Skip to main content

Advertisement

Log in

Huntington’s Disease and Group I Metabotropic Glutamate Receptors

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Huntington’s disease (HD) is an autosomal dominant neurodegenerative disorder characterized by involuntary body movement, cognitive impairment and psychiatric disturbance. A polyglutamine expansion in the amino-terminal region of the huntingtin (htt) protein is the genetic cause of HD. Htt protein interacts with a wide variety of proteins, and htt mutation causes cell signaling alterations in various neurotransmitter systems, including dopaminergic, glutamatergic, and cannabinoid systems, as well as trophic factor systems. This review will overview recent findings concerning htt-promoted alterations in cell signaling that involve different neurotransmitters and trophic factor systems, especially involving mGluR1/5, as glutamate plays a crucial role in neuronal cell death. The neuronal cell death that takes place in the striatum and cortex of HD patients is the most important factor underlying HD progression. Metabotropic glutamate receptors (mGluR1 and mGluR5) have a very controversial role in neuronal cell death and it is not clear whether mGluR1/5 activation either protects or exacerbates neuronal death. Thus, understanding how mutant htt protein affects glutamatergic receptor signaling will be essential to further establish a role for glutamate receptors in HD and develop therapeutic strategies to treat HD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

Abbreviations

DHPG:

(S)-3,5-dihydroxylphenylglycine

AMPA:

Alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid

CNS:

Central nervous system

PLC:

Phospholipase C

ERK:

Extracellular signal-regulated kinase

MAPK:

Mitogen-activated protein kinase

GPCR:

G protein-coupled receptor

InsP:

Inositol phosphate

AD:

Alzheimer’s disease

HD:

Huntington’s disease

htt:

Huntingtin protein

IP3:

Inositol-1,4,5-triphosphate

mGluR:

Metabotropic glutamate receptor

NMDAR:

N-methyl-d-aspartate receptor

PKC:

Protein kinase C

PLCβ1:

Phospholipase Cβ1

PLD:

Phospholipase D

PLA2 :

Phospholipase A2

PI3K:

Phosphoinositide 3-kinase

PDK1:

Phosphoinositide-dependent kinase

PIKE:

PI3K enhancer

MSNs:

Medium-sized spiny neurons

PPE:

Preproenkephalin

DARPP-32:

Dopamine and cyclic AMP-regulated phosphoprotein, 32 kDa

GSK-3:

Glycogen synthase kinase-3

EC:

Endocannabinoid

BDNF:

Brain-derived neurotrophic factor

AEA:

Anandamide

2-AG:

2- arachidonoyl glycerol

TRPV1:

Transient receptor potential vanilloid 1

References

  1. Li SH, Li XJ (2004) Huntingtin-protein interactions and the pathogenesis of Huntington’s disease. Trends Genet 20:146–154

    Article  PubMed  CAS  Google Scholar 

  2. Young AB (2003) Huntingtin in health and disease. J Clin Invest 111:299–302

    CAS  PubMed  Google Scholar 

  3. Heathfield KW (1967) Huntington’s chorea. Investigation into the prevalence of this disease in the area covered by the North East Metropolitan Regional Hospital Board. Brain 90:203–232

    Article  CAS  PubMed  Google Scholar 

  4. Perez-De La Cruz V, Santamaria A (2007) Integrative hypothesis for Huntington’s disease: a brief review of experimental evidence. Physiol Res 56:513–526

    CAS  PubMed  Google Scholar 

  5. Huntington’s Disease Collaborative Research Group (1993) A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell 72:971–983

    Article  Google Scholar 

  6. Kremer B, Goldberg P, Andrew SE, Theilmann J, Telenius H, Zeisler J, Squitieri F, Lin B, Bassett A, Almqvist E (1994) A worldwide study of the Huntington’s disease mutation. The sensitivity and specificity of measuring CAG repeats. N Engl J Med 330:1401–1406

    Article  CAS  PubMed  Google Scholar 

  7. Dragatsis I, Dietrich P, Zeitlin S (2000) Expression of the Huntingtin-associated protein 1 gene in the developing and adult mouse. Neurosci Lett 282:37–40

