Skip to main content

Advertisement

Log in

A Perspective on Neuronal Cell Death Signaling and Neurodegeneration

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Although neuronal cell death through apoptotic pathways represents a common feature of dysferopathies, the canonical apoptotic changes familiar from nonneuronal cells are late events. Loss of neuronal function occurs at a much early time, when synaptic-based neuronal connectivity fails. In this context, apoptotic pathways may normally serve a cleanup role, rather than a pathogenic one. Reframing the consideration of cell death in the nervous system to include the early stages of axonal degeneration provides a better understanding of the roles played by various apoptotic signaling pathways in neurodegenerative diseases. Focusing on disease-specific mechanisms that initiate the sequence that eventually leads to neuronal loss should facilitate development of therapies that preserve neuronal function and neuronal numbers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Okouchi M, Ekshyyan O, Maracine M, Aw TY (2007) Neuronal apoptosis in neurodegeneration. Antioxid Redox Signal 9:1059–1096

    Article  PubMed  CAS  Google Scholar 

  2. Nakamura T, Lipton SA (2009) Cell death: protein misfolding and neurodegenerative diseases. Apoptosis 14:455–468

    Article  PubMed  CAS  Google Scholar 

  3. Yacoubian TA, Standaert DG (2009) Targets for neuroprotection in Parkinson's disease. Biochim Biophys Acta 1792:676–687

    PubMed  CAS  Google Scholar 

  4. Gould TW, Buss RR, Vinsant S, Prevette D, Sun W, Knudson CM, Milligan CE, Oppenheim RW (2006) Complete dissociation of motor neuron death from motor dysfunction by Bax deletion in a mouse model of ALS. J Neurosci 26:8774–8786

    Article  PubMed  CAS  Google Scholar 

  5. Chiesa R, Piccardo P, Dossena S, Nowoslawski L, Roth KA, Ghetti B, Harris DA (2005) Bax deletion prevents neuronal loss but not neurological symptoms in a transgenic model of inherited prion disease. Proc Natl Acad Sci U S A 102:238–243

    Article  PubMed  CAS  Google Scholar 

  6. Waldmeier P, Bozyczko-Coyne D, Williams M, Vaught JL (2006) Recent clinical failures in Parkinson's disease with apoptosis inhibitors underline the need for a paradigm shift in drug discovery for neurodegenerative diseases. Biochem Pharmacol 72:1197–1206

    Article  PubMed  CAS  Google Scholar 

  7. Hengartner MO (2000) The biochemistry of apoptosis. Nature 407:770–776

    Article  PubMed  CAS  Google Scholar 

  8. Bredesen DE, Rao RV, Mehlen P (2006) Cell death in the nervous system. Nature 443:796–802

    Article  PubMed  CAS  Google Scholar 

  9. Raff MC, Whitmore AV, Finn JT (2002) Axonal self-destruction and neurodegeneration. Science 296:868–871

    Article  PubMed  CAS  Google Scholar 

  10. Jellinger KA (2006) Challenges in neuronal apoptosis. Curr Alzheimer Res 3:377–391

    Article  PubMed  CAS  Google Scholar 

  11. Bravarenko NI, Onufriev MV, Stepanichev MY, Ierusalimsky VN, Balaban PM, Gulyaeva NV (2006) Caspase-like activity is essential for long-term synaptic plasticity in the terrestrial snail Helix. Eur J Neurosci 23:129–140

    Article  PubMed  CAS  Google Scholar 

  12. Kudryashova IV, Onufriev MV, Kudryashov IE, Gulyaeva NV (2009) Caspase-3 activity in hippocampal slices reflects changes in synaptic plasticity. Neurosci Behav Physiol 39:13–20

    Article  PubMed  CAS  Google Scholar 

  13. Mattson MP, Duan W (1999) “Apoptotic” biochemical cascades in synaptic compartments: roles in adaptive plasticity and neurodegenerative disorders. J Neurosci Res 58:152–166

    Article  PubMed  CAS  Google Scholar 

  14. Mattson MP, Bazan NG (2006) Apoptosis and necrosis. In: Siegel G, Albers RW, Brady ST, Price D (eds) Basic meurochemistry, 7th edn. Elsevier, Boston, pp 603–615

