Skip to main content

Advertisement

Log in

The Involvement of PACAP/VIP System in the Synaptic Transmission in the Hippocampus

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Pituitary adenylate cyclase-activating polypeptide (PACAP) and vasoactive intestinal peptide (VIP) are two closely related peptides, which can activate protein kinase A (PKA). At least three receptors for PACAP and VIP have been identified. The PACAP-specific receptor, PAC1 receptor, exhibits a higher affinity for PACAP than VIP, whereas VIP receptors, VPAC1-R and VPAC2-R, have similar affinities for PACAP and VIP. Both PACAP/VIP and their cognate receptors are highly expressed in the brain, including the hippocampus. Recently, their roles in the regulation of synaptic transmission have begun to emerge. PACAP/VIP can signal through different pathways to regulate N-methyl-d-aspartate (NMDA) receptors in CA1 pyramidal cells. The activation of VPAC1/2-Rs increases evoked NMDA currents via the cyclic AMP/PKA pathway. However, the activation of PAC1-R stimulates a PLC/PKC/Pyk2/Src signaling pathway to enhance NMDA receptor function in hippocampal neurons. Furthermore, different concentrations of PACAP induce different effects on the both α-amino-3-hydroxy-5-isoxazole-propionic acid-evoked current and basal synaptic transmission by activating different receptors. Their roles in learning and memory are also demonstrated using transgenic mice and pharmacological methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2

Similar content being viewed by others

References

  • Abraham WC (2008) Metaplasticity: tuning synapses and networks for plasticity. Nat Rev Neurosci 9:387

    Article  CAS  PubMed  Google Scholar 

  • Abraham WC, Bear MF (1996) Metaplasticity: the plasticity of synaptic plasticity. Trends Neurosci 19:126–130

    Article  CAS  PubMed  Google Scholar 

  • Arimura A (2007) PACAP: the road to discovery. Peptides 28:1617–1619

    Article  CAS  PubMed  Google Scholar 

  • Berberich S, Punnakkal P, Jensen V, Pawlak V, Seeburg PH, Hvalby O, Kohr G (2005) Lack of NMDA receptor subtype selectivity for hippocampal long-term potentiation. J Neurosci 25:6907–6910

    Article  CAS  PubMed  Google Scholar 

  • Ciccarelli E, Vilardaga JP, De NP, Di PE, Waelbroeck M, Bollen A, Robberecht P (1994) Properties of the VIP-PACAP type II receptor stably expressed in CHO cells. Regul Pept 54:397–407

    Article  CAS  PubMed  Google Scholar 

  • Ciccarelli E, Svoboda M, De NP, Di PE, Bollen A, Dubeaux C, Vilardaga JP, Waelbroeck M, Robberecht P (1995) Pharmacological properties of two recombinant splice variants of the PACAP type I receptor, transfected and stably expressed in CHO cells. Eur J Pharmacol 288:259–267

    Article  CAS  PubMed  Google Scholar 

  • Ciranna L, Cavallaro S (2003) Opposing effects by pituitary adenylate cyclase-activating polypeptide and vasoactive intestinal peptide on hippocampal synaptic transmission. Exp Neurol 184:778–784

    Article  CAS  PubMed  Google Scholar 

  • Claing A, Perry SJ, Achiriloaie M, Walker JK, Albanesi JP, Lefkowitz RJ, Premont RT (2000) Multiple endocytic pathways of G protein-coupled receptors delineated by GIT1 sensitivity. Proc Natl Acad Sci USA 97:1119–1124

    Article  CAS  PubMed  Google Scholar 

  • Costa L, Santangelo F, Li VG, Ciranna L (2009) Modulation of AMPA receptor-mediated ion current by pituitary adenylate cyclase-activating polypeptide (PACAP) in CA1 pyramidal neurons from rat hippocampus. Hippocampus 19:99–109

    Article  CAS  PubMed  Google Scholar 

  • Cull-Candy SG, Leszkiewicz DN (2004) Role of distinct NMDA receptor subtypes at central synapses. Sci STKE 2004:16

    Article  Google Scholar 

  • Cunha-Reis D, Sebastiao AM, Wirkner K, Illes P, Ribeiro JA (2004) VIP enhances both pre- and postsynaptic GABAergic transmission to hippocampal interneurones leading to increased excitatory synaptic transmission to CA1 pyramidal cells. Br J Pharmacol 143:733–744

    Article  CAS  PubMed  Google Scholar 

  • Cunha-Reis D, Ribeiro JA, Sebastiao AM (2005) VIP enhances synaptic transmission to hippocampal CA1 pyramidal cells through activation of both VPAC1 and VPAC2 receptors. Brain Res 1049:52–60