    Article  CAS  PubMed  Google Scholar 

  8. Rigamonti D, Bauer JH, De-Fraja C, Conti L, Sipione S, Sciorati C, Clementi E, Hackam A, Hayden MR, Li Y, Cooper JK, Ross CA, Govoni S, Vincenz C, Cattaneo E (2000) Wild-type huntingtin protects from apoptosis upstream of caspase-3. J Neurosci 20:3705–3713

    CAS  PubMed  Google Scholar 

  9. Nasir J, Floresco SB, O’Kusky JR, Diewert VM, Richman JM, Zeisler J, Borowski A, Marth JD, Phillips AG, Hayden MR (1995) Targeted disruption of the Huntington’s disease gene results in embryonic lethality and behavioral and morphological changes in heterozygotes. Cell 81:811–823

    Article  CAS  PubMed  Google Scholar 

  10. Zeitlin S, Liu JP, Chapman DL, Papaioannou VE, Efstratiadis A (1995) Increased apoptosis and early embryonic lethality in mice nullizygous for the Huntington’s disease gene homologue. Nat Genet 11:155–163

    Article  CAS  PubMed  Google Scholar 

  11. Beal MF, Ferrante RJ, Swartz KJ, Kowall NW (1991) Chronic quinolinic acid lesions in rats closely resemble Huntington’s disease. J Neurosci 11:1649–1659

    CAS  PubMed  Google Scholar 

  12. Jarabek BR, Yasuda RP, Wolfe BB (2004) Regulation of proteins affecting NMDA receptor-induced excitotoxicity in a Huntington’s mouse model. Brain 127:505–516

    Article  PubMed  Google Scholar 

  13. Li JY, Plomann M, Brundin P (2003) Huntington’s disease: a synaptopathy? Trends Mol Med 9:414–420

    Article  CAS  PubMed  Google Scholar 

  14. Lim D, Fedrizzi L, Tartari M, Zuccato C, Cattaneo E, Brini M, Carafoli E (2008) Calcium homeostasis and mitochondrial dysfunction in striatal neurons of Huntington disease. J Biol Chem 283:5780–5789

    Article  CAS  PubMed  Google Scholar 

  15. Myers RH, Vonsattel JP, Stevens TJ, Cupples LA, Richardson EP, Martin JB, Bird ED (1988) Clinical and neuropathologic assessment of severity in Huntington’s disease. Neurology 38:341–347

    CAS  PubMed  Google Scholar 

  16. Bates G (2003) Huntingtin aggregation and toxicity in Huntington’s disease. Lancet 361:1642–1644

    Article  CAS  PubMed  Google Scholar 

  17. Arrasate M, Mitra S, Schweitzer ES, Segal MR, Finkbeiner S (2004) Inclusion body formation reduces levels of mutant huntingtin and the risk of neuronal death. Nature 431:805–810

    Article  CAS  PubMed  Google Scholar 

  18. Miller J, Arrasate M, Shaby BA, Mitra S, Masliah E, Finkbeiner S (2010) Quantitative relationships between huntingtin levels, polyglutamine length, inclusion body formation, and neuronal death provide novel insight into huntington’s disease molecular pathogenesis. J Neurosci 30:10541–10550

    Article  CAS  PubMed  Google Scholar 

  19. DiFiglia M (1990) Excitotoxic injury of the neostriatum: a model for Huntington’s disease. Trends Neurosci 13:286–289

    Article  CAS  PubMed  Google Scholar 

  20. Calabresi P, Centonze D, Pisani A, Bernardi G (1999) Metabotropic glutamate receptors and cell-type-specific vulnerability in the striatum: implication for ischemia and Huntington’s disease. Exp Neurol 158:97–108

    Article  CAS  PubMed  Google Scholar 

  21. Ferraguti F, Crepaldi L, Nicoletti F (2008) Metabotropic glutamate 1 receptor: current concepts and perspectives. Pharmacol Rev 60:536–581

