Skip to main content

Advertisement

Log in

The Molecular Architecture of Ribbon Presynaptic Terminals

Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The primary receptor neurons of the auditory, vestibular, and visual systems encode a broad range of sensory information by modulating the tonic release of the neurotransmitter glutamate in response to graded changes in membrane potential. The output synapses of these neurons are marked by structures called synaptic ribbons, which tether a pool of releasable synaptic vesicles at the active zone where glutamate release occurs in response to calcium influx through L-type channels. Ribbons are composed primarily of the protein, RIBEYE, which is unique to ribbon synapses, but cytomatrix proteins that regulate the vesicle cycle in conventional terminals, such as Piccolo and Bassoon, also are found at ribbons. Conventional and ribbon terminals differ, however, in the size, molecular composition, and mobilization of their synaptic vesicle pools. Calcium-binding proteins and plasma membrane calcium pumps, together with endomembrane pumps and channels, play important roles in calcium handling at ribbon synapses. Taken together, emerging evidence suggests that several molecular and cellular specializations work in concert to support the sustained exocytosis of glutamate that is a hallmark of ribbon synapses. Consistent with its functional importance, abnormalities in a variety of functional aspects of the ribbon presynaptic terminal underlie several forms of auditory neuropathy and retinopathy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Rieke F, Baylor DA (1998) Origin of reproducibility in the responses of retinal rods to single photons. Biophys J 75:1836–1857

    PubMed  CAS  Google Scholar 

  2. Ekstrom P, Meissl H (1997) The pineal organ of teleost fishes. Rev Fish Biol Fisheries 7:199–284

    Google Scholar 

  3. Torre V, Ashmore JF, Lamb TD, Menini A (1995) Transduction and adaptation in sensory receptor cells. J Neurosci 15:7757–7768

    PubMed  CAS  Google Scholar 

  4. Schaeffer SF, Raviola E (1978) Membrane recycling in the cone cell endings of the turtle retina. J Cell Biol 79:802–825

    PubMed  CAS  Google Scholar 

  5. Saito K (1980) Fine structure of the sensory epithelium of the guinea pig organ of Corti: afferent and efferent synapses of hair cells. J Ultrastruct Res 71:222–232

    PubMed  CAS  Google Scholar 

  6. Denizot J-P, Bensouilah M, Roesler R, Schugardt C, Kirschbaum F (2007) Larval electroreceptors in the epidermis of mormyrid fish: II. The promormyromast. J Comp Neurol 501:801–823

    Google Scholar 

  7. Dick O, tom Dieck S, Altrock WD, Ammermuller J, Weiler R, Garner CC, Gundelfinger ED, Brandstätter JH (2003) The presynaptic active zone protein bassoon is essential for photoreceptor ribbon synapse formation in the retina. Neuron 37:775–786

    PubMed  CAS  Google Scholar 

  8. Van Epps HA, Hayashi M, Stearns GW, Hurley JB, De Camilli P, Brockerhoff SE (2004) The zebrafish nrc mutant reveals a role for the polyphosphoinositide phosphatase synaptojanin 1 in cone photoreceptor ribbon anchoring. J Neurosci 24:8641–8650

    PubMed  Google Scholar 

  9. Khimich D, Pujol R, tom Dieck S, Egner A, Gundelfinger ED, Moser T (2005) Hair cell synaptic ribbons are essential for synchronous auditory signalling. Nature 434:889–894

    PubMed  CAS  Google Scholar 

  10. Sjöstrand FS (1953) The ultrastructure of the retinal rod synapses of the guinea pig eye. J Appl Phys 24:1422–1429

    Google Scholar 

  11. De Robertis E, Franchi CM (1956) Electron microscope observations on synaptic vesicles in synapses of the retinal rods and cones. J Biophys Biochem Cytol 2:307–318

    Article  Google Scholar 

  12. Sjöstrand F (1958) Ultrastructure of retinal rod synapses of the guinea pig eye as revealed by three-dimensional reconstructions from serial sections. J Ultrastruct Res 2:122–170

    PubMed  Google Scholar 

  13. Smith CA, Sjöstrand FS (1961) A synaptic structure in the hair cells of the guinea pig cochlea. J Ultrastruct Res 5:184–192

    Google Scholar 

  14. Sejnowski TJ, Yodlowski ML (1982) A freeze-fracture study of the skate electroreceptor. J Neurocytol 11:897–912

    PubMed  CAS  Google Scholar 

  15. Usukura J, Yamada E (1987) Ultrastructure of the synaptic ribbons in photoreceptor cells of Rana catesbeiana revealed by freeze-etching and freeze-substitution. Cell Tissue Res 247:483–488

    PubMed  CAS  Google Scholar 

  16. Bunt AH (1971) Enzymatic digestion of synaptic ribbons in amphibian retinal photoreceptors. Brain Res 25:571–577

    PubMed  CAS  Google Scholar 

  17. Balkema GW (1991) A synaptic antigen (B16) is localized in retinal synaptic ribbons. J Comp Neurol 312:573–583

    PubMed  CAS  Google Scholar 

  18. Roberts WM, Hagedorn M (1992) Cytoplasm of frog saccular hair cells has a calcium buffer more effective than 0.5 mM BAPTA. Biophys J 61:A142

    Google Scholar 

  19. Nguyen TH, Balkema GW (1999) Antigenic epitopes of the photoreceptor synaptic ribbon. J Comp Neurol 413:209–218

    PubMed  CAS  Google Scholar 

  20. Schmitz FA, Konigstorfer A, Südhof TC (2000) RIBEYE, a component of synaptic ribbons: a protein’s journey through evolution provides insight into synaptic ribbon function. Neuron 28:857–872

    PubMed  CAS  Google Scholar 

  21. Prokop A, Meinertzhagen IA (2006) Development and structure of synaptic contacts in Drosophila. Sem Cell Devel Biol 17:20–30

    CAS  Google Scholar 

  22. Zenisek D, Davila V, Wan L, Almers W (2003) Imaging calcium entry sites and ribbon structures in two presynaptic cells. J Neurosci 23:2538–2548

    PubMed  CAS  Google Scholar 

  23. tom Dieck S, Altrock WD, Kessels MM, Qualmann B, Regus H, Brauner D, Fejtová A, Bracko O, Gundelfinger ED, Brandstätter JH (2005) Molecular dissection of the photoreceptor ribbon synapse: physical interaction of Bassoon and RIBEYE is essential for the assembly of the ribbon complex. J Cell Biol 168:825–836

    PubMed  Google Scholar 

  24. Zenisek D, Horst NK, Merrifield C, Sterling P, Matthews G (2004) Visualizing synaptic ribbons in the living cell. J Neurosci 24:9752–9759

    PubMed  CAS  Google Scholar 

  25. Wan L, Almers W, Chen W (2005) Two ribeye genes in teleosts: the role of Ribeye in ribbon formation and bipolar cell development. J Neurosci 25:941–949

    PubMed  CAS  Google Scholar 

  26. Magupalli VG, Schwarz K, Alpadi K, Natarajan S, Seigel GM, Schmitz F (2008) Multiple RIBEYE–RIBEYE interactions create a dynamic scaffold for the formation of synaptic ribbons. J Neurosci 28:7954–7967

    PubMed  CAS  Google Scholar 

  27. Spiwoks-Becker I, Maus C, tom Dieck S, Fejtová A, Engel L, Wolloscheck T, Wolfrum U, Vollrath L, Spessert R (2008) Active zone proteins are dynamically associated with synaptic ribbons in rat pinealocytes. Cell Tiss Res 333:185–195

    CAS  Google Scholar 

  28. Corda D, Colanzi A, Luini A (2006) The multiple activities of CtBP/BARS proteins: the Golgi view. Trends Cell Biol 16:167–173

    PubMed  CAS  Google Scholar 

  29. Gray EG, Pease HL (1971) On understanding the organisation of the retinal receptor synapses. Brain Res 35:1–15

    PubMed  CAS  Google Scholar 

  30. Muresan V, Lyass A, Schnapp BJ (1999) The kinesin motor KIF3A is a component of the presynaptic ribbon in vertebrate photoreceptors. J Neurosci 19:1027–1037

    PubMed  CAS  Google Scholar 

  31. Wedaman KP, Meyer DW, Rashid DJ, Cole DG, Scholey JM (1996) Sequence and submolecular localization of the 115-kD accessory subunit of the heterotrimeric kinesin-II (KRP85/95) complex. J Cell Biol 132:371–380

    PubMed  CAS  Google Scholar 

  32. Yamazaki H, Nakata T, Okada Y, Hirokawa N (1996) Cloning and characterization of KAP3: a novel kinesin superfamily-associated protein of KIF3A/3B. Proc Natl Acad Sci USA 93:8443–8448

    PubMed  CAS  Google Scholar 

  33. Kondo S, Sato-Yoshitake R, Noda Y, Aizawa H, Nakata T, Matsuura Y, Hirokawa N (1994) KIF3A is a new microtubule-based anterograde motor in the nerve axon. J Cell Biol 125:1095–1107

    PubMed  CAS  Google Scholar 

  34. Marszalek JR, Liu X, Roberts EA, Chui D, Marth JD, Williams DS, Goldstein LS (2000) Genetic evidence for selective transport of opsin and arrestin by kinesin-II in mammalian photoreceptors. Cell 102:175–187