    Google Scholar 

  15. Burek MJ, Oppenheim RW (1996) Programmed cell death in the developing nervous system. Brain Pathol 6:427–446

    Article  PubMed  CAS  Google Scholar 

  16. LeVay S, Wiesel TN, Hubel DH (1980) The development of ocular dominance columns in normal and visually deprived monkeys. J Comp Neurol 191:1–51

    Article  PubMed  CAS  Google Scholar 

  17. Coleman M (2005) Axon degeneration mechanisms: commonality amid diversity. Nat Rev Neurosci 6:889–898

    Article  PubMed  CAS  Google Scholar 

  18. Morfini G, Pigino G, Brady ST (2005) Polyglutamine expansion diseases: failing to deliver. Trends Molec Med 11:64–70

    Article  CAS  Google Scholar 

  19. Morfini GA, Burns M, Binder LI, Kanaan NM, LaPointe N, Bosco DA, Brown RH Jr, Brown H, Tiwari A, Hayward L et al (2009) Axonal transport defects in neurodegenerative diseases. J Neurosci 29:12776–12786

    Article  PubMed  CAS  Google Scholar 

  20. Zhu X, Raina AK, Perry G, Smith MA (2006) Apoptosis in Alzheimer disease: a mathematical improbability. Curr Alzheimer Res 3:393–396

    Article  PubMed  CAS  Google Scholar 

  21. Chan SL, Mattson MP (1999) Caspase and calpain substrates: roles in synaptic plasticity and cell death. J Neurosci Res 58:167–190

    Article  PubMed  CAS  Google Scholar 

  22. Ahn SM, Choe ES (2009) Alterations in GluR2 AMPA receptor phosphorylation at serine 880 following group I metabotropic glutamate receptor stimulation in the rat dorsal striatum. J Neurosci Res 88:992–9

    Google Scholar 

  23. Jong YJ, Kumar V, O'Malley KL (2009) Intracellular metabotropic glutamate receptor 5 (mGluR5) activates signaling cascades distinct from cell surface counterparts. J Biol Chem 284:35827–38

    Article  PubMed  CAS  Google Scholar 

  24. Sweatt JD (2001) The neuronal MAP kinase cascade: a biochemical signal integration system subserving synaptic plasticity and memory. J Neurochem 76:1–10

    Article  PubMed  CAS  Google Scholar 

  25. Yue X, Dreyfus C, Kong TA, Zhou R (2008) A subset of signal transduction pathways is required for hippocampal growth cone collapse induced by ephrin-A5. Dev Neurobiol 68:1269–1286

    Article  PubMed  CAS  Google Scholar 

  26. Hennigan A, O'Callaghan RM, Kelly AM (2007) Neurotrophins and their receptors: roles in plasticity, neurodegeneration and neuroprotection. Biochem Soc Trans 35:424–427

    Article  PubMed  CAS  Google Scholar 

  27. Blochl A, Blochl R (2007) A cell-biological model of p75NTR signaling. J Neurochem 102:289–305

    Article  PubMed  CAS  Google Scholar 

  28. Nykjaer A, Willnow TE, Petersen CM (2005) p75NTR–live or let die. Curr Opin Neurobiol 15:49–57

    Article  PubMed  CAS  Google Scholar 

  29. Barker PA, Hussain NK, McPherson PS (2002) Retrograde signaling by the neurotrophins follows a well-worn trk. Trends Neurosci 25:379–381

    Article  PubMed  CAS  Google Scholar 

  30. Weible MW 2nd, Hendry IA (2004) What is the importance of multivesicular bodies in retrograde axonal transport in vivo? J Neurobiol 58:230–243

    Article  PubMed  CAS  Google Scholar 

  31. Conforti L, Adalbert R, Coleman MP (2007) Neuronal death: where does the end begin? Trends Neurosci 30:159–166

    Article  PubMed  CAS  Google Scholar 

  32. Cabelli RJ, Shelton DL, Segal RA, Shatz CJ (1997) Blockade of endogenous ligands of trkB inhibits formation of ocular dominance columns. Neuron 19:63–76