    Article  CAS  PubMed  Google Scholar 

  • Cunha-Reis D, Fontinha BM, Ribeiro JA, Sebastiao AM (2007) Tonic adenosine A1 and A2A receptor activation is required for the excitatory action of VIP on synaptic transmission in the CA1 area of the hippocampus. Neuropharmacology 52:313–320

    Article  CAS  PubMed  Google Scholar 

  • Dautzenberg FM, Hauger RL (2001) G-protein-coupled receptor kinase 3- and protein kinase C-mediated desensitization of the PACAP receptor type 1 in human Y-79 retinoblastoma cells. Neuropharmacology 40:394–407

    Article  CAS  PubMed  Google Scholar 

  • Delcourt N, Thouvenot E, Chanrion B, Galeotti N, Jouin P, Bockaert J, Marin P (2007) PACAP type I receptor transactivation is essential for IGF-1 receptor signalling and antiapoptotic activity in neurons. EMBO J 26:1542–1551

    Article  CAS  PubMed  Google Scholar 

  • Dickson L, Finlayson K (2009) VPAC and PAC receptors: from ligands to function. Pharmacol Ther 121:294–316

    Article  CAS  PubMed  Google Scholar 

  • Dickson L, Aramori I, McCulloch J, Sharkey J, Finlayson K (2006) A systematic comparison of intracellular cyclic AMP and calcium signalling highlights complexities in human VPAC/PAC receptor pharmacology. Neuropharmacology 51:1086–1098

    Article  CAS  PubMed  Google Scholar 

  • Feany MB, Quinn WG (1995) A neuropeptide gene defined by the Drosophila memory mutant amnesiac. Science 268:869–873

    Article  CAS  PubMed  Google Scholar 

  • Gaudin P, Couvineau A, Maoret JJ, Rouyer-Fessard C, Laburthe M (1996) Stable expression of the recombinant human VIP1 receptor in clonal Chinese hamster ovary cells: pharmacological, functional and molecular properties. Eur J Pharmacol 302:207–214

    Article  CAS  PubMed  Google Scholar 

  • Glowa JR, Panlilio LV, Brenneman DE, Gozes I, Fridkin M, Hill JM (1992) Learning impairment following intracerebral administration of the HIV envelope protein gp120 or a VIP antagonist. Brain Res 570:49–53

    Article  CAS  PubMed  Google Scholar 

  • Gozes I, Glowa J, Brenneman DE, McCune SK, Lee E, Westphal H (1993) Learning and sexual deficiencies in transgenic mice carrying a chimeric vasoactive intestinal peptide gene. J Mol Neurosci 4:185–193

    Article  CAS  PubMed  Google Scholar 

  • Gozes I, Bardea A, Reshef A, Zamostiano R, Zhukovsky S, Rubinraut S, Fridkin M, Brenneman DE (1996) Neuroprotective strategy for Alzheimer disease: intranasal administration of a fatty neuropeptide. Proc Natl Acad Sci USA 93:427–432

    Article  CAS  PubMed  Google Scholar 

  • Groc L, Heine M, Cousins SL, Stephenson FA, Lounis B, Cognet L, Choquet D (2006) NMDA receptor surface mobility depends on NR2A-2B subunits. Proc Natl Acad Sci USA 103:18769–18774

    Article  CAS  PubMed  Google Scholar 

  • Harmar AJ, Arimura A, Gozes I, Journot L, Laburthe M, Pisegna JR, Rawlings SR, Robberecht P, Said SI, Sreedharan SP, Wank SA, Waschek JA (1998) International Union of Pharmacology. XVIII. Nomenclature of receptors for vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide. Pharmacol Rev 50:265–270

    CAS  PubMed  Google Scholar 

  • Joo KM, Chung YH, Kim MK, Nam RH, Lee BL, Lee KH, Cha CI (2004) Distribution of vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide receptors (VPAC1, VPAC2, and PAC1 receptor) in the rat brain. J Comp Neurol 476:388–413

    Article  CAS  PubMed  Google Scholar 

  • Kondo T, Tominaga T, Ichikawa M, Iijima T (1997) Differential alteration of hippocampal synaptic strength induced by pituitary adenylate cyclase activating polypeptide-38 (PACAP-38). Neurosci Lett 221:189–192

    Article  CAS  PubMed  Google Scholar 

  • Kotecha SA, Macdonald JF (2003) Signaling molecules and receptor transduction cascades that regulate NMDA receptor-mediated synaptic transmission. Int Rev Neurobiol 54:51–106

    Article  CAS  PubMed  Google Scholar 

  • Kotecha SA, Jackson MF, Al-Mahrouki A, Roder JC, Orser BA, Macdonald JF (2003) Co-stimulation of mGluR5 and N-methyl-D-aspartate receptors is required for potentiation of excitatory synaptic transmission in hippocampal neurons. J Biol Chem 278:27742–27749

