Skip to main content
Log in

Tracking TrkA’s Trafficking: NGF Receptor Trafficking Controls NGF Receptor Signaling

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Growth factors such as the neurotrophins promote neuronal survival and shape neuronal morphology. Neurotrophin receptors are located on the surface of axons and dendrites and must convey their signal retrogradely to the nucleus to influence transcription of target genes. The distance between the site of receptor activation and the nucleus is tremendous. How is the retrograde transmission of survival signals being achieved? Recent work showed that signaling endosomes containing neurotrophin receptors and associated downstream kinases undergo retrograde vesicular transport along microtubules, propelled by the molecular motor dynein. The next objective in the “neurotrophin receptor trafficking meets signal transduction field” will be to elucidate the traffic control mechanisms governing the directed movement of signaling endosomes. Much is already known on the trafficking of the receptor for epidermal growth factor, EGFR. We will summarize the known traffic control mechanisms for EGFR and hypothesize whether EGFR-relevant traffic control mechanisms might also be relevant for neurotrophin receptor traffic control. Moreover, we speculate about potential implications of neurotrophin receptor traffic jams for neurodegenerative diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Snider WD (1994) Functions of the neurotrophins during nervous system development: what the knockouts are teaching us. Cell 77:627–638

    Article  PubMed  Google Scholar 

  2. Bothwell M (1995) Functional interactions of neurotrophins and neurotrophin receptors. Annu Rev Neurosci 18:223–253

    Article  PubMed  CAS  Google Scholar 

  3. Segal RA, Greenberg ME (1996) Intracellular signaling pathways activated by neurotrophic factors. Annu Rev Neurosci 19:463–489

    PubMed  CAS  Google Scholar 

  4. Hendry IA, Stockel K, Thoenen H, Iversen LL (1974) The retrograde axonal transport of nerve growth factor. Brain Res 68:103–121

    Article  PubMed  CAS  Google Scholar 

  5. Ehlers MD, Kaplan DR, Price DL, Koliatsos VE (1995) NGF-stimulated retrograde transport of trkA in the mammalian nervous system. J Cell Biol 130:149–156

    Article  PubMed  CAS  Google Scholar 

  6. Grimes ML, Zhou J, Beattie EC, Yuen EC, Hall DE, Valletta JS, Topp KS, LaVail JH, Bunnett NW, Mobley WC (1996) Endocytosis of activated TrkA: evidence that nerve growth factor induces formation of signaling endosomes. J Neurosci 16:7950–7964

    PubMed  CAS  Google Scholar 

  7. Heerssen HM, Pazyra MF, Segal RA (2004) Dynein motors transport activated Trks to promote survival of target-dependent neurons. Nat Neurosci 7:596–604

    Article  PubMed  CAS  Google Scholar 

  8. Howe CL, Mobley WC (2004) Signaling endosome hypothesis: a cellular mechanism for long distance communication. J Neurobiol 58:207–216

    Article  PubMed  Google Scholar 

  9. Zweifel LS, Kuruvilla R, Ginty DD (2005) Functions and mechanisms of retrograde neurotrophin signalling. Nat Rev Neurosci 6:615–625

    Article  PubMed  CAS  Google Scholar 

  10. Heerssen HM, Segal RA (2002) Location, location, location: a spatial view of neurotrophin signal transduction. Trends Neurosci 25:160–165

    Article  PubMed  CAS  Google Scholar 

  11. MacInnis BL, Campenot RB (2002) Retrograde support of neuronal survival without retrograde transport of nerve growth factor. Science 295:1536–1539

    Article  PubMed  CAS  Google Scholar 

  12. Senger DL, Campenot RB (1997) Rapid retrograde tyrosine phosphorylation of trkA and other proteins in rat sympathetic neurons in compartmented cultures. J Cell Biol 138:411–421

    Article  PubMed  CAS  Google Scholar 

  13. Deisseroth K, Bito H, Tsien RW (1996) Signaling from synapse to nucleus: postsynaptic CREB phosphorylation during multiple forms of hippocampal synaptic plasticity. Neuron 16:89–101

    Article  PubMed  CAS  Google Scholar 

  14. Berridge MJ (1993) Cell signalling. A tale of two messengers. Nature 365:388–389

    Article  PubMed  CAS  Google Scholar 

  15. Miyashiro K, Dichter M, Eberwine J (1994) On the nature and differential distribution of mRNAs in hippocampal neurites: implications for neuronal functioning. Proc Natl Acad Sci U S A 91:10800–10804