    PubMed  CAS  Google Scholar 

  35. Jimeno D, Feiner L, Lillo C, Teofilo K, Goldstein LS, Pierce EA, Williams DS (2006) Analysis of kinesin-2 function in photoreceptor cells using synchronous Cre-loxP knockout of Kif3a with RHO-Cre. Invest Ophthalmol Vis Sci 47:5039–5046

    PubMed  Google Scholar 

  36. Chana M, Tripet BP, Mant CT, Hodges RS (2002) The role of unstructured highly charged regions on the stability and specificity of dimerization of two-stranded alpha-helical coiled-coils: analysis of the neck-hinge region of the kinesin-like motor protein Kif3A. J Struct Biol 137:206–219

    PubMed  CAS  Google Scholar 

  37. Okada Y, Higuchi H, Hirokawa N (2003) Processivity of the single-headed kinesin KIF1A through biased binding to tubulin. Nature 424:574–577

    PubMed  CAS  Google Scholar 

  38. Kaseda K, Creve I, Hirose K, Cross RA (2008) Single-headed mode of kinesin-5. EMBO Rep 9:761–765

    PubMed  CAS  Google Scholar 

  39. Gray EG (1976) Microtubules in synapses of the retina. J Neurocytol 5:361–370

    PubMed  CAS  Google Scholar 

  40. Fejtova A, Gundelfinger ED (2006) Molecular organization and assembly of the presynaptic active zone of neurotransmitter release. Results Probl Cell Differ 43:49–68

    PubMed  CAS  Google Scholar 

  41. Schoch S, Gundelfinger ED (2006) Molecular organization of the presynaptic active zone. Cell Tissue Res 326:379–391

    PubMed  CAS  Google Scholar 

  42. Wang Y, Okamoto M, Schmitz F, Hofmann K, Südhof TC (1997) Rim is a putative Rab3 effector in regulating synaptic-vesicle fusion. Nature 388:593–598

    PubMed  CAS  Google Scholar 

  43. Betz A, Thakur P, Junge HJ, Ashery U, Rhee JS, Scheuss V, Rosenmund C, Rettig J, Brose N (2001) Functional interaction of the active zone proteins Munc13-1 and RIM1 in synaptic vesicle priming. Neuron 30:183–196

    PubMed  CAS  Google Scholar 

  44. Heidelberger R, Sterling P, Matthews G (2002) Roles of ATP in depletion and replenishment of the releasable pool of synaptic vesicles. J Neurophysiol 88:98–106

    PubMed  CAS  Google Scholar 

  45. Dick O, Hack I, Altrock WD, Garner CC, Gundelfinger ED, Brandstätter JH (2001) Localization of the presynaptic cytomatrix protein Piccolo at ribbon and conventional synapses in the rat retina: comparison with Bassoon. J Comp Neurol 439:224–234

    PubMed  CAS  Google Scholar 

  46. Ohtsuka T, Takao-Rikitsu E, Inoue E, Inoue M, Takeuchi M, Matsubara K, Deguchi-Tawarada M, Satoh K, Morimoto K, Nakanishi H, Takai Y (2002) Cast: a novel protein of the cytomatrix at the active zone of synapses that forms a ternary complex with RIM1 and munc13-1. J Cell Biol 158:577–590

    PubMed  CAS  Google Scholar 

  47. Shibasaki T, Sunaga Y, Fujimoto K, Kashima Y, Seino S (2004) Interaction of ATP sensor, cAMP sensor, Ca2+ sensor, and voltage-dependent Ca2+ channel in insulin granule exocytosis. J Biol Chem 279:7956–7961

    PubMed  CAS  Google Scholar 

  48. Ladman AJ (1958) The fine structure of the rod-bipolar cell synapse in the retina of the albino rat. J Biophys Biochem Cytol 4:459–466

    PubMed  CAS  Google Scholar 

  49. Benshalom G (1979) Ultrastructure of an excitatory synapse. Cell Tissue Res 200:291–298

    PubMed  CAS  Google Scholar 

  50. Brandstätter JH, Fletcher EL, Garner CC, Gundelfinger ED, Wässle H (1999) Differential expression of the presynaptic cytomatrix protein bassoon among ribbon synapses in the mammalian retina. Eur J Neurosci 11:3683–3693

    PubMed  Google Scholar 

  51. Takao-Rikitsu E, Mochida S, Inoue E, Deguchi-Tawarada M, Inoue M, Ohtsuka T, Takai Y (2004) Physical and functional interaction of the active zone proteins, CAST, RIM1, and Bassoon, in neurotransmitter release. J Cell Biol 164:301–311

    PubMed  CAS  Google Scholar 

  52. Raviola E, Gilula NB (1975) Intramembrane organization of specialized contacts in the outer plexiform layer of the retina. A freeze-fracture study in monkeys and rabbits. J Cell Biol 65:192–222

    PubMed  CAS  Google Scholar 

  53. Raviola E, Raviola G (1982) Structure of the synaptic membranes in the inner plexiform layer of the retina: a freeze-fracture study in monkeys and rabbits. J Comp Neurol 209:233–248

    PubMed  CAS  Google Scholar 

  54. Roberts WM, Jacobs RA, Hudspeth AJ (1990) Colocalization of ion channels involved in frequency selectivity and synaptic transmission at presynaptic active zones of hair cells. J Neurosci 10:3664–3684

    PubMed  CAS  Google Scholar 

  55. Issa NP, Hudspeth AJ (1994) Clustering of Ca2+ channels and Ca(2+)-activated K+ channels at fluorescently labeled presynaptic active zones of hair cells. Proc Natl Acad Sci USA 91:7578–7582

    PubMed  CAS  Google Scholar 

  56. Tachibana M, Okada T, Arimura T, Kobayashi K, Piccolino M (1993) Dihydropyridine-sensitive calcium current mediates neurotransmitter release from bipolar cells of the goldfish retina. J Neurosci 13:2898–2909

    PubMed  CAS  Google Scholar 

  57. Schmitz Y, Witkovsky P (1997) Dependence of photoreceptor glutamate release on a dihydropyridine-sensitive calcium channel. Neuroscience 78:1209–1216

    PubMed  CAS  Google Scholar 

  58. Zhang SY, Robertson D, Yates G, Everett A (1999) Role of L-type Ca(2+) channels in transmitter release from mammalian inner hair cells I. Gross sound-evoked potentials. J Neurophysiol 82:3307–3315

    PubMed  CAS  Google Scholar 

  59. Heidelberger R, Matthews G (1992) Calcium influx and calcium current in single synaptic terminals of goldfish retinal bipolar neurons. J Physiol (London) 447:235–256

    CAS  Google Scholar 

  60. von Gersdorff H, Matthews G (1996) Calcium-dependent inactivation of calcium current in synaptic terminals of retinal bipolar neurons. J Neurosci 16:115–122

    Google Scholar 

  61. Mennerick S, Matthews G (1998) Rapid calcium-current kinetics in synaptic terminals of goldfish retinal bipolar neurons. Vis Neurosci 15:1051–1056

    PubMed  CAS  Google Scholar 

  62. Morgans CW (2001) Localization of the alpha(1F) calcium channel subunit in the rat retina. Invest Ophthalmol Vis Sci 42:2414–2418

    PubMed  CAS  Google Scholar 

  63. Brandt A, Khimich D, Moser T (2005) Few CaV1.3 channels regulate the exocytosis of a synaptic vesicle at the hair cell ribbon synapse. J Neurosci 25:11577–11585

    PubMed  CAS  Google Scholar 

  64. Specht D, Wu SB, Turner P, Dearden P, Koentgen F, Wolfrum U, Maw M, Brandstätter JH, tom Dieck S (2009) Effects of presynaptic mutations on a postsynaptic Cacna1s calcium channel colocalized with mGluR6 at mouse photoreceptor ribbon synapses. Invest Ophthalmol Vis Sci 50:505–515

    PubMed  Google Scholar 

  65. von Gersdorff H, Sakaba T, Berglund K, Tachibana M (1998) Submillisecond kinetics of glutamate release from a sensory synapse. Neuron 21:1177–1188

    Google Scholar 

  66. Heidelberger R, Thoreson WB, Witkovsky P (2005) Synaptic transmission at retinal ribbon synapses. Prog Retin Eye Res 24:682–720

    PubMed  CAS  Google Scholar 

  67. Bech-Hansen NT, Naylor MJ, Maybaum TA, Pearce WG, Koop B, Fishman GA, Mets M, Musarella MA, Boycott KM (1998) Loss-of-function mutations in a calcium-channel alpha1-subunit gene in Xp11.23 cause incomplete X-linked congenital stationary night blindness. Nat Genet 19:264–267

    PubMed  CAS  Google Scholar 

  68. Strom TM, Nyakatura G, Apfelstedt-Sylla E, Hellebrand H, Lorenz B, Weber BH, Wutz K, Gutwillinger N, Ruther K, Drescher B, Sauer C, Zrenner E, Meitinger T, Rosenthal A, Meindl A (1998) An L-type calcium-channel gene mutated in incomplete X-linked congenital stationary night blindness. Nat Genet 19:260–263