    Article  PubMed  CAS  Google Scholar 

  33. Hamburger V, Brunso-Bechtold JK, Yip JW (1981) Neuronal death in the spinal ganglia of the chick embryo and its reduction by nerve growth factor. J Neurosci 1:60–71

    PubMed  CAS  Google Scholar 

  34. Pittman R, Oppenheim RW (1979) Cell death of motoneurons in the chick embryo spinal cord. IV. Evidence that a functional neuromuscular interaction is involved in the regulation of naturally occurring cell death and the stabilization of synapses. J Comp Neurol 187:425–446

    Article  PubMed  CAS  Google Scholar 

  35. Kuczewski N, Porcher C, Lessmann V, Medina I, Gaiarsa JL (2009) Activity-dependent dendritic release of BDNF and biological consequences. Mol Neurobiol 39:37–49

    Article  PubMed  CAS  Google Scholar 

  36. Schinder AF, Poo M (2000) The neurotrophin hypothesis for synaptic plasticity. Trends Neurosci 23:639–645

    Article  PubMed  CAS  Google Scholar 

  37. Thoenen H (2000) Neurotrophins and activity-dependent plasticity. Prog Brain Res 128:183–191

    Article  PubMed  CAS  Google Scholar 

  38. Carvalho AL, Caldeira MV, Santos SD, Duarte CB (2008) Role of the brain-derived neurotrophic factor at glutamatergic synapses. Br J Pharmacol 153(Suppl 1):S310–324

    Article  PubMed  CAS  Google Scholar 

  39. Huang EJ, Reichardt LF (2003) Trk receptors: roles in neuronal signal transduction. Annu Rev Biochem 72:609–642

    Article  PubMed  CAS  Google Scholar 

  40. Reichardt LF (2006) Neurotrophin-regulated signalling pathways. Philos Trans R Soc Lond B Biol Sci 361:1545–1564

    Article  PubMed  CAS  Google Scholar 

  41. Rose CR, Blum R, Kafitz KW, Kovalchuk Y, Konnerth A (2004) From modulator to mediator: rapid effects of BDNF on ion channels. Bioessays 26:1185–1194

    Article  PubMed  CAS  Google Scholar 

  42. Schmidt JT (2004) Activity-driven sharpening of the retinotectal projection: the search for retrograde synaptic signaling pathways. J Neurobiol 59:114–133

    Article  PubMed  CAS  Google Scholar 

  43. Lim KC, Lim ST, Federoff HJ (2003) Neurotrophin secretory pathways and synaptic plasticity. Neurobiol Aging 24:1135–1145

    Article  PubMed  CAS  Google Scholar 

  44. Cosker KE, Courchesne SL, Segal RA (2008) Action in the axon: generation and transport of signaling endosomes. Curr Opin Neurobiol 18:270–275

    Article  PubMed  CAS  Google Scholar 

  45. Howe CL, Valletta JS, Rusnak AS, Mobley WC (2001) NGF signaling from clathrin-coated vesicles: evidence that signaling endosomes serve as a platform for the Ras-MAPK pathway. Neuron 32:801–814

    Article  PubMed  CAS  Google Scholar 

  46. Wu C, Cui B, He L, Chen L, Mobley WC (2009) The coming of age of axonal neurotrophin signaling endosomes. J Proteomics 72:46–55

    Article  PubMed  CAS  Google Scholar 

  47. Ye H, Kuruvilla R, Zweifel LS, Ginty DD (2003) Evidence in support of signaling endosome-based retrograde survival of sympathetic neurons. Neuron 39:57–68

    Article  PubMed  CAS  Google Scholar 

  48. Brady ST (1993) Axonal dynamics and regeneration. In: Gorio A (ed) Neuroregeneration. Raven, New York City, pp 7–36

    Google Scholar 

  49. Ramon y Cajal S (1928) Degeneration and Regeneration in the Nervous System, 1992nd edn. Oxford University Press,), Oxford

