine ligand 2 (CCL2), in metastatic castration-resistant prostate cancer. Investigational New Drugs, 31(3), 760–768.

    Article  CAS  PubMed  Google Scholar 

  17. Bleakman, D., Alt, A., & Nisenbaum, E. S. (2006). Glutamate receptors and pain. Seminars in Cell & Developmental Biology, 17(5), 592–604.

    Article  CAS  Google Scholar 

  18. Caudle, R. M., et al. (2005). Spinal cord NR1 serine phosphorylation and NR2B subunit suppression following peripheral inflammation. Molecular Pain, 1, 25.

    Article  PubMed Central  PubMed  Google Scholar 

  19. Menendez, L., et al. (2007). Involvement of nitric oxide in the inhibition of bone cancer-induced hyperalgesia through the activation of peripheral opioid receptors in mice. Neuropharmacology, 53(1), 71–80.

    Article  CAS  PubMed  Google Scholar 

  20. Costelloe, C., et al. (2008). IL-1F5 mediates anti-inflammatory activity in the brain through induction of IL-4 following interaction with SIGIRR/TIR8. Journal of Neurochemistry, 105(5), 1960–1969.

    Article  CAS  PubMed  Google Scholar 

  21. Medhurst, S. J., et al. (2002). A rat model of bone cancer pain. Pain, 96(1–2), 129–140.

    Article  CAS  PubMed  Google Scholar 

  22. Wang, L. N., et al. (2011). Cancer-induced bone pain sequentially activates the ERK/MAPK pathway in different cell types in the rat spinal cord. Molecular Pain, 7, 48.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Ni, K., et al. (2014). Intrathecal injection of selected peptide Myr-RC-13 attenuates bone cancer pain by inhibiting KIF17 and NR2B expression. Pharmacology, Biochemistry and Behavior, 122, 228–233.

    Article  CAS  PubMed  Google Scholar 

  24. Doré-Savard, L., Otis, V., Belleville, K., Lemire, M., Archambault, M., Tremblay, L., et al. (2010). Behavioral, medical imaging and histopathological features of a new rat model of bone cancer pain. PLoS One, 5, e13774.

    Article  PubMed Central  PubMed  Google Scholar 

  25. Hargreaves, K., Dubner, R., Brown, F., Flores, C., & Joris, J. (1988). A new and sensitive method for measuring thermal nociception in cutaneous hyperalgesia. Pain, 32, 77–88.

    Article  CAS  PubMed  Google Scholar 

  26. Gu, X., et al. (2010). The role of N-methyl-d-aspartate receptor subunit NR2B in spinal cord in cancer pain. European Journal of Pain, 14(5), 496–502.

    Article  CAS  PubMed  Google Scholar 

  27. Gu, X., et al. (2010). Intraperitoneal injection of thalidomide attenuates bone cancer pain and decreases spinal tumor necrosis factor-alpha expression in a mouse model. Molecular Pain, 6, 64.

    Article  PubMed Central  PubMed  Google Scholar 

  28. Pan, H. L., Zhang, Y. Q., & Zhao, Z. Q. (2010). Involvement of lysophosphatidic acid in bone cancer pain by potentiation of TRPV1 via PKCepsilon pathway in dorsal root ganglion neurons. Molecular Pain, 6, 85.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Yanagisawa, Y., et al. (2010). Bone cancer induces a unique central sensitization through synaptic changes in a wide area of the spinal cord. Molecular Pain, 6, 38.

    Article  PubMed Central  PubMed  Google Scholar 

  30. Pedersen, L. M., & Gjerstad, J. (2008). Spinal cord long-term potentiation is attenuated by the NMDA-2B receptor antagonist Ro 25-6981. Acta Physiologica (Oxf), 192(3), 421–427.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongwei Cai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, F., Jiao, H. & Cai, H. Analgesic Effect of Intrathecal Administration of Chemokine Receptor CCR2 Antagonist is Related to Change in Spinal NR2B, nNOS, and SIGIRR Expression in Rat with Bone Cancer Pain. Cell Biochem Biophys 72, 611–616 (2015). https://doi.org/10.1007/s12013-014-0510-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-014-0510-7

Keywords

Navigation