    PubMed  CAS  Google Scholar 

  69. Mansergh F, Orton NC, Vessey JP, Lalonde MR, Stell WK, Tremblay F, Barnes S, Rancourt DE, Bech-Hansen NT (2005) Mutation of the calcium channel gene Cacna1f disrupts calcium signaling, synaptic transmission and cellular organization in mouse retina. Hum Mol Gen 14:3035–3046

    PubMed  CAS  Google Scholar 

  70. Ball SL, Powers PA, Shin HS, Morgans CW, Peachey NS, Gregg RG (2002) Role of the beta(2) subunit of voltage-dependent calcium channels in the retinal outer plexiform layer. Invest Ophthalmol Vis Sci 43:1595–1603

    PubMed  Google Scholar 

  71. Wycisk KA, Budde B, Feil S, Skosyrski S, Buzzi F, Neidhardt J, Glaus E, Nurnberg P, Ruether K, Berger W (2006) Structural and functional abnormalities of retinal ribbon synapses due to Cacna2d4 mutation. Invest Ophthalmol Vis Sci 47:3523–3530

    PubMed  Google Scholar 

  72. Kollmar R, Montgomery LG, Fak J, Henry LJ, Hudspeth AJ (1997) Predominance of the alpha1D subunit in L-type voltage-gated Ca2+ channels of hair cells in the chicken’s cochlea. Proc Natl Acad Sci USA 94:14883–14888

    PubMed  CAS  Google Scholar 

  73. Platzer J, Engel J, Schrott-Fischer A, Stephan K, Bova S, Chen H, Zheng H, Striessnig J (2000) Congenital deafness and sinoatrial node dysfunction in mice lacking class D L-type Ca2+ channels. Cell 102:89–97

    PubMed  CAS  Google Scholar 

  74. Dou H, Vazquez AE, Namkung Y, Chu H, Cardell EL, Nie L, Parson S, Shin HS, Yamoah EN (2004) Null mutation of alpha1D Ca2+ channel gene results in deafness but no vestibular defect in mice. JARO 5:215–226

    PubMed  Google Scholar 

  75. Michna M, Knirsch M, Hoda JC, Muenkner S, Langer P, Platzer J, Striessnig J, Engel J (2003) Cav1.3 (alpha1D) Ca2+ currents in neonatal outer hair cells of mice. J Physiol (London) 553:747–758

    CAS  Google Scholar 

  76. Brandt A, Striessnig J, Moser T (2003) CaV1.3 channels are essential for development and presynaptic activity of cochlear inner hair cells. J Neurosci 23:10832–10840

    PubMed  CAS  Google Scholar 

  77. Sidi S, Busch-Nentwich E, Friedrich R, Schoenberger U, Nicolson T (2004) Gemini encodes a zebrafish L-type calcium channel that localizes at sensory hair cell ribbon synapses. J Neurosci 24:4213–4223

    PubMed  CAS  Google Scholar 

  78. Koschak A, Reimer D, Walter D, Hoda JC, Heinzle T, Grabner M, Striessnig J (2003) Cav1.4alpha1 subunits can form slowly inactivating dihydropyridine-sensitive L-type Ca2+ channels lacking Ca2+-dependent inactivation. J Neurosci 23:6041–6049

    PubMed  CAS  Google Scholar 

  79. Xiao H, Chen X, Steele EC Jr (2007) Abundant L-type calcium channel Ca(v)1.3 (alpha1D) subunit mRNA is detected in rod photoreceptors of the mouse retina via in situ hybridization. Mol Vis 13:764–771

    PubMed  CAS  Google Scholar 

  80. Taylor WR, Morgans C (1998) Localization and properties of voltage-gated calcium channels in cone photoreceptors of Tupaia belangeri. Vis Neurosci 15:541–552

    PubMed  CAS  Google Scholar 

  81. Logiudice L, Henry D, Matthews G (2006) Identification of calcium channel alpha1 subunit mRNA expressed in retinal bipolar neurons. Mol Vis 12:184–189

    PubMed  CAS  Google Scholar 

  82. Koschak A, Reimer D, Huber I, Grabner M, Glossmann H, Engel J, Striessnig J (2001) alpha 1D (Cav1.3) subunits can form L-type Ca2+ channels activating at negative voltages. J Biol Chem 276:22100–22106

    PubMed  CAS  Google Scholar 

  83. Xu W, Lipscombe D (2001) Neuronal Ca(V)1.3alpha(1) L-type channels activate at relatively hyperpolarized membrane potentials and are incompletely inhibited by dihydropyridines. J Neurosci 21:5944–5951

    PubMed  CAS  Google Scholar 

  84. Yang PS, Alseikhan BA, Hiel H, Grant L, Mori MX, Yang W, Fuchs PA, Yue DT (2006) Switching of Ca2+-dependent inactivation of Ca(v)1.3 channels by calcium binding proteins of auditory hair cells. J Neurosci 26:10677–10689

    PubMed  CAS  Google Scholar 

  85. Cui G, Meyer AC, Calin-Jageman I, Neef J, Haeseleer F, Moser T, Lee A (2007) Ca2+-binding proteins tune Ca2+-feedback to Cav1.3 channels in mouse auditory hair cells. J Physiol (London) 585:791–803

    CAS  Google Scholar 

  86. Haeseleer F, Imanishi Y, Maeda T, Possin DE, Maeda A, Lee A, Rieke F, Palczewski K (2004) Essential role of Ca2+-binding protein 4, a Cav1.4 channel regulator, in photoreceptor synaptic function. Nat Neurosci 7:1079–1087

    PubMed  CAS  Google Scholar 

  87. Zeitz C, Kloeckener-Gruissem B, Forster U, Kohl S, Magyar I, Wissinger B, Matyas G, Borruat FX, Schorderet DF, Zrenner E, Munier FL, Berger W (2006) Mutations in CABP4, the gene encoding the Ca2+-binding protein 4, cause autosomal recessive night blindness. Am J Hum Gen 79:657–667

    CAS  Google Scholar 

  88. LoGiudice L, Sterling P, Matthews G (2008) Mobility and turnover of vesicles at the synaptic ribbon. J Neurosci 28:3150–3158

    PubMed  CAS  Google Scholar 

  89. Mennerick S, Matthews G (1996) Ultrafast exocytosis elicited by calcium current in synaptic terminals of retinal bipolar neurons. Neuron 17:1241–1249

    PubMed  CAS  Google Scholar 

  90. von Gersdorff H, Vardi E, Matthews G, Sterling P (1996) Evidence that vesicles on the synaptic ribbon of retinal bipolar neurons can be rapidly released. Neuron 16:1221–1227

    Google Scholar 

  91. Nouvian R, Beutner D, Parsons TD, Moser T (2006) Structure and function of the hair cell ribbon synapse. J Mem Biol 209:153–165

    CAS  Google Scholar 

  92. Parsons TD, Sterling P (2003) Synaptic ribbon. Conveyor belt or safety belt. Neuron 37:379–382

    PubMed  CAS  Google Scholar 

  93. Heidelberger R, Heinemann C, Neher E, Matthews G (1994) Calcium dependence of the rate of exocytosis in a synaptic terminal. Nature 371:513–515

    PubMed  CAS  Google Scholar 

  94. Heidelberger R (1998) Adenosine triphosphate and the late steps in calcium-dependent exocytosis at a ribbon synapse. J Gen Physiol 111:225–241

    PubMed  CAS  Google Scholar 

  95. Gilbert SP (2001) High-performance fungal motors. Nature 414:597–598

    PubMed  CAS  Google Scholar 

  96. Matthews G, Sterling P (2008) Evidence that vesicles undergo compound fusion on the synaptic ribbon. J Neurosci 28:5403–5411

    PubMed  CAS  Google Scholar 

  97. Glowatzki E, Fuchs PA (2002) Transmitter release at the hair cell ribbon synapse. Nat Neurosci 5:147–154

    PubMed  CAS  Google Scholar 

  98. Singer JH, Lassová L, Vardi N, Diamond JS (2004) Coordinated multivesicular release at a mammalian ribbon synapse. Nat Neurosci 7:826–833

    PubMed  CAS  Google Scholar 

  99. Coggins MR, Grabner CP, Almers W, Zenisek D (2007) Stimulated exocytosis of endosomes in goldfish retinal bipolar neurons. J Physiol (London) 584:853–865

    CAS  Google Scholar 

  100. von Kriegstein K, Schmitz F, Link E, Südhof TC (1999) Distribution of synaptic vesicle proteins in the mammalina retina identifies obligatory and facultative components of ribbon synapses. Eur J Neurosci 11:1335–1348

    Google Scholar 

  101. Grabs D, Bergmann M, Rager G (2000) Developmental expression of amphiphysin in the retinotectal system of the chick: from mRNA to protein. Eur J Neurosci 12:1545–1553

    PubMed  CAS  Google Scholar 

  102. Hosoya O, Tsutsui K (2004) Localized expression of amphiphysin Ir, a retina-specific variant of amphiphysin I, in the ribbon synapse and its functional implication. Eur J Neurosci 19:2179–2187

