Skip to main content

Advertisement

Log in

PACAP Attenuates NMDA-Induced Retinal Damage in Association with Modulation of the Microglia/Macrophage Status into an Acquired Deactivation Subtype

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Pituitary adenylate cyclase-activating polypeptide (PACAP) has been known as a neuroprotectant agent in several retinal injury models. However, a detailed mechanism of this effect is still not well understood. In this study, we examined the retinoprotective effects and associated underlying mechanisms of action of PACAP in the mouse N-methyl-d-aspartic acid (NMDA)-induced retinal injury model, focusing on the relationship between PACAP and retinal microglia/macrophage (MG/MΦ) status. Adult male C57BL/6 mice received an intravitreal injection of NMDA to induce retinal injury. Three days after NMDA injection, the number of MG/MΦ increased significantly in the retinas. The concomitant intravitreal injection of PACAP suppressed NMDA-induced cell loss in the ganglion cell layer (GCL) and significantly increased the number of MG/MΦ. These outcomes associated with PACAP were attenuated by cotreatment with PACAP6-38, while the beneficial effects of PACAP were not seen in interleukin-10 (IL-10) knockout mice. PACAP significantly elevated the messenger RNA levels of anti-inflammatory cytokines such as transforming growth factor beta 1 and IL-10 in the injured retina, with the immunoreactivities seen to overlap with markers of MG/MΦ. These results suggest that PACAP enhances the proliferation and/or infiltration of retinal MG/MΦ and modulates their status into an acquired deactivation subtype to favor conditions for neuroprotection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Arimura A, Shioda S (1995) Pituitary adenylate cyclase activating polypeptide (PACAP) and its receptors: neuroendocrine and endocrine interaction. Front Neuroendocrinol 16:53–88

    Article  PubMed  CAS  Google Scholar 

  • Arimura A, Somogyvari-Vigh A, Miyata A, Mizuno K, Coy DH, Kitada C (1991) Tissue distribution of PACAP as determined by RIA: highly abundant in the rat brain and testes. Endocrinology 129:2787–9

    Article  PubMed  CAS  Google Scholar 

  • Atlasz T, Szabadfi K, Kiss P et al (2011) Effects of PACAP in UV-A radiation-induced retinal degeneration models in rats. J Mol Neurosci 43:51–7

    Article  PubMed  CAS  Google Scholar 

  • Bethea JR, Nagashima H, Acosta MC et al (1999) Systemically administered interleukin-10 reduces tumor necrosis factor-alpha production and significantly improves functional recovery following traumatic spinal cord injury in rats. J Neurotrauma 16:851–63

    Article  PubMed  CAS  Google Scholar 

  • Boyd ZS, Kriatchko A, Yang J, Agarwal N, Wax MB, Patil RV (2003) Interleukin-10 receptor signaling through STAT-3 regulates the apoptosis of retinal ganglion cells in response to stress. Invest Ophthalmol Vis Sci 44:5206–11

    Article  PubMed  Google Scholar 

  • Brewer KL, Bethea JR, Yezierski RP (1999) Neuroprotective effects of interleukin-10 following excitotoxic spinal cord injury. Exp Neurol 159:484–93

    Article  PubMed  CAS  Google Scholar 

  • Colton CA (2009) Heterogeneity of microglial activation in the innate immune response in the brain. J Neuroimmune Pharmacol 4:399–418

    Article  PubMed  Google Scholar 

  • Deckert-Schluter M, Buck C, Weiner D et al (1997) Interleukin-10 downregulates the intracerebral immune response in chronic Toxoplasma encephalitis. J Neuroimmunol 76:167–76

    Article  PubMed  CAS  Google Scholar 

  • Delgado M, Ganea D (2001) Inhibition of endotoxin-induced macrophage chemokine production by vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide in vitro and in vivo. J Immunol 167:966–75

    PubMed  CAS  Google Scholar 

  • Delgado M, Munoz-Elias EJ, Gomariz RP, Ganea D (1999) Vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide enhance IL-10 production by murine macrophages: in vitro and in vivo studies. J Immunol 162:1707–16

    PubMed  CAS  Google Scholar 

  • Delgado M, Abad C, Martinez C et al (2003a) PACAP in immunity and inflammation. Ann N Y Acad Sci 992:141–57

    Article  PubMed  CAS  Google Scholar 

  • Delgado M, Leceta J, Ganea D (2003b) Vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide inhibit the production of inflammatory mediators by activated microglia. J Leukoc Biol 73:155–64

    Article  PubMed  CAS  Google Scholar 

  • Dhandapani KM, Brann DW (2003) Transforming growth factor-beta: a neuroprotective factor in cerebral ischemia. Cell Biochem Biophys 39:13–22

    Article  PubMed  CAS  Google Scholar 

  • Dkhissi O, Chanut E, Wasowicz M et al (1999) Retinal TUNEL-positive cells and high glutamate levels in vitreous humor of mutant quail with a glaucoma-like disorder. Invest Ophthalmol Vis Sci 40:990–5