    Google Scholar 

  50. Hirokawa N, Takemura R (2004) Molecular motors in neuronal development, intracellular transport and diseases. Curr Opin Neurobiol 14:564–573

    Article  PubMed  CAS  Google Scholar 

  51. Brady ST, Lasek RJ, Allen RD (1982) Fast axonal transport in extruded axoplasm from squid giant axon. Science 218:1129–1131

    Article  PubMed  CAS  Google Scholar 

  52. Brady ST, Lasek RJ, Allen RD, Yin H, Stossell T (1984) Gelsolin inhibition of fast axonal transport indicates a requirement for microfilaments. Nature 310:56–58

    Article  PubMed  CAS  Google Scholar 

  53. Brady ST, Lasek RJ, Allen RD (1985) Video microscopy of fast axonal transport in isolated axoplasm: A new model for study of molecular mechanisms. Cell Motil 5:81–101

    Article  PubMed  CAS  Google Scholar 

  54. Brady ST (1987) Fast axonal transport in isolated axoplasm from the squid giant axon. In: Smith RS, Bisby M (eds) Axonal transport, Volume 25. Alan R. Liss, New York City, pp 113–137

    Google Scholar 

  55. Brady ST (1985) A novel brain ATPase with properties expected for the fast axonal transport motor. Nature 317:73–75

    Article  PubMed  CAS  Google Scholar 

  56. Lasek RJ, Brady ST (1984) Adenylyl imidodiphosphate (AMPPNP), a nonhydrolyzable analogue of ATP, produces a stable intermediate in the motility cycle of fast axonal transport. Biol Bull 167:503

    Google Scholar 

  57. Lasek RJ, Brady ST (1985) Attachment of transported vesicles to microtubules in axoplasm is facilitated by AMP-PNP. Nature 316:645–647

    Article  PubMed  CAS  Google Scholar 

  58. Vale RD, Reese TS, Sheetz MP (1985) Identification of a novel force-generating protein, kinesin, involved in microtubule-based motility. Cell 42:39–50

    Article  PubMed  CAS  Google Scholar 

  59. Shpetner HS, Paschal BM, Vallee RB (1988) Characterization of the microtubule-activated ATPase of brain cytoplasmic dynein (MAP1C). J Cell Biol 107:1001–1009

    Article  PubMed  CAS  Google Scholar 

  60. Hirokawa N (1998) Kinesin and dynein superfamily proteins and the mechanism of organelle transport. Science 279:519–526

    Article  PubMed  CAS  Google Scholar 

  61. Vale RD (2003) The molecular motor toolbox for intracellular transport. Cell 112:467–480

    Article  PubMed  CAS  Google Scholar 

  62. Morfini G, Pigino G, Beffert U, Busciglio J, Brady ST (2002) Fast axonal transport misregulation and Alzheimer's disease. Neuromolecular Med 2:89–99

    Article  PubMed  CAS  Google Scholar 

  63. Puthanveettil SV, Monje FJ, Miniaci MC, Choi YB, Karl KA, Khandros E, Gawinowicz MA, Sheetz MP, Kandel ER (2008) A new component in synaptic plasticity: upregulation of kinesin in the neurons of the gill-withdrawal reflex. Cell 135:960–973

    Article  PubMed  CAS  Google Scholar 

  64. Hirokawa N, Takemura R (2003) Biochemical and molecular characterization of diseases linked to motor proteins. Trends Biochem Sci 28:558–565

    Article  PubMed  CAS  Google Scholar 

  65. Holzbaur EL (2004) Motor neurons rely on motor proteins. Trends Cell Biol 14:233–240

    Article  PubMed  CAS  Google Scholar 

  66. Puls I, Jonnakuty C, LaMonte BH, Holzbaur EL, Tokito M, Mann E, Floeter MK, Bidus K, Drayna D, Oh SJ et al (2003) Mutant dynactin in motor neuron disease. Nat Genet 33:455–456

    Article  PubMed  CAS  Google Scholar 

  67. Hafezparast M, Klocke R, Ruhrberg C, Marquardt A, Ahmad-Annuar A, Bowen S, Lalli G, Witherden AS, Hummerich H, Nicholson S et al (2003) Mutations in dynein link motor neuron degeneration to defects in retrograde transport. Science 300:808–812