    PubMed  Google Scholar 

  103. Sherry DM, Heidelberger R (2005) Distribution of proteins associated with synaptic vesicle endocytosis in the mouse and goldfish retina. J Comp Neurol 484:440–457

    PubMed  CAS  Google Scholar 

  104. Yao PJ, Coleman PD, Calkins DJ (2002) High-resolution localization of clathrin assembly protein AP180 in the presynaptic terminals of mammalian neurons. J Comp Neurol 447:152–162

    PubMed  CAS  Google Scholar 

  105. Bloom WS, Puszkin S (1983) Brain clathrin: immunofluorescent localization in rat retina. J Histochem Cytochem 31:46–52

    PubMed  CAS  Google Scholar 

  106. Hirano AA, Brandstätter JH, Brecha NC (2005) Cellular distribution and subcellular localization of molecular components of vesicular transmitter release in horizontal cells of rabbit retina. J Comp Neurol 488:70–81

    PubMed  CAS  Google Scholar 

  107. Reim K, Wegmeyer H, Brandstätter JH, Xue M, Rosenmund C, Dresbach T, Hofmann K, Brose N (2005) Structurally and functionally unique complexins at retinal ribbon synapses. J Cell Biol 169:669–680

    PubMed  CAS  Google Scholar 

  108. Schmitz F, Tabares L, Khimich D, Strenzke N, de la Villa-Polo P, Castellano-Muñoz M, Bulankina A, Moser T, Fernández-Chacón R, Südhof TC (2006) CSPalpha-deficiency causes massive and rapid photoreceptor degeneration. Proc Natl Acad Sci USA 103:2926–2931

    PubMed  CAS  Google Scholar 

  109. Redecker P, Pabst H, Grube D (1998) Munc-18-1 and cysteine string protein (csp) in pinealocytes of the gerbil pineal gland. Cell Tissue Res 293:245–252

    PubMed  CAS  Google Scholar 

  110. Eybalin M, Renard N, Aure F, Safieddine S (2002) Cysteine-string protein in inner hair cells of the organ of Corti: synaptic expression and upregulation at the onset of hearing. Eur J Neurosci 15:1409–1420

    PubMed  Google Scholar 

  111. Ullrich B, Südhof TC (1994) Distribution of synaptic markers in the retina: implications for synaptic vesicle traffic in ribbon synapses. J Physiol (Paris) 88:249–257

    CAS  Google Scholar 

  112. Redecker P (2000) Expression of synaptic vesicle trafficking proteins in the developing rat pineal gland. Cell Tissue Res 301:255–265

    PubMed  CAS  Google Scholar 

  113. Rauen T, Kanner BI (1994) Localization of the glutamate transporter GLT-1 in rat and macaque monkey retinae. Neurosci Lett 169:137–140

    PubMed  CAS  Google Scholar 

  114. Brandstätter JH, Greferath U, Euler T, Wässle H (1995) Co-stratification of GABAA receptors with the directionally selective circuitry of the rat retina. Vis Neurosci 12:345–358

    Article  PubMed  Google Scholar 

  115. Harada T, Harada C, Watanabe M, Inoue Y, Sakagawa T, Nakayama N, Sasaki S, Okuyama S, Watase K, Wada K, Tanaka K (1998) Functions of the two glutamate transporters GLAST and GLT-1 in the retina. Proc Natl Acad Sci USA 95:4663–4666

    PubMed  CAS  Google Scholar 

  116. Vandenbranden CA, Yazulla S, Studholme KM, Kamphuis W, Kamermans M (2000) Immunocytochemical localization of the glutamate transporter GLT-1 in goldfish (Carassius auratus) retina. J Comp Neurol 423:440–451

    PubMed  CAS  Google Scholar 

  117. Reye P, Sullivan R, Fletcher EL, Pow DV (2002) Distribution of two splice variants of the glutamate transporter GLT1 in the retina of humans, monkeys, rabbits, rats, cats, and chickens. J Comp Neurol 445:1–12

    PubMed  Google Scholar 

  118. Sullivan R, Rauen T, Fischer F, Wiessner M, Grewer C, Bicho A, Pow DV (2004) Cloning, transport properties, and differential localization of two splice variants of GLT-1 in the rat CNS: implications for CNS glutamate homeostasis. Glia 45:155–169

    PubMed  Google Scholar 

  119. Rauen T, Fischer F, Wiessner M, Grewer C, Bicho A, Pow DV (2004) A new GLT1 splice variant: cloning and immunolocalization of GLT1c in the mammalian retina and brain. Neurochem Int 45:1095–1106

    PubMed  CAS  Google Scholar 

  120. Lee SC, Grünert U (2007) Connections of diffuse bipolar cells in primate retina are biased against S-cones. J Comp Neurol 502:126–140

    PubMed  CAS  Google Scholar 

  121. Grünert U, Martin PR, Wässle H (1994) Immunocytochemical analysis of bipolar cells in the macaque monkey retina. J Comp Neurol 348:607–627

    PubMed  Google Scholar 

  122. Rauen T, Rothstein JD, Wässle H (1996) Differential expression of three glutamate transporter subtypes in the rat retina. Cell Tissue Res 286:325–336

    PubMed  CAS  Google Scholar 

  123. Yamada H, Yatsushiro S, Yamamoto A, Hayashi M, Nishi T, Futai M, Yamaguchi A, Moriyama Y (1997) Functional expression of a GLT-1 type Na+-dependent glutamate transporter in rat pinealocytes. J Neurochem 69:1491–1498

    PubMed  CAS  Google Scholar 

  124. Redecker P, Pabst H (2000) Immunohistochemical study of the glutamate transporter proteins GLT-1 and GLAST in rat and gerbil pineal gland. J Pineal Res 28:179–184

    PubMed  CAS  Google Scholar 

  125. Schmitz F, Augustin I, Brose N (2001) The synaptic vesicle priming protein Munc13-1 is absent from tonically active ribbon synapses of the rat retina. Brain Res 895:258–263

    PubMed  CAS  Google Scholar 

  126. Higashide T, McLaren MJ, Inana G (1998) Localization of HRG4, a photoreceptor protein homologous to Unc-119, in ribbon synapse. Invest Ophthalmol Vis Sci 39:690–698

    PubMed  CAS  Google Scholar 

  127. Haeseleer F (2008) Interaction and colocalization of CaBP4 and Unc119 (MRG4) in photoreceptors. Invest Ophthalmol Vis Sci 49:2366–2375

    PubMed  Google Scholar 

  128. Moriyama Y, Yamamoto A, Tagay M, Tashiro Y, Michibata H (1995) Localization of N-ethylmaleimide-sensitive fusion protein in pinealocytes. Neuroreport 6:1757–1760

    PubMed  CAS  Google Scholar 

  129. Roux I, Safieddine S, Nouvian R, Grati M, Simmler MC, Bahloul A, Perfettini I, Le Gall M, Rostaing P, Hamard G, Triller A, Avan P, Moser T, Petit C (2006) Otoferlin, defective in a human deafness form, is essential for exocytosis at the auditory ribbon synapse [see comment]. Cell 127:277–289

    PubMed  CAS  Google Scholar 

  130. Schug N, Braig C, Zimmermann U, Engel J, Winter H, Ruth P, Blin N, Pfister M, Kalbacher H, Knipper M (2006) Differential expression of otoferlin in brain, vestibular system, immature and mature cochlea of the rat. Eur J Neurosci 24:3372–3380

    PubMed  Google Scholar 

  131. Engel J, Braig C, Rüttiger L, Kuhn S, Zimmerman U, Blin N, Sausbier M, Kalbacher H, Münkner S, Rohbock K, Ruth P, Winter H, Knipper M (2006) Two classes of outer hair cells along the tonotopic axis of the cochlea. Neuroscience 143:837–849

    PubMed  CAS  Google Scholar 

  132. Seal RP, Akil O, Yi E, Weber CM, Grant L, Yoo J, Clause A, Kandler K, Noebels JL, Glowatzki E, Lustig LR, Edwards RH (2008) Sensorineural deafness and seizures in mice lacking vesicular glutamate transporter 3 [see comment]. Neuron 57:263–275

    PubMed  CAS  Google Scholar 

  133. Johnson SL, Forge A, Knipper M, Munkner S, Marcotti W (2008) Tonotopic variation in the calcium dependence of neurotransmitter release and vesicle pool replenishment at mammalian auditory ribbon synapses. J Neurosci 28:7670–7678

    PubMed  CAS  Google Scholar 

  134. Grabs D, Bergmann M, Urban M, Post A, Gratzl M (1996) Rab3 proteins and SNAP-25, essential components of the exocytosis machinery in conventional synapses, are absent from ribbon synapses of the mouse retina. Eur J Neurosci 8:162–168

    PubMed  CAS  Google Scholar 

  135. Redecker P (1995) The ras-like rab3A protein is present in pinealocytes of the gerbil pineal gland. Neurosci Lett 184:117–120

    PubMed  CAS  Google Scholar 

  136. Dechesne CJ, Kauff C, Stettler O, Tavitian B (1997) Rab3A immunolocalization in the mammalian vestibular end-organs during development and comparison with synaptophysin expression. Brain Res Dev Brain Res 99:103–111