    Article  CAS  PubMed  Google Scholar 

  22. Nakanishi S, Masu M (1994) Molecular diversity and functions of glutamate receptors. Annu Rev Biophys Biomol Struct 23:319–348

    Article  CAS  PubMed  Google Scholar 

  23. Dhami GK, Ferguson SS (2006) Regulation of metabotropic glutamate receptor signaling, desensitization and endocytosis. Pharmacol Ther 111:260–271

    Article  CAS  PubMed  Google Scholar 

  24. Olney JW (1994) New mechanisms of excitatory transmitter neurotoxicity. J Neural Transm Suppl 43:47–51

    CAS  PubMed  Google Scholar 

  25. Dingledine R, Borges K, Bowie D, Traynelis SF (1999) The glutamate receptor ion channels. Pharmacol Rev 51:7–61

    CAS  PubMed  Google Scholar 

  26. Pin JP, Galvez T, Prezeau L (2003) Evolution, structure, and activation mechanism of family 3/C G-protein-coupled receptors. Pharmacol Ther 98:325–354

    Article  CAS  PubMed  Google Scholar 

  27. Ribeiro FM, Paquet M, Cregan SP, Ferguson SS (2010) Group I metabotropic glutamate receptor signalling and its implication in neurological disease. CNS Neurol Disord Drug Targets

  28. Pin JP, Duvoisin R (1995) The metabotropic glutamate receptors: structure and functions. Neuropharmacology 34:1–26

    Article  CAS  PubMed  Google Scholar 

  29. Conn PJ, Pin JP (1997) Pharmacology and functions of metabotropic glutamate receptors. Annu Rev Pharmacol Toxicol 37:205–237

    Article  CAS  PubMed  Google Scholar 

  30. Ferraguti F, Shigemoto R (2006) Metabotropic glutamate receptors. Cell Tissue Res 326:483–504

    Article  CAS  PubMed  Google Scholar 

  31. Wieronska JM, Pilc A (2009) Metabotropic glutamate receptors in the tripartite synapse as a target for new psychotropic drugs. Neurochem Int 55:85–97

    Article  CAS  PubMed  Google Scholar 

  32. Schoepp DD (2001) Unveiling the functions of presynaptic metabotropic glutamate receptors in the central nervous system. J Pharmacol Exp Ther 299:12–20

    CAS  PubMed  Google Scholar 

  33. Shigemoto R, Nomura S, Ohishi H, Sugihara H, Nakanishi S, Mizuno N (1993) Immunohistochemical localization of a metabotropic glutamate receptor, mGluR5, in the rat brain. Neurosci Lett 163:53–57

    Article  CAS  PubMed  Google Scholar 

  34. Shigemoto R, Kinoshita A, Wada E, Nomura S, Ohishi H, Takada M, Flor PJ, Neki A, Abe T, Nakanishi S, Mizuno N (1997) Differential presynaptic localization of metabotropic glutamate receptor subtypes in the rat hippocampus. J Neurosci 17:7503–7522

    CAS  PubMed  Google Scholar 

  35. Baude A, Nusser Z, Roberts JD, Mulvihill E, McIlhinney RA, Somogyi P (1993) The metabotropic glutamate receptor (mGluR1 alpha) is concentrated at perisynaptic membrane of neuronal subpopulations as detected by immunogold reaction. Neuron 11:771–787

    Article  CAS  PubMed  Google Scholar 

  36. Park YK, Galik J, Ryu PD, Randic M (2004) Activation of presynaptic group I metabotropic glutamate receptors enhances glutamate release in the rat spinal cord substantia gelatinosa. Neurosci Lett 361:220–224

    Article  CAS  PubMed  Google Scholar 

  37. Abdul-Ghani MA, Valiante TA, Carlen PL, Pennefather PS (1996) Metabotropic glutamate receptors coupled to IP3 production mediate inhibition of IAHP in rat dentate granule neurons. J Neurophysiol 76:2691–2700