    Article  PubMed  CAS  Google Scholar 

  16. Hanz S, Perlson E, Willis D, Zheng JQ, Massarwa R, Huerta JJ, Koltzenburg M, Kohler M, van-Minnen J, Twiss JL (2003) Axoplasmic importins enable retrograde injury signaling in lesioned nerve. Neuron 40:1095–1104

    Article  PubMed  CAS  Google Scholar 

  17. Thompson KR, Otis KO, Chen DY, Zhao Y, O’Dell TJ, Martin KC (2004) Synapse to nucleus signaling during long-term synaptic plasticity; a role for the classical active nuclear import pathway. Neuron 44:997–1009

    PubMed  CAS  Google Scholar 

  18. Meffert MK, Chang JM, Wiltgen BJ, Fanselow MS, Baltimore D (2003) NF-kappa B functions in synaptic signaling and behavior. Nat Neurosci 6:1072–1078

    Article  PubMed  CAS  Google Scholar 

  19. Graef IA, Wang F, Charron F, Chen L, Neilson J, Tessier-Lavigne M, Crabtree GR (2003) Neurotrophins and netrins require calcineurin/NFAT signaling to stimulate outgrowth of embryonic axons. Cell 113:657–670

    Article  PubMed  CAS  Google Scholar 

  20. Burke MA, Bothwell M (2003) p75 neurotrophin receptor mediates neurotrophin activation of NF-kappa B and induction of iNOS expression in P19 neurons. J Neurobiol 55:191–203

    Article  PubMed  CAS  Google Scholar 

  21. Groth RD, Mermelstein PG (2003) Brain-derived neurotrophic factor activation of NFAT (nuclear factor of activated T-cells)-dependent transcription: a role for the transcription factor NFATc4 in neurotrophin-mediated gene expression. J Neurosci 23:8125–8134

    PubMed  CAS  Google Scholar 

  22. Gruenberg J (2001) The endocytic pathway: a mosaic of domains. Nat Rev Mol Cell Biol 2:721–730

    Article  PubMed  CAS  Google Scholar 

  23. Lakadamyali M, Rust MJ, Zhuang X (2006) Ligands for clathrinmediated endocytosis are differentially sorted into distinct populations of early endosomes. Cell 124:997–1009

    Article  PubMed  CAS  Google Scholar 

  24. Ishiki M, Klip A (2005) Minireview: recent developments in the regulation of glucose transporter-4 traffic: new signals, locations, and partners. Endocrinology 146:5071–5078

    Article  PubMed  CAS  Google Scholar 

  25. Meier O, Boucke K, Hammer SV, Keller S, Stidwill RP, Hemmi S, Greber UF (2002) Adenovirus triggers macropinocytosis and endosomal leakage together with its clathrin-mediated uptake. J Cell Biol 158:1119–1131

    Article  PubMed  CAS  Google Scholar 

  26. Pelkmans L, Burli T, Zerial M, Helenius A (2004) Caveolin-stabilized membrane domains as multifunctional transport and sorting devices in endocytic membrane traffic. Cell 118:767–780

    Article  PubMed  CAS  Google Scholar 

  27. Felder S, Miller K, Moehren G, Ullrich A, Schlessinger J, Hopkins CR (1990) Kinase activity controls the sorting of the epidermal growth factor receptor within the multivesicular body. Cell 61:623–634

    Article  PubMed  CAS  Google Scholar 

  28. Petiot A, Faure J, Stenmark H, Gruenberg J (2003) PI3P signaling regulates receptor sorting but not transport in the endosomal pathway. J Cell Biol 162:971–979

    Article  PubMed  CAS  Google Scholar 

  29. Vieira AV, Lamaze C, Schmid SL (1996) Control of EGF receptor signaling by clathrin-mediated endocytosis. Science 274:2086–2089

    Article  PubMed  CAS  Google Scholar 

  30. Zerial M, McBride H (2001) Rab proteins as membrane organizers. Nat Rev Mol Cell Biol 2:107–117

    Article  PubMed  CAS  Google Scholar 

  31. Barbieri MA, Fernandez-Pol S, Hunker C, Horazdovsky BH, Stahl PD (2004) Role of rab5 in EGF receptor-mediated signal transduction. Eur J Cell Biol 83:305–314