    PubMed  CAS  Google Scholar 

  137. Brandstätter JH, Wässle H, Betz H, Morgans CW (1996) The plasma membrane protein SNAP-25, but not syntaxin, is present at photoreceptor and bipolar cell synapses in the rat retina. Eur J Neurosci 8:823–828

    PubMed  Google Scholar 

  138. Morgans CW, Brandstätter JH, Kellerman J, Betz H, Wässle H (1996) A SNARE complex containing syntaxin 3 is present in ribbon synapses of the retina. J Neurosci 16:6713–6721

    PubMed  CAS  Google Scholar 

  139. Greenlee MH, Roosevelt CB, Sakaguchi DS (2001) Differential localization of SNARE complex proteins SNAP-25, syntaxin, and VAMP during development of the mammalian retina. J Comp Neurol 430:306–320

    PubMed  CAS  Google Scholar 

  140. Yang H, Standifer KM, Sherry DM (2002) Synaptic protein expression by regenerating adult photoreceptors. J Comp Neurol 443:275–288

    PubMed  CAS  Google Scholar 

  141. Catsicas S, Catsicas M, Keyser KT, Karten HJ, Wilson MC, Milner RJ (1992) Differential expression of the presynaptic protein SNAP-25 in mammalian retina. J Neurosci Res 33:1–9

    PubMed  CAS  Google Scholar 

  142. Redecker P, Weyer C, Grube D (1996) Rat and gerbil pinealocytes contain the synaptosomal-associated protein 25 (SNAP-25). J Pineal Res 21:29–34

    PubMed  CAS  Google Scholar 

  143. Redecker P, Pabst H, Gebert A, Steinlechner S (1997) Expression of synaptic membrane proteins in gerbil pinealocytes in primary culture. J Neurosci Res 47:509–520

    PubMed  CAS  Google Scholar 

  144. Safieddine S, Wenthold RJ (1999) SNARE complex at the ribbon synapses of cochlear hair cells: analysis of synaptic vesicle- and synaptic membrane-associated proteins. Eur J Neurosci 11:803–812

    PubMed  CAS  Google Scholar 

  145. Schmied R, Holtzman E (1987) A phosphatase activity and a synaptic vesicle antigen in multivesicular bodies of frog retinal photoreceptor terminals. J Neurocytol 16:627–637

    PubMed  CAS  Google Scholar 

  146. Wang MM, Janz R, Belizaire R, Frishman LJ, Sherry DM (2003) Differential distribution and developmental expression of synaptic vesicle protein 2 isoforms in the mouse retina. J Comp Neurol 460:106–122

    PubMed  CAS  Google Scholar 

  147. Mandell JW, MacLeigh PR, Townes-Anderson E (1993) Process outgrowth and synaptic varicosity formation by adult photoreceptors in vitro. J Neurosci 13:3533–3548

    PubMed  CAS  Google Scholar 

  148. Mandell JW, Townes-Anderson E, Czernik AJ, Cameron R, Greengard P, De Camilli P (1990) Synapsins in the vertebrate retina: absence from ribbon synapses and heterogeneous distribution among conventional synapses. Neuron 5:19–33

    PubMed  CAS  Google Scholar 

  149. Johnson J, Tian N, Caywood MS, Reimer RJ, Edwards RH, Copenhagen DR (2003) Vesicular neurotransmitter transporter expression in developing postnatal rodent retina: GABA and glycine precede glutamate. J Neurosci 23:518–529

    PubMed  CAS  Google Scholar 

  150. Sherry DM, Wang MM, Frishman LJ (2003) Differential distribution of vesicle associated membrane protein isoforms in the mouse retina. Mol Vis 9:673–688

    PubMed  CAS  Google Scholar 

  151. Johnson J, Sherry DM, Liu X, Fremeau RT Jr, Seal RP, Edwards RH, Copenhagen DR (2004) Vesicular glutamate transporter 3 expression identifies glutamatergic amacrine cells in the rodent retina. J Comp Neurol 477:386–398

    PubMed  CAS  Google Scholar 

  152. Hayashi M, Yamamoto A, Yatsushiro S, Yamada H, Futai M, Yamaguchi A, Moriyama Y (1998) Synaptic vesicle protein SV2B, but not SV2A, is predominantly expressed and associated with microvesicles in rat pinealocytes. J Neurochem 71:356–365

    PubMed  CAS  Google Scholar 

  153. Layton MG, Robertson D, Everett AW, Mulders WH, Yates GK (2005) Cellular localization of voltage-gated calcium channels and synaptic vesicle-associated proteins in the guinea pig cochlea. J Mol Neurosci 27:225–244

    PubMed  CAS  Google Scholar 

  154. Koontz MA, Hendrickson AE (1993) Comparison of immunolocalization patterns for the synaptic vesicle proteins p65 and synapsin I in macaque monkey retina. Synapse 14:268–282

    PubMed  CAS  Google Scholar 

  155. Geppert M, Ullrich B, Green DG, Takei K, Daniels L, De Camilli P, Südhof TC, Hammer RE (1994) Synaptic targeting domains of synapsin I revealed by transgenic expression in photoreceptor cells. EMBO J 13:3720–3727

    PubMed  CAS  Google Scholar 

  156. Redecker P, Bargsten G (1993) Synaptophysin—a common constituent of presumptive secretory microvesicles in the mammalian pinealocyte: a study of rat and gerbil pineal glands. J Neurosci Res 34:79–96

    PubMed  CAS  Google Scholar 

  157. Moriyama Y, Yamamoto A (1995) Microvesicles isolated from bovine pineal gland specifically accumulate l-glutamate. FEBS Lett 367:233–236

    PubMed  CAS  Google Scholar 

  158. Holstein GR, Martinelli GP, Nicolae RA, Rosenthal TM, Friedrich VL Jr (2005) Synapsin-like immunoreactivity is present in hair cells and efferent terminals of the toadfish crista ampullaris. Exp Brain Res 162:287–292

    PubMed  CAS  Google Scholar 

  159. Scarfone E, Demêmes D, Sans A (1991) Synapsin I and synaptophysin expression during ontogenesis of the mouse peripheral vestibular system. J Neurosci 11:1173–1181

    PubMed  CAS  Google Scholar 

  160. Sherry DM, Yang H, Standifer KM (2001) Vesicle-associated membrane protein isoforms in the tiger salamander retina. J Comp Neurol 431:424–436

    PubMed  CAS  Google Scholar 

  161. Linberg KA, Lewis GP, Matsumoto B, Fisher SK (2006) Immunocytochemical evidence that rod-connected horizontal cell axon terminals remodel in response to experimental retinal detachment in the cat. Mol Vis 12:1674–1686

    PubMed  CAS  Google Scholar 

  162. Redecker P (1996) Synaptotagmin I, synaptobrevin II, and syntaxin I are coexpressed in rat and gerbil pinealocytes. Cell Tissue Res 283:443–454

    PubMed  CAS  Google Scholar 

  163. Fox MA, Sanes JR (2007) Synaptotagmin I and II are present in distinct subsets of central synapses. J Comp Neurol 503:280–296

    PubMed  CAS  Google Scholar 

  164. Gong J, Jellali A, Sahe JA, Rendon A, Picaud S (2006) Distribution of vesicular glutamate transporters in rat and human retina. Brain Res 1082:73–85

    PubMed  CAS  Google Scholar 

  165. Heidelberger R, Wang MM, Sherry DM (2003) Differential distribution of synaptotagmin immunoreactivity among synapses in the goldfish, salamander, and mouse retina. Vis Neurosci 20:37–49

    PubMed  Google Scholar 

  166. Morimoto R, Hayashi M, Yatsushiro S, Otsuka M, Yamamoto A, Moriyama Y (2003) Co-expression of vesicular glutamate transporters (VGLUT1 and VGLUT2) and their association with synaptic-like microvesicles in rat pinealocytes. J Neurochem 84:382–391

    PubMed  CAS  Google Scholar 

  167. Hayashi M, Otsuka M, Morimoto R, Hirota S, Yatsushiro S, Takeda J, Yamamoto A, Moriyama Y (2001) Differentiation-associated Na+-dependent inorganic phosphate cotransporter (DNPI) is a vesicular glutamate transporter in endocrine glutamatergic systems. J Biol Chem 276:43400–43406

    PubMed  CAS  Google Scholar 

  168. Anniko M, Arnold W, Thornell LE (1989) Localization of the integral membrane glycoprotein synaptophysin and the surface glycoprotein Egp-34 in the embryonic and adult human inner ear. J Otorhinolaryngol Relat Spec 51:221–228

    CAS  Google Scholar 

  169. Sokolowski BH, Cunningham AM (1996) Sensory cells of the chick cochlea express synaptophysin. Neurosci Lett 216:89–92

    PubMed  CAS  Google Scholar 

  170. Khalifa SA, Friberg U, Illing RB, Rask-Anderson H (2003) Synaptophysin immunohistochemistry in the human cochlea. Hear Res 185:35–42

    PubMed  CAS  Google Scholar 

  171. Safieddine S, Wenthold RJ (1997) The glutamate receptor subunit delta1 is highly expressed in hair cells of the auditory and vestibular systems. J Neurosci 17:7523–7531