    CAS  PubMed  Google Scholar 

  38. Hermans E, Challiss RA (2001) Structural, signalling and regulatory properties of the group I metabotropic glutamate receptors: prototypic family C G-protein-coupled receptors. Biochem J 359:465–484

    Article  CAS  PubMed  Google Scholar 

  39. Chavis P, Fagni L, Lansman JB, Bockaert J (1996) Functional coupling between ryanodine receptors and L-type calcium channels in neurons. Nature 382:719–722

    Article  CAS  PubMed  Google Scholar 

  40. Fagni L, Chavis P, Ango F, Bockaert J (2000) Complex interactions between mGluRs, intracellular Ca2+ stores and ion channels in neurons. Trends Neurosci 23:80–88

    Article  CAS  PubMed  Google Scholar 

  41. Fagni L, Bossu JL, Bockaert J (1991) Activation of a large-conductance Ca2+-dependent K+ channel by stimulation of glutamate phosphoinositide-coupled receptors in cultured cerebellar granule cells. Eur J Neurosci 3:778–789

    Article  PubMed  Google Scholar 

  42. Sharon D, Vorobiov D, Dascal N (1997) Positive and negative coupling of the metabotropic glutamate receptors to a G protein-activated K+ channel, GIRK, in Xenopus oocytes. J Gen Physiol 109:477–490

    Article  CAS  PubMed  Google Scholar 

  43. Lu WY, Xiong ZG, Lei S, Orser BA, Dudek E, Browning MD, Macdonald JF (1999) G-protein-coupled receptors act via protein kinase C and Src to regulate NMDA receptors. Nat Neurosci 2:331–338

    Article  CAS  PubMed  Google Scholar 

  44. Tu JC, Xiao B, Naisbitt S, Yuan JP, Petralia RS, Brakeman P, Doan A, Aakalu VK, Lanahan AA, Sheng M, Worley PF (1999) Coupling of mGluR/Homer and PSD-95 complexes by the Shank family of postsynaptic density proteins. Neuron 23:583–592

    Article  CAS  PubMed  Google Scholar 

  45. Husi H, Ward MA, Choudhary JS, Blackstock WP, Grant SG (2000) Proteomic analysis of NMDA receptor–adhesion protein signaling complexes. Nat Neurosci 3:661–669

    Article  CAS  PubMed  Google Scholar 

  46. Mao L, Yang L, Tang Q, Samdani S, Zhang G, Wang JQ (2005) The scaffold protein Homer1b/c links metabotropic glutamate receptor 5 to extracellular signal-regulated protein kinase cascades in neurons. J Neurosci 25:2741–2752

    Article  CAS  PubMed  Google Scholar 

  47. Rong R, Ahn JY, Huang H, Nagata E, Kalman D, Kapp JA, Tu J, Worley PF, Snyder SH, Ye K (2003) PI3 kinase enhancer-Homer complex couples mGluRI to PI3 kinase, preventing neuronal apoptosis. Nat Neurosci 6:1153–1161

    Article  CAS  PubMed  Google Scholar 

  48. Hou L, Klann E (2004) Activation of the phosphoinositide 3-kinase-Akt-mammalian target of rapamycin signaling pathway is required for metabotropic glutamate receptor-dependent long-term depression. J Neurosci 24:6352–6361

    Article  CAS  PubMed  Google Scholar 

  49. Ribeiro FM, Paquet M, Ferreira LT, Cregan T, Swan P, Cregan SP, Ferguson SS (2010) Metabotropic glutamate receptor-mediated cell signaling pathways are altered in a mouse model of Huntington’s disease. J Neurosci 30:316–324

    Article  CAS  PubMed  Google Scholar 

  50. Harjes P, Wanker EE (2003) The hunt for huntingtin function: interaction partners tell many different stories. Trends Biochem Sci 28:425–433

    Article  CAS  PubMed  Google Scholar 

  51. Cha JH, Kosinski CM, Kerner JA, Alsdorf SA, Mangiarini L, Davies SW, Penney JB, Bates GP, Young AB (1998) Altered brain neurotransmitter receptors in transgenic mice expressing a portion of an abnormal human huntington disease gene. Proc Natl Acad Sci U S A 95:6480–6485