    Article  PubMed  CAS  Google Scholar 

  32. Lanzetti L, Rybin V, Malabarba MG, Christoforidis S, Scita G, Zerial M, Di Fiore PP (2000) The Eps8 protein coordinates EGF receptor signalling through Rac and trafficking through Rab5. Nature 408:374–377

    Article  PubMed  CAS  Google Scholar 

  33. Ceresa BP, Bahr SJ (2006) Rab7 activity affects epidermal growth factor: epidermal growth factor receptor degradation by regulating endocytic trafficking from the late endosome. J Biol Chem 281:1099–1106

    Article  PubMed  CAS  Google Scholar 

  34. Dikic I (2003) Mechanisms controlling EGF receptor endocytosis and degradation. Biochem Soc Trans 31:1178–1181

    PubMed  CAS  Google Scholar 

  35. Raiborg C, Bache KG, Gillooly DJ, Madshus IH, Stang E, Stenmark H (2002) Hrs sorts ubiquitinated proteins into clathrin-coated microdomains of early endosomes. Nat Cell Biol 4:394–398

    Article  PubMed  CAS  Google Scholar 

  36. Komada M, Kitamura N (1995) Growth factor-induced tyrosine phosphorylation of Hrs, a novel 115-kilodalton protein with a structurally conserved putative zinc finger domain. Mol Cell Biol 15:6213–6221

    PubMed  CAS  Google Scholar 

  37. Bache KG, Raiborg C, Mehlum A, Madshus IH, Stenmark H (2002) Phosphorylation of Hrs downstream of the epidermal growth factor receptor. Eur J Biochem 269:3881–3887

    Article  PubMed  CAS  Google Scholar 

  38. Urbe S, Sachse M, Row PE, Preisinger C, Barr FA, Strous G, Klumperman J, Clague MJ (2003) The UIM domain of Hrs couples receptor sorting to vesicle formation. J Cell Sci 116:4169–4179

    Article  PubMed  CAS  Google Scholar 

  39. Katzmann DJ, Babst M, Emr SD (2001) Ubiquitin-dependent sorting into the multivesicular body pathway requires the function of a conserved endosomal protein sorting complex, ESCRT-I. Cell 106:145–155

    Article  PubMed  CAS  Google Scholar 

  40. Lu Q, Hope LW, Brasch M, Reinhard C, Cohen SN (2003) TSG101 interaction with HRS mediates endosomal trafficking and receptor downregulation. Proc Natl Acad Sci USA 100:7626–7631

    Article  PubMed  CAS  Google Scholar 

  41. Wagner KU, Krempler A, Qi Y, Park K, Henry MD, Triplett AA, Riedlinger G, Rucker IE, Hennighausen L (2003) Tsg101 is essential for cell growth, proliferation, and cell survival of embryonic and adult tissues. Mol Cell Biol 23:150–162

    Article  PubMed  CAS  Google Scholar 

  42. Di Fiore PP, De Camilli P (2001) Endocytosis and signaling: an inseparable partnership. Cell 106:1–4

    Article  PubMed  Google Scholar 

  43. Dinneen JL, Ceresa BP (2004) Continual expression of Rab5(Q79L) causes a ligand-independent EGFR internalization and diminishes EGFR activity. Traffic 5:606–615

    Article  PubMed  CAS  Google Scholar 

  44. Scoles DR, Qin Y, Nguyen V, Gutmann DH, Pulst SM (2005) HRS inhibits EGF receptor signaling in the RT4 rat schwannoma cell line. Biochem Biophys Res Commun 335:385–392

    Article  PubMed  CAS  Google Scholar 

  45. Polo S, Di Fiore PP (2006) Endocytosis conducts the cell signaling orchestra. Cell 124:897–900

    Article  PubMed  CAS  Google Scholar 

  46. Layer PG, Shooter EM (1983) Binding and degradation of nerve growth factor by PC12 pheochromocytoma cells. J Biol Chem 258:3012–3018

    PubMed  CAS  Google Scholar 

  47. Saxena S, Howe CL, Cosgaya JM, Steiner P, Hirling H, Chan JR, Weis J, Kruttgen A (2005) Differential endocytic sorting of p75NTR and TrkA in response to NGF: a role for late endosomes in TrkA trafficking. Mol Cell Neurosci 28:571–587

    Article  PubMed  CAS  Google Scholar 

  48. Howe CL, Valletta JS, Rusnak AS, Mobley WC (2001) NGF signaling from clathrin-coated vesicles: evidence that signaling endosomes serve as a platform for the Ras-MAPK pathway. Neuron 32:801–814

