Skip to main content
Log in

Spine Remodeling and Synaptic Modification

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The majority of excitatory communication occurs at dendritic spines, and spine modifications accompany synaptic modifications under both physiological and pathological conditions. Although it is increasingly clear that spine remodeling is required for synaptic modification, the exact functions and underlying molecular mechanisms remain unclear. Here, we review recent progress on this topic and discuss the functions of spine remodeling in a broad sense to include both alterations in spine size and actin dynamics. We propose that these two aspects of actin remodeling have distinct contributions to synaptic modification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Kirov SA, Sorra KE, Harris KM (1999) Slices have more synapses than perfusion-fixed hippocampus from both young and mature rats. J Neurosci 19(8):2876–2886

    CAS  PubMed  Google Scholar 

  2. Yuste R, Bonhoeffer T (2001) Morphological changes in dendritic spines associated with long-term synaptic plasticity. Annu Rev Neurosci 24:1071–1089

    Article  CAS  PubMed  Google Scholar 

  3. Nimchinsky EA, Sabatini BL, Svoboda K (2002) Structure and function of dendritic spines. Annu Rev Physiol 64:313–353

    Article  CAS  PubMed  Google Scholar 

  4. Bourne JN, Harris KM (2008) Balancing structure and function at hippocampal dendritic spines. Annu Rev Neurosci 31:47–67

    Article  CAS  PubMed  Google Scholar 

  5. Alvarez VA, Sabatini BL (2007) Anatomical and physiological plasticity of dendritic spines. Annu Rev Neurosci 30:79–97

    Article  CAS  PubMed  Google Scholar 

  6. Nusser Z et al (1998) Cell type and pathway dependence of synaptic AMPA receptor number and variability in the hippocampus. Neuron 21(3):545–559

    Article  CAS  PubMed  Google Scholar 

  7. Takumi Y et al (1999) Different modes of expression of AMPA and NMDA receptors in hippocampal synapses. Nat Neurosci 2(7):618–624

    Article  CAS  PubMed  Google Scholar 

  8. Racca C et al (2000) NMDA receptor content of synapses in stratum radiatum of the hippocampal CA1 area. J Neurosci 20(7):2512–2522

    CAS  PubMed  Google Scholar 

  9. Lisman JE, Harris KM (1993) Quantal analysis and synaptic anatomy—integrating two views of hippocampal plasticity. Trends Neurosci 16(4):141–147

    Article  CAS  PubMed  Google Scholar 

  10. Schikorski T, Stevens CF (1997) Quantitative ultrastructural analysis of hippocampal excitatory synapses. J Neurosci 17(15):5858–5867

    CAS  PubMed  Google Scholar 

  11. Halpain S, Spencer K, Graber S (2005) Dynamics and pathology of dendritic spines. Prog Brain Res 147:29–37

    Article  CAS  PubMed  Google Scholar 

  12. Matus A et al (1982) High actin concentrations in brain dendritic spines and postsynaptic densities. Proc Natl Acad Sci USA 79(23):7590–7594

    Article  CAS  PubMed  Google Scholar 

  13. Star EN, Kwiatkowski DJ, Murthy VN (2002) Rapid turnover of actin in dendritic spines and its regulation by activity. Nat Neurosci 5(3):239–246

    Article  CAS  PubMed  Google Scholar 

  14. Honkura N et al (2008) The subspine organization of actin fibers regulates the structure and plasticity of dendritic spines. Neuron 57(5):719–729

    Article  CAS  PubMed  Google Scholar 

  15. Allison DW et al (1998) Role of actin in anchoring postsynaptic receptors in cultured hippocampal neurons: differential attachment of NMDA versus AMPA receptors. J Neurosci 18(7):2423–2436

    CAS  PubMed  Google Scholar 

  16. Kuriu T et al (2006) Differential control of postsynaptic density scaffolds via actin-dependent and -independent mechanisms. J Neurosci 26(29):7693–7706

    Article  CAS  PubMed  Google Scholar 

  17. Kim CH, Lisman JE (1999) A role of actin filament in synaptic transmission and long-term potentiation. J Neurosci 19(11):4314–4324

    CAS  PubMed  Google Scholar 

  18. Fischer M et al (1998) Rapid actin-based plasticity in dendritic spines. Neuron 20(5):847–854

    Article  CAS  PubMed  Google Scholar 

  19. Dunaevsky A et al (1999) Developmental regulation of spine motility in the mammalian central nervous system. Proc Natl Acad Sci USA 96(23):13438–13443