    PubMed  CAS  Google Scholar 

  172. Ruel J, Emery S, Nouvian R, Bersot T, Amilhon B, Van Rybroek JM, Rebillard G, Lenoir M, Eybalin M, Delprat B, Sivakumaran TA, Giros B, El Mestikawy S, Moser T, Smith RJ, Lesperance MM, Puel JL (2008) Impairment of SLC17A8 encoding vesicular glutamate transporter-3, VGLUT3, underlies nonsyndromic deafness DFNA25 and inner hair cell dysfunction in null mice. Am J Hum Gen 83:278–292

    CAS  Google Scholar 

  173. Berntson AK, Morgans CW (2003) Distribution of the presynaptic calcium sensors, synaptotagmin I/II and synaptotagmin III, in the goldfish and rodent retinas. J Vis 3:274–280

    PubMed  Google Scholar 

  174. Sherry DM, Mitchell R, Standifer KM, du Plessis B (2006) Distribution of plasma membrane-associated syntaxins 1 through 4 indicates distinct trafficking functions in the synaptic layers of the mouse retina. BMC Neurosci 7:54

    PubMed  Google Scholar 

  175. Cueva JG, Haverkamp S, Reimer RJ, Edwards R, Wässle H, Brecha NC (2002) Vesicular gamma-aminobutyric acid transporter expression in amacrine and horizontal cells. J Comp Neurol 445:227–237

    PubMed  CAS  Google Scholar 

  176. Jellali A, Stussi-Garaud C, Gasnier B, Rendon A, Sahel JA, Dreyfus H, Picaud S (2002) Cellular localization of the vesicular inhibitory amino acid transporter in the mouse and human retina. J Comp Neurol 449:76–87

    PubMed  CAS  Google Scholar 

  177. Kao YH, Lassova L, Bar-Yehuda T, Edwards RH, Sterling P, Vardi N (2004) Evidence that certain retinal bipolar cells use both glutamate and GABA. J Comp Neurol 478:207–218

    PubMed  CAS  Google Scholar 

  178. Redecker P, Pabst H, Löscher W, Steinlechner S (2001) Evidence for microvesicular storage and release of glycine in rodent pinealocytes. Neurosci Lett 299:93–96

    PubMed  CAS  Google Scholar 

  179. Mimura Y, Kawano M, Fukui Y, Takeda J, Nogami H, Hisano S (2002) Differential expression of two distinct vesicular glutamate transporters in the rat retina. Neuroreport 13:1925–1928

    PubMed  CAS  Google Scholar 

  180. Haverkamp S, Ghosh KK, Hirano AA, Wässle H (2003) Immunocytochemical description of five bipolar cell types of the mouse retina. J Comp Neurol 455:463–476

    PubMed  Google Scholar 

  181. Haverkamp S, Wässle H (2004) Characterization of an amacrine cell type of the mammalian retina immunoreactive for vesicular glutamate transporter 3. J Comp Neurol 468:251–263

    PubMed  CAS  Google Scholar 

  182. Fyk-Kolodziej B, Dzhagaryan A, Qin P, Pourcho RG (2004) Immunocytochemical localization of three vesicular glutamate transporters in the cat retina. J Comp Neurol 475:518–530

    PubMed  CAS  Google Scholar 

  183. Wässle H, Regus-Leidig H, Haverkamp S (2006) Expression of the vesicular glutamate transporter vGluT2 in a subset of cones of the mouse retina. J Comp Neurol 496:544–555

    PubMed  Google Scholar 

  184. Fyk-Kolodziej B, Pourcho RG (2007) Differential distribution of hyperpolarization-activated and cyclic nucleotide-gated channels in cone bipolar cells of the rat retina. J Comp Neurol 501:891–903

    PubMed  Google Scholar 

  185. Stella SL Jr, Li S, Sabatini A, Vila A, Brecha NC (2008) Comparison of the ontogeny of the vesicular glutamate transporter 3 (VGLUT3) with VGLUT1 and VGLUT2 in the rat retina. Brain Res 1215:20–29

    PubMed  CAS  Google Scholar 

  186. Furness DN, Lawton DM (2003) Comparative distribution of glutamate transporters and receptors in relation to afferent innervation density in the mammalian cochlea. J Neurosci 23:11296–11304

    PubMed  CAS  Google Scholar 

  187. Wang Y, Pang YW, Dong YL, Zhang FX, Li JL, Li YQ (2007) Localization of vesicular glutamate transporters in the peripheral vestibular system of rat. Neurosci Bull 23:175–179

    PubMed  CAS  Google Scholar 

  188. Curtis LB, Doneske B, Liu X, Thaller C, McNew JA, Janz R (2008) Syntaxin 3b is a t-SNARE specific for ribbon synapses of the retina. J Comp Neurol 510:550–559

    PubMed  CAS  Google Scholar 

  189. Rizo J, Rosenmund C (2008) Synaptic vesicle fusion. Nat Struct Mol Biol 15:665–674

    CAS  PubMed  Google Scholar 

  190. Rieke F, Schwartz EA (1996) Asynchronous transmitter release: control of exocytosis and endocytosis at the salamander rod synapse. J Physiol (London) 493:1–8

    CAS  Google Scholar 

  191. Lagnado L, Gomis A, Job C (1996) Continuous vesicle cycling in the synaptic terminal of retinal bipolar cells. Neuron 17:957–967

    PubMed  CAS  Google Scholar 

  192. Li C, Davletov BA, Südhof TC (1995) Distinct Ca2+ and Sr2+ binding properties of synaptotagmins. Definition of candidate Ca2+ sensors for the fast and slow components of neurotransmitter release. J Biol Chem 270:24898–24902

    PubMed  CAS  Google Scholar 

  193. Yasunaga S, Grati M, Chardenoux S, Smith TN, Friedman TB, Lalwani AK, Wilcox ER, Petit C (2000) OTOF encodes multiple long and short isoforms: genetic evidence that the long ones underlie recessive deafness DFNB9. Am J Hum Gen 67:591–600

    CAS  Google Scholar 

  194. Ramakrishnan NA, Drescher MJ, Drescher DG (2009) Direct interaction of otoferlin with syntaxin 1A, SNAP-25, and the L-type voltage-gated calcium channel Cav1.3. J Biol Chem 284:3227–3238

    PubMed  CAS  Google Scholar 

  195. Longo-Guess C, Gagnon LH, Bergstrom DE, Johnson KR (2007) A missense mutation in the conserved C2B domain of otoferlin causes deafness in a new mouse model of DFNB9. Hear Res 234:21–28

    PubMed  CAS  Google Scholar 

  196. Schwander M, Grillet N, Bailey JS, Avenarius M, Najmabadi H, Steffy BM, Federe GC, Lagler EA, Banan R, Hice R, Grabowski-Boase L, Keithley EM, Ryan AF, Housley GD, Wiltshire T, Smith RJ, Tarantino LM, Müller U (2007) A forward genetics screen in mice identifies recessive deafness traits and reveals that pejvakin is essential for outer hair cell function. J Neurosci 27:2163–2175

    PubMed  CAS  Google Scholar 

  197. Rodríguez-Ballesteros M, Reynoso R, Olarte M, Villamar M, Morera C, Santarelli R, Arslan E, Medá C, Curet C, Völter C, Sainz-Quevedo M, Castorina P, Ambrosetti U, Berrettini S, Frei K, Tedin S, Smith J, Cruz Tapia M, Cavallé L, Gelvez N, Primignani P, Gómez-Rosas E, Martín M, Moreno-Pelayo MA, Tamayo M, Moreno-Barral J, Moreno F, del Castillo I (2008) A multicenter study on the prevalence and spectrum of mutations in the otoferlin gene (OTOF) in subjects with nonsyndromic hearing impairment and auditory neuropathy. Hum Mut 29:823–831

    PubMed  Google Scholar 

  198. King TS, Dougherty WJ (1982) Effect of denervation on ‘synaptic’ ribbon populations in the rat pineal gland. J Neurocytol 11:19–28

    PubMed  CAS  Google Scholar 

  199. Hama K, Saito K (1977) Fine structure of the afferent synapse of the hair cells in the saccular macula of the goldfish, with special reference to the anastomosing tubules. J Neurocytol 6:361–373

    PubMed  CAS  Google Scholar 

  200. Ripps H, Shakib M, MacDonald ED (1976) Peroxidase uptake by photoreceptor terminals of the skate retina. J Cell Biol 70:86–96

    PubMed  CAS  Google Scholar 

  201. Schacher SM, Holtzman E, Hood DC (1974) Uptake of horseradish peroxidase by frog photoreceptor synapses in the dark and the light. Nature 249:261–263

    PubMed  CAS  Google Scholar 

  202. Evans JA, Liscum L, Hood DC, Holtzman E (1981) Uptake of horseradish peroxidase by presynaptic terminals of bipolar cells and photoreceptors of the from retina. J Histochem Cytochem 29:511–518

    PubMed  CAS  Google Scholar 

  203. LoGiudice L, Matthews G (2007) Endocytosis at ribbon synapses. Traffic 8:1123–1128

    PubMed  CAS  Google Scholar 

  204. Smith SM, Renden R, von Gersdorff H (2008) Synaptic vesicle endocytosis: fast and slow modes of membrane retrieval. Trends Neurosci 31:559–568