    Article  PubMed  CAS  Google Scholar 

  49. Saxena S, Howe CL, Cosgaya JM, Hu M, Weis J, Kruttgen A (2004) Differences in the surface binding and endocytosis of neurotrophins by p75NTR. Mol Cell Neurosci 26:292–307

    Article  PubMed  CAS  Google Scholar 

  50. Delcroix JD, Valletta JS, Wu C, Hunt SJ, Kowal AS, Mobley WC (2003) NGF signaling in sensory neurons: evidence that early endosomes carry NGF retrograde signals. Neuron 39:69–84

    Article  PubMed  CAS  Google Scholar 

  51. Valdez G, Akmentin W, Philippidou P, Kuruvilla R, Ginty DD, Halegoua S (2005) Pincher-mediated macroendocytosis underlies retrograde signaling by neurotrophin receptors. J Neurosci 25:5236–5247

    Article  PubMed  CAS  Google Scholar 

  52. Saxena S, Bucci C, Weis J, Kruttgen A (2005) The small GTPase Rab7 controls the endosomal trafficking and neuritogenic signaling of the nerve growth factor receptor TrkA. J Neurosci 25:10930–10940

    Article  PubMed  CAS  Google Scholar 

  53. Parton RG, Simons K, Dotti CG (1992) Axonal and dendritic endocytic pathways in cultured neurons. J Cell Biol 119:123–137

    Article  PubMed  CAS  Google Scholar 

  54. Claude P, Hawrot E, Dunis DA, Campenot RB (1982) Binding, internalization, and retrograde transport of 125I-nerve growth factor in cultured rat sympathetic neurons. J Neurosci 2:431–442

    PubMed  CAS  Google Scholar 

  55. Ure DR, Campenot RB (1997) Retrograde transport and steady-state distribution of 125I-nerve growth factor in rat sympathetic neurons in compartmented cultures. J Neurosci 17:1282–1290

    PubMed  CAS  Google Scholar 

  56. Sorkin A, Von Zastrow M (2002) Signal transduction and endocytosis: close encounters of many kinds. Nat Rev Mol Cell Biol 3:600–614

    Article  PubMed  CAS  Google Scholar 

  57. Bhattacharyya A, Watson FL, Pomeroy SL, Zhang YZ, Stiles CD, Segal RA (2002) High-resolution imaging demonstrates dynein-based vesicular transport of activated Trk receptors. J Neurobiol 51:302–312

    Article  PubMed  CAS  Google Scholar 

  58. Wunderlich W, Fialka I, Teis D, Alpi A, Pfeifer A, Parton RG, Lottspeich F, Huber LA (2001) A novel 14-kilodalton protein interacts with the mitogen-activated protein kinase scaffold mp1 on a late endosomal/lysosomal compartment. J Cell Biol 152:765–776

    Article  PubMed  CAS  Google Scholar 

  59. Oksvold MP, Skarpen E, Wierod L, Paulsen RE, Huitfeldt HS (2001) Re-localization of activated EGF receptor and its signal transducers to multivesicular compartments downstream of early endosomes in response to EGF. Eur J Cell Biol 80:285–294

    Article  PubMed  CAS  Google Scholar 

  60. Bilderback TR, Gazula VR, Lisanti MP, Dobrowsky RT (1999) Caveolin interacts with Trk A and p75(NTR) and regulates neurotrophin signaling pathways. J Biol Chem 274:257–263

    Article  PubMed  CAS  Google Scholar 

  61. Huang CS, Zhou J, Feng AK, Lynch CC, Klumperman J, DeArmond SJ, Mobley WC (1999) Nerve growth factor signaling in caveolae-like domains at the plasma membrane. J Biol Chem 274:36707–36714

    Article  PubMed  CAS  Google Scholar 

  62. Peiro S, Comella JX, Enrich C, Martin-Zanca D, Rocamora N (2000) PC12 cells have caveolae that contain TrkA. Caveolae-disrupting drugs inhibit nerve growth factor-induced, but not epidermal growth factor-induced, MAPK phosphorylation. J Biol Chem 275:37846–37852

    Article  PubMed  CAS  Google Scholar 

  63. Sigismund S, Woelk T, Puri C, Maspero E, Tacchetti C, Transidico P, Di Fiore PP, Polo S (2005) Clathrin-independent endocytosis of ubiquitinated cargos. Proc Natl Acad Sci USA 102:2760–2765