    Article  CAS  PubMed  Google Scholar 

  20. Lendvai B et al (2000) Experience-dependent plasticity of dendritic spines in the developing rat barrel cortex in vivo. Nature 404(6780):876–881

    Article  CAS  PubMed  Google Scholar 

  21. Oray S, Majewska A, Sur M (2004) Dendritic spine dynamics are regulated by monocular deprivation and extracellular matrix degradation. Neuron 44(6):1021–1030

    Article  CAS  PubMed  Google Scholar 

  22. Holtmaat AJ et al (2005) Transient and persistent dendritic spines in the neocortex in vivo. Neuron 45(2):279–291

    Article  CAS  PubMed  Google Scholar 

  23. Matus A (2000) Actin-based plasticity in dendritic spines. Science 290(5492):754–758

    Article  CAS  PubMed  Google Scholar 

  24. Halpain S (2000) Actin and the agile spine: how and why do dendritic spines dance? Trends Neurosci 23(4):141–146

    Article  CAS  PubMed  Google Scholar 

  25. Bonhoeffer T, Yuste R (2002) Spine motility. Phenomenology, mechanisms, and function. Neuron 35(6):1019–1027

    Article  CAS  PubMed  Google Scholar 

  26. Van Harreveld A, Fifkova E (1975) Swelling of dendritic spines in the fascia dentata after stimulation of the perforant fibers as a mechanism of post-tetanic potentiation. Exp Neurol 49(3):736–749

    Article  PubMed  Google Scholar 

  27. Fifkova E, Van Harreveld A (1977) Long-lasting morphological changes in dendritic spines of dentate granular cells following stimulation of the entorhinal area. J Neurocytol 6(2):211–230

    Article  CAS  PubMed  Google Scholar 

  28. Fifkova E, Anderson CL (1981) Stimulation-induced changes in dimensions of stalks of dendritic spines in the dentate molecular layer. Exp Neurol 74(2):621–627

    Article  CAS  PubMed  Google Scholar 

  29. Desmond NL, Levy WB (1986) Changes in the postsynaptic density with long-term potentiation in the dentate gyrus. J Comp Neurol 253(4):476–482

    Article  CAS  PubMed  Google Scholar 

  30. Desmond NL, Levy WB (1988) Synaptic interface surface area increases with long-term potentiation in the hippocampal dentate gyrus. Brain Res 453(1–2):308–314

    Article  CAS  PubMed  Google Scholar 

  31. Geinisman Y, DeToledo-Morrell L, Morrell F (1991) Induction of long-term potentiation is associated with an increase in the number of axospinous synapses with segmented postsynaptic densities. Brain Res 566(1-2):77–88

    Article  CAS  PubMed  Google Scholar 

  32. Matsuzaki M et al (2004) Structural basis of long-term potentiation in single dendritic spines. Nature 429(6993):761–766

    Article  CAS  PubMed  Google Scholar 

  33. Lang C et al (2004) Transient expansion of synaptically connected dendritic spines upon induction of hippocampal long-term potentiation. Proc Natl Acad Sci USA 101(47):16665–16670

    Article  CAS  PubMed  Google Scholar 

  34. Kopec CD et al (2007) GluR1 links structural and functional plasticity at excitatory synapses. J Neurosci 27(50):13706–13718

    Article  CAS  PubMed  Google Scholar 

  35. Harvey CD, Svoboda K (2007) Locally dynamic synaptic learning rules in pyramidal neuron dendrites. Nature 450(7173):1195–1200

    Article  CAS  PubMed  Google Scholar 

  36. Yang Y et al (2008) Spine expansion and stabilization associated with long-term potentiation. J Neurosci 28(22):5740–5751

    Article  CAS  PubMed  Google Scholar 

  37. Bagal AA et al (2005) Long-term potentiation of exogenous glutamate responses at single dendritic spines. Proc Natl Acad Sci USA 102(40):14434–14439

    Article  CAS  PubMed  Google Scholar 

  38. Engert F, Bonhoeffer T (1999) Dendritic spine changes associated with hippocampal long-term synaptic plasticity. Nature 399(6731):66–70

    Article  CAS  PubMed  Google Scholar 

  39. Maletic-Savatic M, Malinow R, Svoboda K (1999) Rapid dendritic morphogenesis in CA1 hippocampal dendrites induced by synaptic activity. Science 283(5409):1923–1927