    Article  PubMed  CAS  Google Scholar 

  68. Fichera M, Lo Giudice M, Falco M, Sturnio M, Amata S, Calabrese O, Bigoni S, Calzolari E, Neri M (2004) Evidence of kinesin heavy chain (KIF5A) involvement in pure hereditary spastic paraplegia. Neurology 63:1108–1110

    PubMed  CAS  Google Scholar 

  69. Reid E, Kloos M, Ashley-Koch A, Hughes L, Bevan S, Svenson IK, Graham FL, Gaskell PC, Dearlove A, Pericak-Vance MA et al (2002) A kinesin heavy chain (KIF5A) mutation in hereditary spastic paraplegia (SPG10). Am J Hum Genet 71:1189–1194

    Article  PubMed  CAS  Google Scholar 

  70. Chen XJ, Levedakou EN, Millen KJ, Wollmann RL, Soliven B, Popko B (2007) Proprioceptive sensory neuropathy in mice with a mutation in the cytoplasmic dynein heavy chain 1 gene. J Neurosci 27:14515–14524

    Article  PubMed  CAS  Google Scholar 

  71. Puls I, Oh SJ, Sumner CJ, Wallace KE, Floeter MK, Mann EA, Kennedy WR, Wendelschafer-Crabb G, Vortmeyer A, Powers R et al (2005) Distal spinal and bulbar muscular atrophy caused by dynactin mutation. Ann Neurol 57:687–694

    Article  PubMed  CAS  Google Scholar 

  72. Morfini G, Pigino G, Opalach K, Serulle Y, Moreira JE, Sugimori M, Llinas RR, Brady ST (2007) 1-Methyl-4-phenylpyridinium affects fast axonal transport by activation of caspase and protein kinase C. Proc Natl Acad Sci U S A 104:2442–2447

    Article  PubMed  CAS  Google Scholar 

  73. Li X, Bijur GN, Jope RS (2002) Glycogen synthase kinase-3beta, mood stabilizers, and neuroprotection. Bipolar Disord 4:137–144

    Article  PubMed  CAS  Google Scholar 

  74. Lin A (2003) Activation of the JNK signaling pathway: breaking the brake on apoptosis. Bioessays 25:17–24

    Article  PubMed  CAS  Google Scholar 

  75. Litchfield DW (2003) Protein kinase CK2: structure, regulation and role in cellular decisions of life and death. Biochem J 369:1–15

    Article  PubMed  CAS  Google Scholar 

  76. Weishaupt JH, Neusch C, Bahr M (2003) Cyclin-dependent kinase 5 (CDK5) and neuronal cell death. Cell Tissue Res 312:1–8

    PubMed  CAS  Google Scholar 

  77. Liu J, Lin A (2005) Role of JNK activation in apoptosis: a double-edged sword. Cell Res 15:36–42

    Article  PubMed  Google Scholar 

  78. Bode AM, Dong Z (2007) The functional contrariety of JNK. Mol Carcinog 46:591–598

    Article  PubMed  CAS  Google Scholar 

  79. Duncan JS, Litchfield DW (2008) Too much of a good thing: the role of protein kinase CK2 in tumorigenesis and prospects for therapeutic inhibition of CK2. Biochim Biophys Acta 1784:33–47

    PubMed  CAS  Google Scholar 

  80. Morfini G, Szebenyi G, Elluru R, Ratner N, Brady ST (2002) Glycogen synthase kinase 3 phosphorylates kinesin light chains and negatively regulates kinesin-based motility. EMBO J 23:281–293

    Article  Google Scholar 

  81. Pigino G, Morfini G, Mattson MP, Brady ST, Busciglio J (2003) Alzheimer's presenilin 1 mutations impair kinesin-based axonal transport. J Neurosci 23:4499–4508

    PubMed  CAS  Google Scholar 

  82. Binder LI, Guillozet-Bongaarts AL, Garcia-Sierra F, Berry RW (2005) Tau, tangles, and Alzheimer's disease. Biochim Biophys Acta 1739:216–223