    Article  PubMed  CAS  Google Scholar 

  64. Tsui-Pierchala BA, Ginty DD (1999) Characterization of an NGF-P-TrkA retrograde-signaling complex and age-dependent regulation of TrkA phosphorylation in sympathetic neurons. J Neurosci 19:8207–8218

    PubMed  CAS  Google Scholar 

  65. Bronfman FC, Tcherpakov M, Jovin TM, Fainzilber M (2003) Ligand-induced internalization of the p75 neurotrophin receptor: a slow route to the signaling endosome. J Neurosci 23:3209–3220

    PubMed  CAS  Google Scholar 

  66. Barker PA, Shooter EM (1994) Disruption of NGF binding to the low affinity neurotrophin receptor p75LNTR reduces NGF binding to TrkA on PC12 cells. Neuron 13:203–215

    Article  PubMed  CAS  Google Scholar 

  67. Dombrowski L, Faure R, Marette A (2000) Sustained activation of insulin receptors internalized in GLUT4 vesicles of insulin-stimulated skeletal muscle. Diabetes 49:1772–1782

    Article  PubMed  CAS  Google Scholar 

  68. Chen ZY, Ieraci A, Tanowitz M, Lee FS (2005) A novel endocytic recycling signal distinguishes biological responses of Trk neurotrophin receptors. Mol Biol Cell 16:5761–5772

    Article  PubMed  CAS  Google Scholar 

  69. Zapf-Colby A, Olefsky JM (1998) Nerve growth factor processing and trafficking events following TrkA-mediated endocytosis. Endocrinology 139:3232–3240

    Article  PubMed  CAS  Google Scholar 

  70. Hendriks BS, Opresko LK, Wiley HS, Lauffenburger D (2003) Quantitative analysis of HER2-mediated effects on HER2 and epidermal growth factor receptor endocytosis: distribution of homo- and heterodimers depends on relative HER2 levels. J Biol Chem 278:23343–23351

    Article  PubMed  CAS  Google Scholar 

  71. Hendriks BS, Wiley HS, Lauffenburger D (2003) HER2-mediated effects on EGFR endosomal sorting: analysis of biophysical mechanisms. Biophys J 85:2732–2745

    Article  PubMed  CAS  Google Scholar 

  72. Lad SP, Peterson DA, Bradshaw RA, Neet KE (2003) Individual and combined effects of TrkA and p75NTR nerve growth factor receptors. A role for the high affinity receptor site. J Biol Chem 278:24808–24817

    Article  PubMed  CAS  Google Scholar 

  73. Zhang Y, Moheban DB, Conway BR, Bhattacharyya A, Segal RA (2000) Cell surface Trk receptors mediate NGF-induced survival while internalized receptors regulate NGF-induced differentiation. J Neurosci 20:5671–5678

    PubMed  CAS  Google Scholar 

  74. Makkerh JP, Ceni C, Auld DS, Vaillancourt F, Dorval G, Barker PA (2005) p75 neurotrophin receptor reduces ligand-induced Trk receptor ubiquitination and delays Trk receptor internalization and degradation. EMBO Rep 6:936–941

    Article  PubMed  CAS  Google Scholar 

  75. Geetha T, Jiang J, Wooten MW (2005) Lysine 63 polyubiquitination of the nerve growth factor receptor TrkA directs internalization and signaling. Mol Cell 20:301–312

    Article  PubMed  CAS  Google Scholar 

  76. Arevalo JC, Waite J, Rajagopal R, Beyna M, Chen ZY, Lee FS, Chao MV (2006) Cell survival through Trk neurotrophin receptors is differentially regulated by ubiquitination. Neuron 50:549–559

    Article  PubMed  CAS  Google Scholar 

  77. Bibel M, Hoppe E, Barde YA (1999) Biochemical and functional interactions between the neurotrophin receptors trk and p75NTR. Embo J 18:616–622

    Article  PubMed  CAS  Google Scholar 

  78. Ohrt T, Mancini A, Tamura T, Niedenthal R (2004) c-Cbl binds to tyrosine-phosphorylated neurotrophin receptor p75 and induces its ubiquitination. Cell Signal 16:1291–1298

    Article  PubMed  CAS  Google Scholar 

  79. Scott PM, Bilodeau PS, Zhdankina O, Winistorfer SC, Hauglund MJ, Allaman MM, Kearney WR, Robertson AD, Boman AL, Piper RC (2004) GGA proteins bind ubiquitin to facilitate sorting at the trans-Golgi network. Nat Cell Biol 6:252–259

