Skip to main content

Advertisement

Log in

Calcium CaV1 Channel Subtype mRNA Expression in Parkinson’s Disease Examined by In Situ Hybridization

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

The factors which make some neurons vulnerable to neurodegeneration in Parkinson’s disease while others remain resistant are not fully understood. Studies in animal models of Parkinson’s disease suggest that preferential use of CaV1.3 subtypes by neurons may contribute to the neurodegenerative process by increasing mitochondrial oxidant stress. This study quantified the level of mRNA for the CaV1 subtypes found in the brain by in situ hybridization using CaV1 subtype-specific [35S]-radiolabelled oligonucleotide probes. In normal brain, the greatest amount of messenger RNA (mRNA) for each CaV1 subtype was found in the midbrain (substantia nigra), with a moderate level in the pons (locus coeruleus) and lower quantities in cerebral cortex (cingulate and primary motor). In Parkinson’s disease, the level of CaV1 subtype mRNA was maintained in the midbrain and pons, despite cell loss in these areas. In cingulate cortex, CaV1.2 and CaV1.3 mRNA increased in cases with late-stage Parkinson’s disease. In primary motor cortex, the level of CaV1.2 mRNA increased in late-stage Parkinson’s disease. The level of CaV1.3 mRNA increased in primary motor cortex of cases with early-stage Parkinson’s disease and normalized to near the control level in cases from late-stage Parkinson’s disease. The finding of elevated CaV1 subtype expression in cortical brain regions supports the view that disturbed calcium homeostasis is a feature of Parkinson’s disease throughout brain and not only a compensatory consequence to the neurodegenerative process in areas of cell loss.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alafuzoff I, Ince PG, Arzberger T et al (2009) Staging/typing of Lewy body related alpha-synuclein pathology: a study of the BrainNet Europe Consortium. Acta Neuropathol 117:635–652

    Article  CAS  PubMed  Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  PubMed  Google Scholar 

  • Becker C, Jick SS, Meier CR (2008) Use of antihypertensives and the risk of Parkinson disease. Neurology 70:1438–1444

    Article  CAS  PubMed  Google Scholar 

  • Bock G, Gebhart M, Scharinger A et al (2011) Functional properties of a newly identified C-terminal splice variant of CaV1.3 L-type Ca2+ channels. J Biol Chem 286:42736–42748

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Braak H, Del TK, Rub U, de Vos RA, Jansen Steur EN, Braak E (2003) Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 24:197–211

    Article  PubMed  Google Scholar 

  • Chan CS, Guzman JN, Ilijic E et al (2007) ‘Rejuvenation’ protects neurons in mouse models of Parkinson’s disease. Nature 447:1081–1086

    Article  CAS  PubMed  Google Scholar 

  • Chan CS, Glajch KE, Gertler TS et al (2011) HCN channelopathy in external globus pallidus neurons in models of Parkinson’s disease. Nat Neurosci 14:85–92

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Durrenberger PF, Grunblatt E, Fernando FS et al (2012) Inflammatory pathways in Parkinson’s disease; a BNE microarray study. Parkinson’s Dis 2012:214714

    Google Scholar 

  • Fass DM, Takimoto K, Mains RE, Levitan ES (1999) Tonic dopamine inhibition of L-type Ca2+ channel activity reduces α1D Ca2+ channel gene expression. J Neurosci 19:3345–3352

    CAS  PubMed  Google Scholar 

  • Fujimura K, Matsuda Y (1989) Autogenous oscillatory potentials in neurons of the guinea pig substantia nigra pars compacta in vitro. Neurosci Lett 104:53–57

    Article  CAS  PubMed  Google Scholar 

  • Gegg ME, Burke D, Heales SJR et al (2012) Glucocerebrosidase deficiency in substantia nigra of Parkinson’s disease brains. Ann Neurol 72:455–463

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Goldberg JA, Guzman JN, Estep CM et al (2012) Calcium entry induces mitochondrial oxidant stress in vagal neurons at risk in Parkinson’s disease. Nat Neurosci 15:1414–1421