    PubMed  CAS  Google Scholar 

  • Dobolyi A, Vincze C, Pal G, Lovas G (2012) The neuroprotective functions of transforming growth factor Beta proteins. Int J Mol Sci 13:8219–58

    Article  PubMed  CAS  Google Scholar 

  • Dreyer EB, Zurakowski D, Schumer RA, Podos SM, Lipton SA (1996) Elevated glutamate levels in the vitreous body of humans and monkeys with glaucoma. Arch Ophthalmol 114:299–305

    Article  PubMed  CAS  Google Scholar 

  • Endo K, Nakamachi T, Seki T et al (2011) Neuroprotective effect of PACAP against NMDA-induced retinal damage in the mouse. J Mol Neurosci 43:22–9

    Article  PubMed  CAS  Google Scholar 

  • Gordon S, Taylor PR (2005) Monocyte and macrophage heterogeneity. Nat Rev Immunol 5:953–64

    Article  PubMed  CAS  Google Scholar 

  • Harmar AJ, Fahrenkrug J, Gozes I et al (2012) Pharmacology and functions of receptors for vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide: IUPHAR review 1. Br J Pharmacol 166:4–17

    Article  PubMed  CAS  Google Scholar 

  • Huettner C, Czub S, Kerkau S, Roggendorf W, Tonn JC (1997) Interleukin 10 is expressed in human gliomas in vivo and increases glioma cell proliferation and motility in vitro. Anticancer Res 17:3217–24

    PubMed  CAS  Google Scholar 

  • Jander S, Pohl J, D’Urso D, Gillen C, Stoll G (1998) Time course and cellular localization of interleukin-10 mRNA and protein expression in autoimmune inflammation of the rat central nervous system. Am J Pathol 152:975–82

    PubMed  CAS  Google Scholar 

  • Karlstetter M, Ebert S, Langmann T (2010) Microglia in the healthy and degenerating retina: insights from novel mouse models. Immunobiology 215:685–91

    Article  PubMed  CAS  Google Scholar 

  • Kettenmann H, Hanisch UK, Noda M, Verkhratsky A (2011) Physiology of microglia. Physiol Rev 91:461–553

    Article  PubMed  CAS  Google Scholar 

  • Koeberle PD, Gauldie J, Ball AK (2004) Effects of adenoviral-mediated gene transfer of interleukin-10, interleukin-4, and transforming growth factor-beta on the survival of axotomized retinal ganglion cells. Neuroscience 125:903–20

    Article  PubMed  CAS  Google Scholar 

  • Langmann T (2007) Microglia activation in retinal degeneration. J Leukoc Biol 81:1345–51

    Article  PubMed  CAS  Google Scholar 

  • Lee WR, Grierson I (1977) Macrophage infiltration in the human retina. Albrecht Von Graefes Arch Klin Exp Ophthalmol 203:293–309

    PubMed  CAS  Google Scholar 

  • Mantovani A, Sica A, Sozzani S, Allavena P, Vecchi A, Locati M (2004) The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol 25:677–86

    Article  PubMed  CAS  Google Scholar 

  • Martinez FO, Sica A, Mantovani A, Locati M (2008) Macrophage activation and polarization. Front Biosci 13:453–61

    Article  PubMed  CAS  Google Scholar 

  • Miyata A, Arimura A, Dahl RR et al (1989) Isolation of a novel 38 residue-hypothalamic polypeptide which stimulates adenylate cyclase in pituitary cells. Biochem Biophys Res Commun 164:567–74

    Article  PubMed  CAS  Google Scholar 

  • Miyata A, Jiang L, Dahl RD et al (1990) Isolation of a neuropeptide corresponding to the N-terminal 27 residues of the pituitary adenylate cyclase activating polypeptide with 38 residues (PACAP38). Biochem Biophys Res Commun 170:643–8

    Article  PubMed  CAS  Google Scholar 

  • Mosser DM, Edwards JP (2008) Exploring the full spectrum of macrophage activation. Nat Rev Immunol 8:958–69

    Article  PubMed  CAS  Google Scholar 

  • Nakamachi T, Tsuchida M, Kagami N et al (2012) IL-6 and PACAP receptor expression and localization after global brain ischemia in mice. J Mol Neurosci 48:518–25

    Article  PubMed  CAS  Google Scholar 

  • Novelli A, Reilly JA, Lysko PG, Henneberry RC (1988) Glutamate becomes neurotoxic via the N-methyl-D-aspartate receptor when intracellular energy levels are reduced. Brain Res 451:205–12

    Article  PubMed  CAS  Google Scholar 

  • Ohtaki H, Nakamachi T, Dohi K, Shioda S (2008) Role of PACAP in ischemic neural death. J Mol Neurosci 36:16–25

    Article  PubMed  CAS  Google Scholar 

  • Reglodi D, Kiss P, Lubics A, Tamas A (2011) Review on the protective effects of PACAP in models of neurodegenerative diseases in vitro and in vivo. Curr Pharm Des 17:962–72