    Article  CAS  PubMed  Google Scholar 

  40. Toni N et al (1999) LTP promotes formation of multiple spine synapses between a single axon terminal and a dendrite. Nature 402(6760):421–425

    Article  CAS  PubMed  Google Scholar 

  41. Popov VI et al (2004) Remodelling of synaptic morphology but unchanged synaptic density during late phase long-term potentiation (LTP): a serial section electron micrograph study in the dentate gyrus in the anaesthetised rat. Neuroscience 128(2):251–262

    Article  CAS  PubMed  Google Scholar 

  42. Sorra KE, Harris KM (1998) Stability in synapse number and size at 2 hr after long-term potentiation in hippocampal area CA1. J Neurosci 18(2):658–671

    CAS  PubMed  Google Scholar 

  43. Zhou Q, Homma KJ, Poo MM (2004) Shrinkage of dendritic spines associated with long-term depression of hippocampal synapses. Neuron 44(5):749–757

    Article  CAS  PubMed  Google Scholar 

  44. Chen Y et al (2004) The role of actin in the regulation of dendritic spine morphology and bidirectional synaptic plasticity. NeuroReport 15(5):829–832

    Article  PubMed  Google Scholar 

  45. Nagerl UV et al (2004) Bidirectional activity-dependent morphological plasticity in hippocampal neurons. Neuron 44(5):759–767

    Article  PubMed  Google Scholar 

  46. Okamoto K et al (2004) Rapid and persistent modulation of actin dynamics regulates postsynaptic reorganization underlying bidirectional plasticity. Nat Neurosci 7(10):1104–1112

    Article  CAS  PubMed  Google Scholar 

  47. Ackermann M, Matus A (2003) Activity-induced targeting of profilin and stabilization of dendritic spine morphology. Nat Neurosci 6:1194–1200

    Article  CAS  PubMed  Google Scholar 

  48. Kramar EA et al (2006) Integrin-driven actin polymerization consolidates long-term potentiation. Proc Natl Acad Sci USA 103(14):5579–5584

    Article  CAS  PubMed  Google Scholar 

  49. Wang XB, Yang Y, Zhou Q (2007) Independent expression of synaptic and morphological plasticity associated with long-term depression. J Neurosci 27(45):12419–12429

    Article  CAS  PubMed  Google Scholar 

  50. Lee SJ et al (2009) Activation of CaMKII in single dendritic spines during long-term potentiation. Nature 458(7236):299–304

    Article  CAS  PubMed  Google Scholar 

  51. Horne EA, Dell'Acqua ML (2007) Phospholipase C is required for changes in postsynaptic structure and function associated with NMDA receptor-dependent long-term depression. J Neurosci 27(13):3523–3534

    Article  CAS  PubMed  Google Scholar 

  52. Racz B, Weinberg RJ (2006) Spatial organization of cofilin in dendritic spines. Neuroscience 138(2):447–456

    Article  CAS  PubMed  Google Scholar 

  53. Chen H, Bernstein BW, Bamburg JR (2000) Regulating actin-filament dynamics in vivo. Trends Biochem Sci 25(1):19–23

    Article  CAS  PubMed  Google Scholar 

  54. Bamburg JR, McGough A, Ono S (1999) Putting a new twist on actin: ADF/cofilins modulate actin dynamics. Trends Cell Biol 9(9):364–370

    Article  CAS  PubMed  Google Scholar 

  55. Niwa R et al (2002) Control of actin reorganization by Slingshot, a family of phosphatases that dephosphorylate ADF/cofilin. Cell 108(2):233–246

    Article  CAS  PubMed  Google Scholar 

  56. Chen LY et al (2007) Changes in synaptic morphology accompany actin signaling during LTP. J Neurosci 27(20):5363–5372

    Article  CAS  PubMed  Google Scholar 

  57. Fukazawa Y et al (2003) Hippocampal LTP is accompanied by enhanced F-actin content within the dendritic spine that is essential for late LTP maintenance in vivo. Neuron 38(3):447–460

    Article  CAS  PubMed  Google Scholar 

  58. Fischer M et al (2000) Glutamate receptors regulate actin-based plasticity in dendritic spines. Nat Neurosci 3(9):887–894