    Article  CAS  PubMed  Google Scholar 

  • Lau CG, Zukin RS (2007) NMDA receptor trafficking in synaptic plasticity and neuropsychiatric disorders. Nat Rev Neurosci 8:413–426

    Article  CAS  PubMed  Google Scholar 

  • Lau CG, Takeuchi K, Rodenas-Ruano A, Takayasu Y, Murphy J, Bennett MV, Zukin RS (2009) Regulation of NMDA receptor Ca2+ signalling and synaptic plasticity. Biochem Soc Trans 37:1369–1374

    Article  CAS  PubMed  Google Scholar 

  • Lerner EA, Iuga AO, Reddy VB (2007) Maxadilan, a PAC1 receptor agonist from sand flies. Peptides 28:1651–1654

    Article  CAS  PubMed  Google Scholar 

  • Liu GJ, Madsen BW (1997) PACAP38 modulates activity of NMDA receptors in cultured chick cortical neurons. J Neurophysiol 78:2231–2234

    CAS  PubMed  Google Scholar 

  • Liu L, Wong TP, Pozza MF, Lingenhoehl K, Wang Y, Sheng M, Auberson YP, Wang YT (2004) Role of NMDA receptor subtypes in governing the direction of hippocampal synaptic plasticity. Science 304:1021–1024

    Article  CAS  PubMed  Google Scholar 

  • Lu WY, Jackson MF, Bai D, Orser BA, Macdonald JF (2000) In CA1 pyramidal neurons of the hippocampus protein kinase C regulates calcium-dependent inactivation of NMDA receptors. J Neurosci 20:4452–4461

    CAS  PubMed  Google Scholar 

  • Macdonald JF, Kotecha SA, Lu WY, Jackson MF (2001) Convergence of PKC-dependent kinase signal cascades on NMDA receptors. Curr Drug Targets 2:299–312

    Article  CAS  PubMed  Google Scholar 

  • Macdonald DS, Weerapura M, Beazely MA, Martin L, Czerwinski W, Roder JC, Orser BA, Macdonald JF (2005) Modulation of NMDA receptors by pituitary adenylate cyclase activating peptide in CA1 neurons requires G alpha q, protein kinase C, and activation of Src. J Neurosci 25:11374–11384

    Article  CAS  PubMed  Google Scholar 

  • Malenka RC, Bear MF (2004) LTP and LTD: an embarrassment of riches. Neuron 44:5–21

    Article  CAS  PubMed  Google Scholar 

  • Malinow R, Malenka RC (2002) AMPA receptor trafficking and synaptic plasticity. Annu Rev Neurosci 25:103–126

    Article  CAS  PubMed  Google Scholar 

  • Massey PV, Johnson BE, Moult PR, Auberson YP, Brown MW, Molnar E, Collingridge GL, Bashir ZI (2004) Differential roles of NR2A and NR2B-containing NMDA receptors in cortical long-term potentiation and long-term depression. J Neurosci 24:7821–7828

    Article  CAS  PubMed  Google Scholar 

  • McCulloch DA, Lutz EM, Johnson MS, MacKenzie CJ, Mitchell R (2000) Differential activation of phospholipase D by VPAC and PAC1 receptors. Ann NY Acad Sci 921:175–185

    Article  CAS  PubMed  Google Scholar 

  • McDonald TP, Dinnis DM, Morrison CF, Harmar AJ (1998) Desensitization of the human vasoactive intestinal peptide receptor (hVIP2/PACAP R): evidence for agonist-induced receptor phosphorylation and internalization. Ann NY Acad Sci 865:64–72

    Article  CAS  PubMed  Google Scholar 

  • Michel S, Itri J, Han JH, Gniotczynski K, Colwell CS (2006) Regulation of glutamatergic signalling by PACAP in the mammalian suprachiasmatic nucleus. BMC Neurosci 7:15

    Article  PubMed  Google Scholar 

  • Morishita W, Lu W, Smith GB, Nicoll RA, Bear MF, Malenka RC (2007) Activation of NR2B-containing NMDA receptors is not required for NMDA receptor-dependent long-term depression. Neuropharmacology 52:71–76

    Article  CAS  PubMed  Google Scholar 

  • Neyton J, Paoletti P (2006) Relating NMDA receptor function to receptor subunit composition: limitations of the pharmacological approach. J Neurosci 26:1331–1333

    Article  CAS  PubMed  Google Scholar 

  • Otto C, Kovalchuk Y, Wolfer DP, Gass P, Martin M, Zuschratter W, Grone HJ, Kellendonk C, Tronche F, Maldonado R, Lipp HP, Konnerth A, Schutz G (2001) Impairment of mossy fiber long-term potentiation and associative learning in pituitary adenylate cyclase activating polypeptide type I receptor-deficient mice. J Neurosci 21:5520–5527