    PubMed  CAS  Google Scholar 

  205. Beutner D, Voets T, Neher E, Moser T (2001) Calcium dependence of exocytosis and endocytosis at the cochlear inner hair cell afferent synapse. Neuron 29:681–690

    PubMed  CAS  Google Scholar 

  206. von Gersdorff H, Matthews G (1994) Dynamics of synaptic vesicle fusion and membrane retrieval in synaptic terminals. Nature 367:735–739

    Google Scholar 

  207. Moser T, Beutner D (2000) Kinetics of exocytosis and endocytosis at the cochlear inner hair cell afferent synapse of the mouse. Proc Natl Acad Sci USA 97:883–888

    PubMed  CAS  Google Scholar 

  208. Heidelberger R, Zhou ZY, Matthews G (2002) Multiple components of membrane retrieval in synaptic terminals revealed by changes in hydrostatic pressure. J Neurophysiol 88:2509–2517

    PubMed  Google Scholar 

  209. Zenisek D, Steyer JA, Feldman ME, Almers W (2002) A membrane marker leaves synaptic vesicles in milliseconds after exocytosis in retinal bipolar cells. Neuron 35:1085–1097

    PubMed  CAS  Google Scholar 

  210. Llobet A, Beaumont V, Lagnado L (2003) Real-time measurement of exocytosis and endocytosis using interference of light. Neuron 40:1075–1086

    PubMed  CAS  Google Scholar 

  211. Teng H, Lin MY, Wilkinson RS (2007) Macroendocytosis and endosome processing in snake motor boutons. J Physiol (London) 582:243–262

    CAS  Google Scholar 

  212. Lenzi D, Crum J, Ellisman MH, Roberts WM (2002) Depolarization redistributes synaptic membrane and creates a gradient of vesicles on the synaptic body at a ribbon synapse. Neuron 36:649–659

    PubMed  CAS  Google Scholar 

  213. Holt M, Cooke A, Wu MM, Lagnado L (2003) Bulk membrane retrieval in the synaptic terminal of retinal bipolar cells. J Neurosci 23:1329–1339

    PubMed  CAS  Google Scholar 

  214. Paillart C, Li J, Matthews G, Sterling P (2003) Endocytosis and vesicle recycling at a ribbon synapse. J Neurosci 23:4092–4099

    PubMed  CAS  Google Scholar 

  215. Jung N, Haucke V (2007) Clathrin-mediated endocytosis at synapses. Traffic 8:1129–1136

    PubMed  CAS  Google Scholar 

  216. Terada Y, Tsutsui K, Sano K, Hosoya O, Ohtsuki H, Tokunaga A (2002) Novel splice variants of amphiphysin I are expressed in retina. FEBS Lett 519:185–190

    PubMed  CAS  Google Scholar 

  217. Xi Q, Pauer GJ, Ball SL, Rayborn M, Hollyfield JG, Peachey NS, Crabb JW, Hagstrom SA (2007) Interaction between the photoreceptor-specific tubby-like protein 1 and the neuronal-specific GTPase dynamin-1. Invest Ophthalmol Vis Sci 48:2837–2844

    PubMed  Google Scholar 

  218. Allwardt BA, Lall AB, Brockerhoff SE, Dowling JE (2001) Synapse formation is arrested in retinal photoreceptors of the zebrafish nrc mutant. J Neurosci 21:2330–2342

    PubMed  CAS  Google Scholar 

  219. Van Epps HA, Yim CM, Hurley JB, Brockerhoff SE (2001) Investigations of photoreceptor synaptic transmission and light adaptation in the zebrafish visual mutant nrc. Invest Ophthalmol Vis Sci 42:868–874

    PubMed  Google Scholar 

  220. Jockusch WJ, Praefcke GJ, McMahon HT, Lagnado L (2005) Clathrin-dependent and clathrin-independent retrieval of synaptic vesicles in retinal bipolar cells. Neuron 46:869–878

    PubMed  CAS  Google Scholar 

  221. Heidelberger R (2001) ATP is required at an early step in compensatory endocytosis in synaptic terminals. J Neurosci 21:6467–6474

    PubMed  CAS  Google Scholar 

  222. Rea R, Li J, Dharia A, Levitan ES, Sterling P, Kramer RH (2004) Streamlined synaptic vesicle cycle in cone photoreceptor terminals. Neuron 41:755–766

    PubMed  CAS  Google Scholar 

  223. De Camilli P, Cameron R, Greengard P (1983) Synapsin I (protein I), a nerve terminal-specific phosphoprotein. I. Its general distribution in synapses of the central and peripheral nervous system demonstrated by immunofluorescence in frozen and plastic sections. J Cell Biol 96:1337–1354

    PubMed  Google Scholar 

  224. Libby RT, Lillo C, Kitamoto DS, Steel KP (2004) Myosin Va is required for normal photoreceptor synaptic activity. J Cell Sci 117:4509–4515

    PubMed  CAS  Google Scholar 

  225. Kitamoto J, Libby RT, Gibbs D, Steel KP, Williams DS (2005) Myosin VI is required for normal retinal function. Exp Eye Res 81:116–120

    PubMed  CAS  Google Scholar 

  226. Libby RT, Steel KP (2001) Electroretinographic anomalies in mice with mutations in Myo7a, the gene involved in human Usher syndrome type 1B. Invest Ophthalmol Vis Sci 42:770–778

    PubMed  CAS  Google Scholar 

  227. Reiners J, Nagel-Wolfrum K, Jurgens K, Marker T, Wolfrum U (2006) Molecular basis of human Usher syndrome: deciphering the meshes of the Usher protein network provides insights into the pathomechanisms of the Usher disease. Exp Eye Res 83:97–119

    PubMed  CAS  Google Scholar 

  228. Hasson T (1999) Molecular motors: sensing a function for myosin-VIIa. Curr Biol 9:R838–841

    PubMed  CAS  Google Scholar 

  229. Fremeau RT Jr, Voglmaier S, Seal RP, Edwards RH (2004) VGLUTs define subsets of excitatory neurons and suggest novel roles for glutamate. Trends Neurosci 27:98–103

    PubMed  CAS  Google Scholar 

  230. Johnson J, Fremeau RT Jr, Duncan JL, Renteria RC, Yang H, Hua Z, Liu X, LaVail MM, Edwards RH, Copenhagen DR (2007) Vesicular glutamate transporter 1 is required for photoreceptor synaptic signaling but not for intrinsic visual functions. J Neurosci 27:7245–7255

    PubMed  CAS  Google Scholar 

  231. Yoshida S, Ina A, Konno J, Wu T, Shutoh F, Nogami H, Hisano S (2008) The ontogenic expressions of multiple vesicular glutamate transporters during postnatal development of rat pineal gland. Neuroscience 152:407–416

    PubMed  CAS  Google Scholar 

  232. Nogami H, Ogasawara K, Mimura Y, Mogi K, Shutoh F, Hisano S (2006) Developmentally-regulated expression of tissue-specific splice variant of rat vesicular glutamate transporter 1 in retina and pineal gland. J Neurochem 99:142–153

    PubMed  CAS  Google Scholar 

  233. Seal RP, Edwards RH (2006) The diverse roles of vesicular glutamate transporter 3. Handbook Exp Pharm 175:137–150

    CAS  Google Scholar 

  234. Obholzer N, Wolfson S, Trapani JG, Mo W, Nechiporuk A, Busch-Nentwich E, Seiler C, Sidi S, Söllner C, Duncan RN, Boehland A, Nicolson T (2008) Vesicular glutamate transporter 3 is required for synaptic transmission in zebrafish hair cells. J Neurosci 28:2110–2118

    PubMed  CAS  Google Scholar 

  235. Roberts WM (1993) Spatial calcium buffering in saccular hair cells. Nature 363:74–76

    PubMed  CAS  Google Scholar 

  236. Roberts WM (1994) Localization of calcium signals by a mobile calcium buffer in frog saccular hair cells. J Neurosci 14:3246–3262

    PubMed  CAS  Google Scholar 

  237. Edmonds B, Reyes R, Schwaller B, Roberts WM (2000) Calretinin modifies presynaptic calcium signaling in frog saccular hair cells. Nat Neurosci 3:786–790

    PubMed  CAS  Google Scholar 

  238. Heller S, Bell AM, Denis CS, Choe Y, Hudspeth AJ (2002) Parvalbumin 3 is an abundant Ca2+ buffer in hair cells. JARO 3:488–498

    PubMed  Google Scholar 

  239. Wässle H, Peichl L, Airaksinen MS, Meyer M (1998) Calcium-binding proteins in the retina of a calbindin-null mutant mouse. Cell Tiss Res 292:211–218

    Google Scholar 

  240. Ungar F, Piscopo I, Holtzman E (1981) Calcium accumulation in intracellular compartments of frog retinal rod photoreceptors. Brain Res 205:200–206

    PubMed  CAS  Google Scholar 

  241. Freihofer D, Kortje KH, Rahmann H (1990) Ultrastructural localization of endogenous calcium in the teleost retina. Histochem J 22:63–72