    Article  CAS  PubMed  Google Scholar 

  59. Paavilainen VO et al (2004) Regulation of cytoskeletal dynamics by actin-monomer-binding proteins. Trends Cell Biol 14(7):386–394

    Article  CAS  PubMed  Google Scholar 

  60. Lamprecht R et al (2006) Fear conditioning drives profilin into amygdala dendritic spines. Nat Neurosci 9(4):481–483

    Article  CAS  PubMed  Google Scholar 

  61. Pilo Boyl P et al (2007) Profilin2 contributes to synaptic vesicle exocytosis, neuronal excitability, and novelty-seeking behavior. EMBO J 26(12):2991–3002

    Article  CAS  PubMed  Google Scholar 

  62. Tanaka J et al (2008) Protein synthesis and neurotrophin-dependent structural plasticity of single dendritic spines. Science 319(5870):1683–1687

    Article  CAS  PubMed  Google Scholar 

  63. Messaoudi E et al (2007) Sustained Arc/Arg3.1 synthesis controls long-term potentiation consolidation through regulation of local actin polymerization in the dentate gyrus in vivo. J Neurosci 27(39):10445–10455

    Article  CAS  PubMed  Google Scholar 

  64. Krucker T, Siggins GR, Halpain S (2000) Dynamic actin filaments are required for stable long-term potentiation (LTP) in area CA1 of the hippocampus. Proc Natl Acad Sci USA 97(12):6856–6861

    Article  CAS  PubMed  Google Scholar 

  65. Yang Y et al (2008) Delivery of AMPA receptors to perisynaptic sites precedes the full expression of long-term potentiation. Proc Natl Acad Sci USA 105(32):11388–11393

    Article  CAS  PubMed  Google Scholar 

  66. Kopec CD et al (2006) Glutamate receptor exocytosis and spine enlargement during chemically induced long-term potentiation. J Neurosci 26(7):2000–2009

    Article  CAS  PubMed  Google Scholar 

  67. Yasumatsu N et al (2008) Principles of long-term dynamics of dendritic spines. J Neurosci 28(50):13592–13608

    Article  CAS  PubMed  Google Scholar 

  68. Sdrulla AD, Linden DJ (2007) Double dissociation between long-term depression and dendritic spine morphology in cerebellar Purkinje cells. Nat Neurosci 10(5):546–548

    Article  CAS  PubMed  Google Scholar 

  69. Park M et al (2004) Recycling endosomes supply AMPA receptors for LTP. Science 305(5692):1972–1975

    Article  CAS  PubMed  Google Scholar 

  70. Park M et al (2006) Plasticity-induced growth of dendritic spines by exocytic trafficking from recycling endosomes. Neuron 52(5):817–830

    Article  CAS  PubMed  Google Scholar 

  71. Wang Z et al (2008) Myosin Vb mobilizes recycling endosomes and AMPA receptors for postsynaptic plasticity. Cell 135(3):535–548

    Article  CAS  PubMed  Google Scholar 

  72. Shen L et al (2000) Regulation of AMPA receptor GluR1 subunit surface expression by a 4.1N-linked actin cytoskeletal association. J Neurosci 20(21):7932–7940

    CAS  PubMed  Google Scholar 

  73. Schulz TW et al (2004) Actin/alpha-actinin-dependent transport of AMPA receptors in dendritic spines: role of the PDZ-LIM protein RIL. J Neurosci 24(39):8584–8594

    Article  CAS  PubMed  Google Scholar 

  74. Shi S et al (2001) Subunit-specific rules governing AMPA receptor trafficking to synapses in hippocampal pyramidal neurons. Cell 105(3):331–343

    Article  CAS  PubMed  Google Scholar 

  75. Lisman J, Raghavachari S (2006) A unified model of the presynaptic and postsynaptic changes during LTP at CA1 synapses. Sci STKE 2006(356):re11

    Article  PubMed  Google Scholar 

  76. Landis DM, Reese TS (1983) Cytoplasmic organization in cerebellar dendritic spines. J Cell Biol 97(4):1169–1178

    Article  CAS  PubMed  Google Scholar 

  77. Rostaing P et al (2006) Analysis of synaptic ultrastructure without fixative using high-pressure freezing and tomography. Eur J Neurosci 24(12):3463–3474

    Article  PubMed  Google Scholar 

  78. Okabe S (2007) Molecular anatomy of the postsynaptic density. Mol Cell Neurosci 34(4):503–518

    Article  CAS  PubMed  Google Scholar 

  79. Sheng M, Hoogenraad CC (2007) The postsynaptic architecture of excitatory synapses: a more quantitative view. Annu Rev Biochem 76:823–847