    CAS  PubMed  Google Scholar 

  • Roberto M, Brunelli M (2000) PACAP-38 enhances excitatory synaptic transmission in the rat hippocampal CA1 region. Learn Mem 7:303–311

    Article  CAS  PubMed  Google Scholar 

  • Roberto M, Scuri R, Brunelli M (2001) Differential effects of PACAP-38 on synaptic responses in rat hippocampal CA1 region. Learn Mem 8:265–271

    Article  CAS  PubMed  Google Scholar 

  • Sacchetti B, Lorenzini CA, Baldi E, Bucherelli C, Roberto M, Tassoni G, Brunelli M (2001) Pituitary adenylate cyclase-activating polypeptide hormone (PACAP) at very low dosages improves memory in the rat. Neurobiol Learn Mem 76:1–6

    Article  CAS  PubMed  Google Scholar 

  • Said SI (2007) The discovery of VIP: initially looked for in the lung, isolated from intestine, and identified as a neuropeptide. Peptides 28:1620–1621

    Article  CAS  PubMed  Google Scholar 

  • Salter MW, Kalia LV (2004) Src kinases: a hub for NMDA receptor regulation. Nat Rev Neurosci 5:317–328

    Article  CAS  PubMed  Google Scholar 

  • Shintani N, Hashimoto H, Kunugi A, Koyama Y, Yamamoto K, Tomimoto S, Mori W, Matsuda T, Baba A (2000) Desensitization, surface expression, and glycosylation of a functional, epitope-tagged type I PACAP (PAC(1)) receptor. Biochim Biophys Acta 1509:195–202

    Article  CAS  PubMed  Google Scholar 

  • Skeberdis VA, Chevaleyre V, Lau CG, Goldberg JH, Pettit DL, Suadicani SO, Lin Y, Bennett MV, Yuste R, Castillo PE, Zukin RS (2006) Protein kinase A regulates calcium permeability of NMDA receptors. Nat Neurosci 9:501–510

    Article  CAS  PubMed  Google Scholar 

  • Ster J, de Bock F, Bertaso F, Abitbol K, Daniel H, Bockaert J, Fagni L (2009) Epac mediates PACAP-dependent long-term depression in the hippocampus. J Physiol 587:101–113

    Article  CAS  PubMed  Google Scholar 

  • Svenningsson P, Nishi A, Fisone G, Girault JA, Nairn AC, Greengard P (2004) DARPP-32: an integrator of neurotransmission. Annu Rev Pharmacol Toxicol 44:269–296

    Article  CAS  PubMed  Google Scholar 

  • Weitlauf C, Honse Y, Auberson YP, Mishina M, Lovinger DM, Winder DG (2005) Activation of NR2A-containing NMDA receptors is not obligatory for NMDA receptor-dependent long-term potentiation. J Neurosci 25:8386–8390

    Article  CAS  PubMed  Google Scholar 

  • Wu SY, Dun NJ (1997) Potentiation of NMDA currents by pituitary adenylate cyclase activating polypeptide in neonatal rat sympathetic preganglionic neurons. J Neurophysiol 78:1175–1179

    CAS  PubMed  Google Scholar 

  • Yaka R, He DY, Phamluong K, Ron D (2003) Pituitary adenylate cyclase-activating polypeptide (PACAP(1–38)) enhances N-methyl-D-aspartate receptor function and brain-derived neurotrophic factor expression via RACK1. J Biol Chem 278:9630–9638

    Article  CAS  PubMed  Google Scholar 

  • Yang K, Trepanier CH, Li H, Beazely MA, Lerner EA, Jackson MF, Macdonald JF (2009) Vasoactive intestinal peptide acts via multiple signal pathways to regulate hippocampal NMDA receptors and synaptic transmission. Hippocampus 19:779–789

    Article  CAS  PubMed  Google Scholar 

  • Yashiro K, Philpot BD (2008) Regulation of NMDA receptor subunit expression and its implications for LTD, LTP, and metaplasticity. Neuropharmacology 55:1081–1094

    Article  CAS  PubMed  Google Scholar 

Download references

Disclosure statement

The authors have nothing to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John F. MacDonald.

Additional information

This work was supported by grants to JFM from the Canadian Institutes of Health Research (15514 and 44008).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, K., Lei, G., Jackson, M.F. et al. The Involvement of PACAP/VIP System in the Synaptic Transmission in the Hippocampus. J Mol Neurosci 42, 319–326 (2010). https://doi.org/10.1007/s12031-010-9372-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-010-9372-7

Keywords

Navigation