    Article  CAS  PubMed  Google Scholar 

  52. Wanker EE, Rovira C, Scherzinger E, Hasenbank R, Walter S, Tait D, Colicelli J, Lehrach H (1997) HIP-I: a huntingtin interacting protein isolated by the yeast two-hybrid system. Hum Mol Genet 6:487–495

    Article  CAS  PubMed  Google Scholar 

  53. Kalchman MA, Koide HB, McCutcheon K, Graham RK, Nichol K, Nishiyama K, Kazemi-Esfarjani P, Lynn FC, Wellington C, Metzler M, Goldberg YP, Kanazawa I, Gietz RD, Hayden MR (1997) HIP1, a human homologue of S. cerevisiae Sla2p, interacts with membrane-associated huntingtin in the brain. Nat Genet 16:44–53

    Article  CAS  PubMed  Google Scholar 

  54. Singaraja RR, Hadano S, Metzler M, Givan S, Wellington CL, Warby S, Yanai A, Gutekunst CA, Leavitt BR, Yi H, Fichter K, Gan L, McCutcheon K, Chopra V, Michel J, Hersch SM, Ikeda JE, Hayden MR (2002) HIP14, a novel ankyrin domain-containing protein, links huntingtin to intracellular trafficking and endocytosis. Hum Mol Genet 11:2815–2828

    Article  CAS  PubMed  Google Scholar 

  55. Cattaneo E, Rigamonti D, Goffredo D, Zuccato C, Squitieri F, Sipione S (2001) Loss of normal huntingtin function: new developments in Huntington’s disease research. Trends Neurosci 24:182–188

    Article  CAS  PubMed  Google Scholar 

  56. Anborgh PH, Godin C, Pampillo M, Dhami GK, Dale LB, Cregan SP, Truant R, Ferguson SS (2005) Inhibition of metabotropic glutamate receptor signaling by the huntingtin-binding protein optineurin. J Biol Chem 280:34840–34848

    Article  CAS  PubMed  Google Scholar 

  57. Cha JH (2007) Transcriptional signatures in Huntington’s disease. Prog Neurobiol 83:228–248

    Article  CAS  PubMed  Google Scholar 

  58. Augood SJ, Faull RL, Love DR, Emson PC (1996) Reduction in enkephalin and substance P messenger RNA in the striatum of early grade Huntington’s disease: a detailed cellular in situ hybridization study. Neuroscience 72:1023–1036

    Article  CAS  PubMed  Google Scholar 

  59. Menalled L, Zanjani H, MacKenzie L, Koppel A, Carpenter E, Zeitlin S, Chesselet MF (2000) Decrease in striatal enkephalin mRNA in mouse models of Huntington’s disease. Exp Neurol 162:328–342

    Article  CAS  PubMed  Google Scholar 

  60. Bibb JA, Yan Z, Svenningsson P, Snyder GL, Pieribone VA, Horiuchi A, Nairn AC, Messer A, Greengard P (2000) Severe deficiencies in dopamine signaling in presymptomatic Huntington’s disease mice. Proc Natl Acad Sci U S A 97:6809–6814

    Article  CAS  PubMed  Google Scholar 

  61. Augood SJ, Faull RL, Emson PC (1997) Dopamine D1 and D2 receptor gene expression in the striatum in Huntington’s disease. Ann Neurol 42:215–221

    Article  CAS  PubMed  Google Scholar 

  62. Tarditi A, Camurri A, Varani K, Borea PA, Woodman B, Bates G, Cattaneo E, Abbracchio MP (2006) Early and transient alteration of adenosine A2A receptor signaling in a mouse model of Huntington disease. Neurobiol Dis 23:44–53

    Article  CAS  PubMed  Google Scholar 

  63. Denovan-Wright EM, Robertson HA (2000) Cannabinoid receptor messenger RNA levels decrease in a subset of neurons of the lateral striatum, cortex and hippocampus of transgenic Huntington’s disease mice. Neuroscience 98:705–713