    Article  CAS  PubMed  Google Scholar 

  80. Tardin C et al (2003) Direct imaging of lateral movements of AMPA receptors inside synapses. EMBO J 22(18):4656–4665

    Article  CAS  PubMed  Google Scholar 

  81. Sharma K, Fong DK, Craig AM (2006) Postsynaptic protein mobility in dendritic spines: long-term regulation by synaptic NMDA receptor activation. Mol Cell Neurosci 31(4):702–712

    Article  CAS  PubMed  Google Scholar 

  82. Zhou Q, Xiao M, Nicoll RA (2001) Contribution of cytoskeleton to the internalization of AMPA receptors. Proc Natl Acad Sci USA 98(3):1261–1266

    Article  CAS  PubMed  Google Scholar 

  83. Ashby MC et al (2004) Removal of AMPA receptors (AMPARs) from synapses is preceded by transient endocytosis of extrasynaptic AMPARs. J Neurosci 24(22):5172–5176

    Article  CAS  PubMed  Google Scholar 

  84. Collingridge GL, Isaac JT, Wang YT (2004) Receptor trafficking and synaptic plasticity. Nat Rev Neurosci 5(12):952–962

    Article  CAS  PubMed  Google Scholar 

  85. Gomez LL et al (2002) Regulation of A-kinase anchoring protein 79/150-cAMP-dependent protein kinase postsynaptic targeting by NMDA receptor activation of calcineurin and remodeling of dendritic actin. J Neurosci 22(16):7027–7044

    CAS  PubMed  Google Scholar 

  86. Dell'Acqua ML et al (2006) Regulation of neuronal PKA signaling through AKAP targeting dynamics. Eur J Cell Biol 85(7):627–633

    Article  PubMed  CAS  Google Scholar 

  87. Shen K et al (1998) CaMKIIbeta functions as an F-actin targeting module that localizes CaMKIIalpha/beta heterooligomers to dendritic spines. Neuron 21(3):593–606

    Article  CAS  PubMed  Google Scholar 

  88. He K et al (2009) Stabilization of Ca2+-permeable AMPA receptors at perisynaptic sites by GluR1-S845 phosphorylation. Proc Natl Acad Sci USA 106(47):20033–20038

    CAS  PubMed  Google Scholar 

  89. Makino H, Malinow R (2009) AMPA receptor incorporation into synapses during LTP: the role of lateral movement and exocytosis. Neuron 64(3):381–390

    Article  CAS  PubMed  Google Scholar 

  90. Richards DA et al (2004) AMPA-receptor activation regulates the diffusion of a membrane marker in parallel with dendritic spine motility in the mouse hippocampus. J Physiol 558(Pt 2):503–512

    Article  CAS  PubMed  Google Scholar 

  91. Blanpied TA, Scott DB, Ehlers MD (2003) Age-related regulation of dendritic endocytosis associated with altered clathrin dynamics. Neurobiol Aging 24(8):1095–1104

    Article  CAS  PubMed  Google Scholar 

  92. Morishita W et al (2001) Regulation of synaptic strength by protein phosphatase 1. Neuron 32(6):1133–1148

    Article  CAS  PubMed  Google Scholar 

  93. Ouyang Y et al (2005) Transient decrease in F-actin may be necessary for translocation of proteins into dendritic spines. Eur J Neurosci 22(12):2995–3005

    Article  PubMed  Google Scholar 

  94. Correia SS et al (2008) Motor protein-dependent transport of AMPA receptors into spines during long-term potentiation. Nat Neurosci 11(4):457–466

    Article  CAS  PubMed  Google Scholar 

  95. Yoshimura A et al (2006) Myosin-Va facilitates the accumulation of mRNA/protein complex in dendritic spines. Curr Biol 16(23):2345–2351

    Article  CAS  PubMed  Google Scholar 

  96. Abraham WC, Williams JM (2008) LTP maintenance and its protein synthesis-dependence. Neurobiol Learn Mem 89(3):260–268

    Article  CAS  PubMed  Google Scholar 

  97. Kelly MT et al (2007) Actin polymerization regulates the synthesis of PKMzeta in LTP. Neuropharmacology 52(1):41–45

    Article  CAS  PubMed  Google Scholar 

  98. Sacktor TC (2008) PKMzeta, LTP maintenance, and the dynamic molecular biology of memory storage. Prog Brain Res 169:27–40