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Guzman JN, Sanchez-Padilla J, Wokosin D et al (2010) Oxidant stress evoked by pacemaking in dopaminergic neurons is attenuated by DJ-1. Nature 468:696–702

    Article  CAS  PubMed  Google Scholar 

  • Hashioka S, Klegeris A, McGeer PL (2012) Inhibition of human astrocyte and microglia neurotoxicity by calcium channel blockers. Neuropharmacology 63:685–691

    Article  CAS  PubMed  Google Scholar 

  • Huang H, Yu D, Soong TW (2013) C-terminal alternative splicing of CaV1.3 channels distinctively modulates their dihydropyridine sensitivity. Mol Pharmacol 84:643–653

    Article  CAS  PubMed  Google Scholar 

  • Hurley MJ, Dexter DT (2012) Voltage-gated calcium channels and Parkinson’s disease. Pharmacol Ther 133:324–333

    Article  CAS  PubMed  Google Scholar 

  • Hurley MJ, Jenner P (2006) What has been learnt from study of dopamine receptors in Parkinson’s disease? Pharmacol Ther 111:715–728

    Article  CAS  PubMed  Google Scholar 

  • Hurley MJ, Stubbs CM, Jenner P, Marsden CD (1996) Effect of chronic treatment with typical and atypical neuroleptics on the expression of dopamine D2 and D3 receptors in rat brain. Psychopharmacol (Berl) 128:362–370

    Article  CAS  Google Scholar 

  • Hurley MJ, Brandon B, Gentleman SM, Dexter DT (2013) Parkinson’s disease is associated with altered expression of CaV1 channels and calcium-binding proteins. Brain 136:2077–2097

    Article  PubMed  Google Scholar 

  • Ilijic E, Guzman JN, Surmeier DJ (2011) The L-type channel antagonist isradipine is neuroprotective in a mouse model of Parkinson’s disease. Neurobiol Dis 43:364–371

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kang S, Cooper G, Dunne SF et al (2012) CaV1.3-selective L-type calcium channel antagonists as potential new therapeutics for Parkinson’s disease. Nat Commun 3:1146

    Article  PubMed  Google Scholar 

  • Khaliq ZM, Bean BP (2010) Pacemaking in dopaminergic ventral tegmental area neurons: depolarizing drive from background and voltage-dependent sodium conductances. J Neurosci 30:7401–7413

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kupsch A, Sautter J, Schwarz J, Riederer P, Gerlach M, Oertel WH (1996) 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced neurotoxicity in non-human primates is antagonized by pretreatment with nimodipine at the nigral, but not at the striatal level. Brain Res 741:185–196

    Article  CAS  PubMed  Google Scholar 

  • Lees AJ, Hardy J, Revesz T (2009) Parkinson’s disease. Lancet 373:2055–2066

    Article  CAS  PubMed  Google Scholar 

  • Marras C, Gruneir A, Rochon P et al (2012) Dihydropyridine calcium channel blockers and the progression of parkinsonism. Ann Neurol 71:362–369

    Article  CAS  PubMed  Google Scholar 

  • Mercuri NB, Bonci A, Calabresi P, Stratta F, Stefani A, Bernardi G (1994) Effects of dihydropyridine calcium antagonists on rat midbrain dopaminergic neurones. Br J Pharmacol 113:831–838

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Möller T (2002) Calcium signaling in microglia cells. Glia 40:184–194

    Article  PubMed  Google Scholar 

  • Nedergaard S, Flatman JA, Engberg I (1993) Nifedipine- and omega-conotoxin-sensitive Ca2+ conductances in guinea-pig substantia nigra pars compacta neurones. J Physiol 466:727–747

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nunez DJ, Davenport AP, Emson PC, Brown MJ (1989) A quantitative ‘in-situ’ hybridization method using computer-assisted image analysis. Validation and measurement of atrial-natriuretic-factor mRNA in the rat heart. Biochem J 263:121–127

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nuzzo R (2014) Statistical errors. Nature 506:150–152

    Article  CAS  PubMed  Google Scholar 

  • Parkinson Study Group (2013) Phase II safety, tolerability, and dose selection study of isradipine as a potential disease-modifying intervention in early Parkinson’s disease (STEADY-PD). Mov Disord 28:1823–1831