    PubMed  CAS  Google Scholar 

  83. Lapointe NE, Morfini G, Pigino G, Gaisina IN, Kozikowski AP, Binder LI, Brady ST (2009) The amino terminus of tau inhibits kinesin-dependent axonal transport: implications for filament toxicity. J Neurosci Res 87:440–451

    Article  PubMed  CAS  Google Scholar 

  84. Pigino G, Morfini G, Atagi Y, Deshpande A, Yu C, Jungbauer L, LaDu M, Busciglio J, Brady ST (2009) Disruption of fast axonal transport is a pathogenic mechanism for intraneuronal amyloid beta. Proc Natl Acad Sci U S A 106:5907–5912

    Article  PubMed  Google Scholar 

  85. Moreno HH, Yu E, Pigino G, Hernandez I, Kim N, Moreira JE, Sugimori M, Llinas R (2009) Synaptic transmission block by presynaptic injection of oligomeric amyloid beta. Proc Natl Acad Sci U S A 106:5901–5906

    Article  PubMed  Google Scholar 

  86. Morfini G, Pigino G, Szebenyi G, You Y, Pollema S, Brady ST (2006) JNK mediates pathogenic effects of polyglutamine-expanded androgen receptor on fast axonal transport. Nat Neurosci 9:907–916

    Article  PubMed  CAS  Google Scholar 

  87. Morfini GA, You YM, Pollema SL, Kaminska A, Liu K, Yoshioka K, Bjorkblom B, Coffey ET, Bagnato C, Han D et al (2009) Pathogenic huntingtin inhibits fast axonal transport by activating JNK3 and phosphorylating kinesin. Nat Neurosci 12:864–871

    Article  PubMed  CAS  Google Scholar 

  88. Coffey ET, Smiciene G, Hongisto V, Cao J, Brecht S, Herdegen T, Courtney MJ (2002) c-Jun N-terminal protein kinase (JNK) 2/3 is specifically activated by stress, mediating c-Jun activation, in the presence of constitutive JNK1 activity in cerebellar neurons. J Neurosci 22:4335–4345

    PubMed  CAS  Google Scholar 

  89. Bove J, Prou D, Perier C, Przedborski S (2005) Toxin-induced models of Parkinson's disease. NeuroRx 2:484–494

    Article  PubMed  Google Scholar 

  90. Speciale SG (2002) MPTP: insights into parkinsonian neurodegeneration. Neurotoxicol Teratol 24:607–620

    Article  PubMed  CAS  Google Scholar 

  91. Turmel H, Hartmann A, Parain K, Douhou A, Srinivasan A, Agid Y, Hirsch EC (2001) Caspase-3 activation in 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP)-treated mice. Mov Disord 16:185–189

    Article  PubMed  CAS  Google Scholar 

  92. Kaul S, Kanthasamy A, Kitazawa M, Anantharam V, Kanthasamy AG (2003) Caspase-3 dependent proteolytic activation of protein kinase C delta mediates and regulates 1-methyl-4-phenylpyridinium (MPP+)-induced apoptotic cell death in dopaminergic cells: relevance to oxidative stress in dopaminergic degeneration. Eur J Neurosci 18:1387–1401

    Article  PubMed  Google Scholar 

  93. Serulle Y, Morfini G, Pigino G, Moreira JE, Sugimori M, Brady ST, Llinas RR (2007) 1-Methyl-4-phenylpyridinium induces synaptic dysfunction through a pathway involving caspase and PKC{delta} enzymatic activities. Proc Natl Acad Sci U S A 104:2437–2441

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from NINDS (NS23868) and MDA to S.B. and from the Huntington’s Disease Society of America and the ALS/CVS Therapy Alliance to G.M..

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott Brady.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brady, S., Morfini, G. A Perspective on Neuronal Cell Death Signaling and Neurodegeneration. Mol Neurobiol 42, 25–31 (2010). https://doi.org/10.1007/s12035-010-8128-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-010-8128-2

Keyword

Navigation