    Article  CAS  PubMed  Google Scholar 

  99. Ostroff LE et al (2002) Polyribosomes redistribute from dendritic shafts into spines with enlarged synapses during LTP in developing rat hippocampal slices. Neuron 35(3):535–545

    Article  CAS  PubMed  Google Scholar 

  100. Huang F, Chotiner JK, Steward O (2007) Actin polymerization and ERK phosphorylation are required for Arc/Arg3.1 mRNA targeting to activated synaptic sites on dendrites. J Neurosci 27(34):9054–9067

    Article  CAS  PubMed  Google Scholar 

  101. Schuman EM, Dynes JL, Steward O (2006) Synaptic regulation of translation of dendritic mRNAs. J Neurosci 26(27):7143–7146

    Article  CAS  PubMed  Google Scholar 

  102. Sutton MA, Schuman EM (2006) Dendritic protein synthesis, synaptic plasticity, and memory. Cell 127(1):49–58

    Article  CAS  PubMed  Google Scholar 

  103. Bramham CR (2008) Local protein synthesis, actin dynamics, and LTP consolidation. Curr Opin Neurobiol 18(5):524–531

    Article  CAS  PubMed  Google Scholar 

  104. Navakkode S, Sajikumar S, Frey JU (2005) Mitogen-activated protein kinase-mediated reinforcement of hippocampal early long-term depression by the type IV-specific phosphodiesterase inhibitor rolipram and its effect on synaptic tagging. J Neurosci 25(46):10664–10670

    Article  CAS  PubMed  Google Scholar 

  105. Steiner P et al (2008) Destabilization of the postsynaptic density by PSD-95 serine 73 phosphorylation inhibits spine growth and synaptic plasticity. Neuron 60(5):788–802

    Article  CAS  PubMed  Google Scholar 

  106. Gray NW et al (2006) Rapid redistribution of synaptic PSD-95 in the neocortex in vivo. PLoS Biol 4(11):e370

    Article  PubMed  CAS  Google Scholar 

  107. Luscher C et al (2000) Synaptic plasticity and dynamic modulation of the postsynaptic membrane. Nat Neurosci 3(6):545–550

    Article  CAS  PubMed  Google Scholar 

  108. Shankar GM et al (2007) Natural oligomers of the Alzheimer amyloid-beta protein induce reversible synapse loss by modulating an NMDA-type glutamate receptor-dependent signaling pathway. J Neurosci 27(11):2866–2875

    Article  CAS  PubMed  Google Scholar 

  109. Becker N et al (2008) LTD induction causes morphological changes of presynaptic boutons and reduces their contacts with spines. Neuron 60(4):590–597

    Article  CAS  PubMed  Google Scholar 

  110. Hsieh H et al (2006) AMPAR removal underlies Abeta-induced synaptic depression and dendritic spine loss. Neuron 52(5):831–843

    Article  CAS  PubMed  Google Scholar 

  111. Zakharenko SS, Zablow L, Siegelbaum SA (2001) Visualization of changes in presynaptic function during long-term synaptic plasticity. Nat Neurosci 4(7):711–717

    Article  CAS  PubMed  Google Scholar 

  112. Stanton PK et al (2005) Imaging LTP of presynaptic release of FM1-43 from the rapidly recycling vesicle pool of Schaffer collateral-CA1 synapses in rat hippocampal slices. Eur J Neurosci 22(10):2451–2461

    Article  PubMed  Google Scholar 

  113. Bayazitov IT et al (2007) Slow presynaptic and fast postsynaptic components of compound long-term potentiation. J Neurosci 27(43):11510–11521

    Article  CAS  PubMed  Google Scholar 

  114. Bastrikova N et al (2008) Synapse elimination accompanies functional plasticity in hippocampal neurons. Proc Natl Acad Sci USA 105(8):3123–3127

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

QZ is supported by grants from the Whitehall Foundation, Ellison Medical Foundation, and Simons Foundation. We thank Dr. D Benson for helpful comments on an earlier draft.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Zhou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Xb., Zhou, Q. Spine Remodeling and Synaptic Modification. Mol Neurobiol 41, 29–41 (2010). https://doi.org/10.1007/s12035-009-8093-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-009-8093-9

Keywords

Navigation