    PubMed  CAS  Google Scholar 

  242. Tutter I, Heinzeller T, Seitz-Tutter D (1991) Pinealocyte subsurface cisterns. III: storage of calcium ions and their probable role in cell stimulation. J Pineal Res 10:91–99

    PubMed  CAS  Google Scholar 

  243. Ikeda K, Takasaka T (1993) Confocal laser microscopical images of calcium distribution and intracellular organelles in the outer hair cell isolated from the guinea pig cochlea. Hear Res 66:169–176

    PubMed  CAS  Google Scholar 

  244. Krizaj D, Liu X, Copenhagen DR (2004) Expression of calcium transporters in the retina of the tiger salamander (Ambystoma tigrinum). J Comp Neurol 475:463–480

    PubMed  CAS  Google Scholar 

  245. Krizaj D (2005) Serca isoform expression in the mammalian retina. Exp Eye Res 81:690–699

    PubMed  CAS  Google Scholar 

  246. Yang J, Pawlyk B, Wen XH, Adamian M, Soloviev M, Michaud N, Zhao Y, Sandberg MA, Makino CL, Li T (2007) Mpp4 is required for proper localization of plasma membrane calcium ATPases and maintenance of calcium homeostasis at the rod photoreceptor synaptic terminals. Hum Mol Gen 16:1017–1029

    PubMed  CAS  Google Scholar 

  247. Murugasu E, Russell IJ (1996) The effect of efferent stimulation on basilar membrane displacement in the basal turn of the guinea pig cochlea. J Neurosci 16:325–332

    PubMed  CAS  Google Scholar 

  248. Sridhar TS, Brown MC, Sewell WF (1997) Unique postsynaptic signaling at the hair cell efferent synapse permits calcium to evoke changes on two time scales. J Neurosci 17:428–437

    PubMed  CAS  Google Scholar 

  249. Lim DJ (1986) Functional structure of the organ of Corti: a review. Hear Res 22:117–146

    PubMed  CAS  Google Scholar 

  250. Mammano F, Bortolozzi M, Ortolano S, Anselmi F (2007) Ca2+ signaling in the inner ear. Physiology 22:131–144

    PubMed  CAS  Google Scholar 

  251. Bobbin RP (2002) Caffeine and ryanodine demonstrate a role for the ryanodine receptor in the organ of Corti. Hear Res 174:172–182

    PubMed  CAS  Google Scholar 

  252. Lioudyno M, Hiel H, Kong JH, Katz E, Waldman E, Parameshwaran-Iyer S, Glowatzki E, Fuchs PA (2004) A “synaptoplasmic cistern” mediates rapid inhibition of cochlear hair cells. J Neurosci 24:11160–11164

    PubMed  CAS  Google Scholar 

  253. Beurg M, Hafidi A, Skinner LJ, Ruel J, Nouvian R, Henaff M, Puel JL, Aran JM, Dulon D (2005) Ryanodine receptors and BK channels act as a presynaptic depressor of neurotransmission in cochlear inner hair cells. Eur J Neurosci 22:1109–1119

    PubMed  Google Scholar 

  254. Morton-Jones RT, Cannell MB, Jeyakumar LH, Fleischer S, Housley GD (2006) Differential expression of ryanodine receptors in the rat cochlea. Neuroscience 137:275–286

    PubMed  CAS  Google Scholar 

  255. Hendricson AW, Guth PS (2002) Transmitter release from Rana pipiens vestibular hair cells via mGluRs: a role for intracellular Ca(++) release. Hear Res 172:99–109

    PubMed  CAS  Google Scholar 

  256. Lelli A, Perin P, Martini M, Ciubotaru CD, Prigioni I, Valli P, Rossi ML, Mammano F (2003) Presynaptic calcium stores modulate afferent release in vestibular hair cells. J Neurosci 23:6894–6903

    PubMed  CAS  Google Scholar 

  257. Krizaj D, Bao JX, Schmitz Y, Witkovsky P, Copenhagen DR (1999) Caffeine-sensitive calcium stores regulate synaptic transmission from retinal rod photoreceptors. J Neurosci 19:7249–7261

    PubMed  CAS  Google Scholar 

  258. Krizaj D, Lai FA, Copenhagen DR (2003) Ryanodine stores and calcium regulation in the inner segments of salamander rods and cones. J Physiol (London) 547:761–774

    CAS  Google Scholar 

  259. Cadetti L, Bryson EJ, Ciccone CA, Rabl K, Thoreson WB (2006) Calcium-induced calcium release in rod photoreceptor terminals boosts synaptic transmission during maintained depolarization. Eur J Neurosci 23:2983–2990

    PubMed  Google Scholar 

  260. Suryanarayanan A, Slaughter MM (2006) Synaptic transmission mediated by internal calcium stores in rod photoreceptors. J Neurosci 26:1759–1766

    PubMed  CAS  Google Scholar 

  261. Szikra T, Cusato K, Thoreson WB, Barabas P, Bartoletti TM, Krizaj D (2008) Depletion of calcium stores regulates calcium influx and signal transmission in rod photoreceptors. J Physiol (London) 586:4859–4875

    CAS  Google Scholar 

  262. Schmitz Y, Witkovsky P (1996) Glutamate release by the intact light-responsive photoreceptor layer of the Xenopus retina. J Neurosci Methods 68:55–60

    PubMed  CAS  Google Scholar 

  263. Raybould NP, Jagger DJ, Kanjhan R, Greenwood D, Laslo P, Hoya N, Soeller C, Cannell MB, Housley GD (2007) TRPC-like conductance mediates restoration of intracellular Ca2+ in cochlear outer hair cells in the guinea pig and rat. J Physiol (London) 579:101–113

    CAS  Google Scholar 

  264. Rizzuto R, Pozzan T (2006) Microdomains of intracellular Ca2+: molecular determinants and functional consequences. Physiol Rev 86:369–408

    PubMed  CAS  Google Scholar 

  265. Johnson JE Jr, Perkins GA, Giddabasappa A, Chaney S, Xiao W, White AD, Brown JM, Waggoner J, Ellisman MH, Fox DA (2007) Spatiotemporal regulation of ATP and Ca2+ dynamics in vertebrate rod and cone ribbon synapses. Mol Vis 13:887–919

    PubMed  CAS  Google Scholar 

  266. Zenisek D, Matthews G (2000) The role of mitochondria in presynaptic calcium handling at a ribbon synapse. Neuron 25:229–237

    PubMed  CAS  Google Scholar 

  267. Krizaj D, Copenhagen DR (1998) Compartmentalization of calcium extrusion mechanisms in the outer and inner segments of photoreceptors. Neuron 21:249–256

    PubMed  CAS  Google Scholar 

  268. Morgans CW, El Far O, Berntson A, Wässle H, Taylor WR (1998) Calcium extrusion from mammalian photoreceptor terminals. J Neurosci 18:2467–2474

    PubMed  CAS  Google Scholar 

  269. Grati M, Aggarwal N, Strehler EE, Wenthold RJ (2006) Molecular determinants for differential membrane trafficking of PMCA1 and PMCA2 in mammalian hair cells. J Cell Sci 119:2995–3007

    PubMed  CAS  Google Scholar 

  270. Hill JK, Williams DE, Lemasurier M, Dumont RA, Strehler EE, Gillespie PG (2006) Splice-site A choice targets plasma-membrane Ca2+-ATPase isoform 2 to hair bundles. J Neurosci 26:6172–6180

    PubMed  CAS  Google Scholar 

  271. Dumont RA, Lins U, Filoteo AG, Penniston JT, Kachar B, Gillespie PG (2001) Plasma membrane Ca2+-ATPase isoform 2a is the PMCA of hair bundles. J Neurosci 21:5066–5078

    PubMed  CAS  Google Scholar 

  272. Street VA, McKee-Johnson JW, Fonseca RC, Tempel BL, Noben-Trauth K (1998) Mutations in a plasma membrane Ca2+-ATPase gene cause deafness in deafwaddler mice. Nat Genet 19:390–394

    PubMed  CAS  Google Scholar 

  273. Duncan JL, Yang H, Doan T, Silverstein RS, Murphy GJ, Nune G, Liu X, Copenhagen D, Tempel BL, Rieke F, Krizaj D (2006) Scotopic visual signaling in the mouse retina is modulated by high-affinity plasma membrane calcium extrusion. J Neurosci 26:7201–7211

    PubMed  CAS  Google Scholar 

  274. Krizaj D, Demarco SJ, Johnson J, Strehler EE, Copenhagen DR (2002) Cell-specific expression of plasma membrane calcium ATPase isoforms in retinal neurons. J Comp Neurol 451:1–21

    PubMed  CAS  Google Scholar 

  275. Kobayashi K, Tachibana M (1995) Ca2+ regulation in the presynaptic terminals of goldfish retinal bipolar cells. J Physiol (London) 483:79–94

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Institutes of Health Grants F30 NS061494-01 (G.Z.) and R01 EY003821 (G.M.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary Matthews.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zanazzi, G., Matthews, G. The Molecular Architecture of Ribbon Presynaptic Terminals. Mol Neurobiol 39, 130–148 (2009). https://doi.org/10.1007/s12035-009-8058-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-009-8058-z

Keywords

Navigation