    Article  Google Scholar 

  • Pasternak B, Svanstrom H, Nielsen NM, Fugger L, Melbye M, Hviid A (2012) Use of calcium channel blockers and Parkinson’s disease. Am J Epidemiol 175:627–635

    Article  PubMed  Google Scholar 

  • Przedborski S, Vila M, Jackson-Lewis V (2003) Neurodegeneration: what is it and where are we? J Clin Invest 111:3–10

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Puopolo M, Raviola E, Bean BP (2007) Roles of subthreshold calcium current and sodium current in spontaneous firing of mouse midbrain dopamine neurons. J Neurosci 27:645–656

    Article  CAS  PubMed  Google Scholar 

  • Rees K, Stowe R, Patel S (2011) Antihypertensive drugs as disease-modifying agents for Parkinson’s disease: evidence from observational studies and clinical trials. Cochrane Database Syst Rev 11:CD008535. doi:10.1002/14651858.CD008535.pub2

    PubMed  Google Scholar 

  • Ritz B, Rhodes SL, Qian L, Schernhammer E, Olsen JH, Friis S (2010) L-type calcium channel blockers and Parkinson disease in Denmark. Ann Neurol 67:600–606

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sautter J, Kupsch A, Earl CD, Oertel WH (1997) Degeneration of pre-labelled nigral neurons induced by intrastriatal 6-hydroxydopamine in the rat: behavioural and biochemical changes and pretreatment with the calcium-entry blocker nimodipine. Exp Brain Res 117:111–119

    Article  CAS  PubMed  Google Scholar 

  • Schlick B, Flucher BE, Obermair GJ (2010) Voltage-activated calcium channel expression profiles in mouse brain and cultured hippocampal neurons. Neuroscience 167:786–798

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sinnegger-Brauns MJ, Huber IG, Koschak A et al (2009) Expression and 1,4-dihydropyridine-binding properties of brain L-type calcium channel isoforms. Mol Pharmacol 75:407–414

    Article  CAS  PubMed  Google Scholar 

  • Surmeier DJ (2007) Calcium, ageing, and neuronal vulnerability in Parkinson’s disease. Lancet Neurol 6:933–938

    Article  CAS  PubMed  Google Scholar 

  • Surmeier DJ, Guzman JN, Sanchez J, Schumacker PT (2012) Physiological phenotype and vulnerability in Parkinson’s disease. Cold Spring Harb Perspect Med 2:a009290

    Article  PubMed Central  PubMed  Google Scholar 

  • Tan BZ, Jiang F, Tan MY et al (2011) Functional characterization of alternative splicing in the C terminus of L-type CaV1.3 channels. J Biol Chem 286:42725–42735

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ton TG, Heckbert SR, Longstreth WT Jr et al (2007) Calcium channel blockers and beta-blockers in relation to Parkinson’s disease. Parkinsonism Relat Disord 13:165–169

    Article  PubMed Central  PubMed  Google Scholar 

  • Vogt IR, Lees AJ, Evert BO, Klockgether T, Bonin M, Wullner U (2006) Transcriptional changes in multiple system atrophy and Parkinson’s disease putamen. Exp Neurol 199:465–478

    Article  CAS  PubMed  Google Scholar 

  • Wilson CJ, Callaway JC (2000) Coupled oscillator model of the dopaminergic neuron of the substantia nigra. J Neurophysiol 83:3084–3100

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The Cure Parkinson’s Trust (registered charity number 1111816) funded this work. The Parkinson’s UK Tissue Bank, which is funded by Parkinson’s UK (registered charity 258197 in England and Wales and SC037554 in Scotland), supplied the tissue samples and associated clinical and neuropathological data.

Conflict of Interest

The authors declare that there are no conflicts of interest associated with this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael J. Hurley.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hurley, M.J., Gentleman, S.M. & Dexter, D.T. Calcium CaV1 Channel Subtype mRNA Expression in Parkinson’s Disease Examined by In Situ Hybridization. J Mol Neurosci 55, 715–724 (2015). https://doi.org/10.1007/s12031-014-0410-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-014-0410-8

Keywords

Navigation