    Article  PubMed  CAS  Google Scholar 

  • Schwartz M (2003) Macrophages and microglia in central nervous system injury: are they helpful or harmful? J Cereb Blood Flow Metab 23:385–94

    Article  PubMed  Google Scholar 

  • Seki T, Shioda S, Ogino D, Nakai Y, Arimura A, Koide R (1997) Distribution and ultrastructural localization of a receptor for pituitary adenylate cyclase activating polypeptide and its mRNA in the rat retina. Neurosci Lett 238(3):127–30

    Article  PubMed  CAS  Google Scholar 

  • Seki T, Nakatani M, Taki C et al (2006) Neuroprotective effect of PACAP against kainic acid-induced neurotoxicity in rat retina. Ann N Y Acad Sci 1070:531–4

    Article  PubMed  CAS  Google Scholar 

  • Seki T, Itoh H, Nakamachi T, Shioda S (2008) Suppression of ganglion cell death by PACAP following optic nerve transection in the rat. J Mol Neurosci 36:57–60

    Article  PubMed  CAS  Google Scholar 

  • Seki T, Itoh H, Nakamachi T et al (2011) Suppression of rat retinal ganglion cell death by PACAP following transient ischemia induced by high intraocular pressure. J Mol Neurosci 43:30–4

    Article  PubMed  CAS  Google Scholar 

  • Sharma S, Yang B, Xi X, Grotta JC, Aronowski J, Savitz SI (2011) IL-10 directly protects cortical neurons by activating PI-3 kinase and STAT-3 pathways. Brain Res 1373:189–94

    Article  PubMed  CAS  Google Scholar 

  • Somogyvari-Vigh A, Reglodi D (2004) Pituitary adenylate cyclase activating polypeptide: a potential neuroprotective peptide. Curr Pharm Des 10:2861–89

    Article  PubMed  CAS  Google Scholar 

  • Spera PA, Ellison JA, Feuerstein GZ, Barone FC (1998) IL-10 reduces rat brain injury following focal stroke. Neurosci Lett 251:189–92

    Article  PubMed  CAS  Google Scholar 

  • Stoll G, Jander S (1999) The role of microglia and macrophages in the pathophysiology of the CNS. Prog Neurobiol 58:233–47

    Article  PubMed  CAS  Google Scholar 

  • Strle K, Zhou JH, Shen WH et al (2001) Interleukin-10 in the brain. Crit Rev Immunol 21:427–49

    Article  PubMed  CAS  Google Scholar 

  • Sucher NJ, Aizenman E, Lipton SA (1991) N-methyl-D-aspartate antagonists prevent kainate neurotoxicity in rat retinal ganglion cells in vitro. J Neurosci 11:966–71

    PubMed  CAS  Google Scholar 

  • Szabadfi K, Atlasz T, Kiss P et al (2012) Protective effects of the neuropeptide PACAP in diabetic retinopathy. Cell Tissue Res 348:37–46

    Article  PubMed  CAS  Google Scholar 

  • Thanos S, Mey J, Wild M (1993) Treatment of the adult retina with microglia-suppressing factors retards axotomy-induced neuronal degradation and enhances axonal regeneration in vivo and in vitro. J Neurosci 13:455–66

    PubMed  CAS  Google Scholar 

  • Vaudry D, Falluel-Morel A, Bourgault S et al (2009) Pituitary adenylate cyclase-activating polypeptide and its receptors: 20 years after the discovery. Pharmacol Rev 61:283–357

    Article  PubMed  CAS  Google Scholar 

  • Vitkovic L, Maeda S, Sternberg E (2001) Anti-inflammatory cytokines: expression and action in the brain. Neuroimmunomodulation 9:295–312

    Article  PubMed  CAS  Google Scholar 

  • Vrabec F (1975) Activated human retinal microglia under pathological conditions. Albrecht Von Graefes Arch Klin Exp Ophthalmol 196:49–60

    PubMed  CAS  Google Scholar 

  • Walshe TE, Leach LL, D’Amore PA (2011) TGF-beta signaling is required for maintenance of retinal ganglion cell differentiation and survival. Neuroscience 189:123–31

    Article  PubMed  CAS  Google Scholar 

  • Yang S, Yang J, Yang Z et al (2006) Pituitary adenylate cyclase-activating polypeptide (PACAP) 38 and PACAP4-6 are neuroprotective through inhibition of NADPH oxidase: potent regulators of microglia-mediated oxidative stress. J Pharmacol Exp Ther 319:595–603

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Grants-in Aid for Scientific Research (KAKENHI: 23249079, 24592681, and 24592680), and by the MEXT-Support Program for the Strategic Research Foundation at Showa University (2008–2012, 2012–2016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seiji Shioda.

Additional information

Y. Wada and T. Nakamachi these authors equally contributed.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wada, Y., Nakamachi, T., Endo, K. et al. PACAP Attenuates NMDA-Induced Retinal Damage in Association with Modulation of the Microglia/Macrophage Status into an Acquired Deactivation Subtype. J Mol Neurosci 51, 493–502 (2013). https://doi.org/10.1007/s12031-013-0017-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-013-0017-5

Keywords

Navigation