    Article  PubMed  CAS  Google Scholar 

  80. Appel SH (1981) A unifying hypothesis for the cause of amyotrophic lateral sclerosis, parkinsonism, and Alzheimer disease. Ann Neurol 10:499–505

    Article  PubMed  CAS  Google Scholar 

  81. Kruttgen A, Saxena S, Evangelopoulos ME, Weis J (2003) Neurotrophins and neurodegenerative diseases: receptors stuck in traffic? J Neuropathol Exp Neurol 62:340–350

    PubMed  CAS  Google Scholar 

  82. Cooper JD, Salehi A, Delcroix JD, Howe CL, Belichenko PV, Chua-Couzens J, Kilbridge JF, Carlson EJ, Epstein CJ, Mobley WC (2001) Failed retrograde transport of NGF in a mouse model of Down’s syndrome: reversal of cholinergic neurodegenerative phenotypes following NGF infusion. Proc Natl Acad Sci USA 98:10439–10444

    Article  PubMed  CAS  Google Scholar 

  83. Hefti F (1986) Nerve growth factor promotes survival of septal cholinergic neurons after fimbrial transections. J Neurosci 6:2155–2162

    PubMed  CAS  Google Scholar 

  84. Chen KS, Nishimura MC, Armanini MP, Crowley C, Spencer SD, Phillips HS (1997) Disruption of a single allele of the nerve growth factor gene results in atrophy of basal forebrain cholinergic neurons and memory deficits. J Neurosci 17:7288–7296

    PubMed  CAS  Google Scholar 

  85. Capsoni S, Ugolini G, Comparini A, Ruberti F, Berardi N, Cattaneo A (2000) Alzheimer-like neurodegeneration in aged antinerve growth factor transgenic mice. Proc Natl Acad Sci USA 97:6826–6831

    Article  PubMed  CAS  Google Scholar 

  86. Tuszynski MH, Thal L, Pay M, Salmon DP, U HS, Bakay R, Patel P, Blesch A, Vahlsing HL, Ho G (2005) A phase 1 clinical trial of nerve growth factor gene therapy for Alzheimer disease. Nat Med 11:551–555

    Article  PubMed  CAS  Google Scholar 

  87. Stokin GB, Lillo C, Falzone TL, Brusch RG, Rockenstein E, Mount SL, Raman R, Davies P, Masliah E, Williams DS (2005) Axonopathy and transport deficits early in the pathogenesis of Alzheimer’s disease. Science 307:1282–1288

    Article  PubMed  CAS  Google Scholar 

  88. Salehi A, Delcroix JD, Belichenko PV, Zhan K, Wu C, Valletta JS, Takimoto-Kimura R, Kleschevnikov AM, Sambamurti K, Chung PP (2006) Increased App expression in a mouse model of Down’s syndrome disrupts NGF transport and causes cholinergic neuron degeneration. Neuron 51:29–42

    Article  PubMed  CAS  Google Scholar 

  89. Kamal A, Almenar-Queralt A, LeBlanc JF, Roberts EA, Goldstein LS (2001) Kinesin-mediated axonal transport of a membrane compartment containing beta-secretase and presenilin-1 requires APP. Nature 414:643–648

    Article  PubMed  CAS  Google Scholar 

  90. Lazarov O, Morfini GA, Lee EB, Farah MH, Szodorai A, DeBoer SR, Koliatsos VE, Kins S, Lee VM, Wong PC (2005) Axonal transport, amyloid precursor protein, kinesin-1, and the processing apparatus: revisited. J Neurosci 25:2386–2395

    Article  PubMed  CAS  Google Scholar 

  91. Gauthier LR, Charrin BC, Borrell-Pages M, Dompierre JP, Rangone H, Cordelieres FP, De Mey J, MacDonald ME, Lessmann V, Humbert S (2004) Huntingtin controls neurotrophic support and survival of neurons by enhancing BDNF vesicular transport along microtubules. Cell 118:127–138

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

We would like to thank Dr. Dana Dodd for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Krüttgen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moises, T., Dreier, A., Flohr, S. et al. Tracking TrkA’s Trafficking: NGF Receptor Trafficking Controls NGF Receptor Signaling. Mol Neurobiol 35, 151–159 (2007). https://doi.org/10.1007/s12035-007-8000-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-007-8000-1

Keywords

Navigation