    Article  CAS  PubMed  Google Scholar 

  64. McCaw EA, Hu H, Gomez GT, Hebb AL, Kelly ME, Denovan-Wright EM (2004) Structure, expression and regulation of the cannabinoid receptor gene (CB1) in Huntington’s disease transgenic mice. Eur J Biochem 271:4909–4920

    Article  CAS  PubMed  Google Scholar 

  65. Chen N, Luo T, Wellington C, Metzler M, McCutcheon K, Hayden MR, Raymond LA (1999) Subtype-specific enhancement of NMDA receptor currents by mutant huntingtin. J Neurochem 72:1890–1898

    Article  CAS  PubMed  Google Scholar 

  66. Sun Y, Savanenin A, Reddy PH, Liu YF (2001) Polyglutamine-expanded huntingtin promotes sensitization of N-methyl-d-aspartate receptors via post-synaptic density 95. J Biol Chem 276:24713–24718

    Article  CAS  PubMed  Google Scholar 

  67. Panov AV, Gutekunst CA, Leavitt BR, Hayden MR, Burke JR, Strittmatter WJ, Greenamyre JT (2002) Early mitochondrial calcium defects in Huntington’s disease are a direct effect of polyglutamines. Nat Neurosci 5:731–736

    CAS  PubMed  Google Scholar 

  68. Choo YS, Johnson GV, MacDonald M, Detloff PJ, Lesort M (2004) Mutant huntingtin directly increases susceptibility of mitochondria to the calcium-induced permeability transition and cytochrome c release. Hum Mol Genet 13:1407–1420

    Article  CAS  PubMed  Google Scholar 

  69. Tang TS, Slow E, Lupu V, Stavrovskaya IG, Sugimori M, Llinas R, Kristal BS, Hayden MR, Bezprozvanny I (2005) Disturbed Ca2+ signaling and apoptosis of medium spiny neurons in Huntington’s disease. Proc Natl Acad Sci U S A 102:2602–2607

    Article  CAS  PubMed  Google Scholar 

  70. Tang TS, Tu H, Chan EY, Maximov A, Wang Z, Wellington CL, Hayden MR, Bezprozvanny I (2003) Huntingtin and huntingtin-associated protein 1 influence neuronal calcium signaling mediated by inositol-(1, 4, 5) triphosphate receptor type 1. Neuron 39:227–239

    Article  CAS  PubMed  Google Scholar 

  71. Gines S, Ivanova E, Seong IS, Saura CA, MacDonald ME (2003) Enhanced Akt signaling is an early pro-survival response that reflects N-methyl-d-aspartate receptor activation in Huntington’s disease knock-in striatal cells. J Biol Chem 278:50514–50522

    Article  CAS  PubMed  Google Scholar 

  72. Datta SR, Brunet A, Greenberg ME (1999) Cellular survival: a play in three Akts. Genes Dev 13:2905–2927

    Article  CAS  PubMed  Google Scholar 

  73. Kandel ES, Hay N (1999) The regulation and activities of the multifunctional serine/threonine kinase Akt/PKB. Exp Cell Res 253:210–229

    Article  CAS  PubMed  Google Scholar 

  74. Humbert S, Bryson EA, Cordelieres FP, Connors NC, Datta SR, Finkbeiner S, Greenberg ME, Saudou F (2002) The IGF-1/Akt pathway is neuroprotective in Huntington’s disease and involves Huntingtin phosphorylation by Akt. Dev Cell 2:831–837

    Article  CAS  PubMed  Google Scholar 

  75. Warby SC, Doty CN, Graham RK, Shively J, Singaraja RR, Hayden MR (2009) Phosphorylation of huntingtin reduces the accumulation of its nuclear fragments. Mol Cell Neurosci 40:121–127

    Article  CAS  PubMed  Google Scholar 

  76. Ries V, Henchcliffe C, Kareva T, Rzhetskaya M, Bland R, During MJ, Kholodilov N, Burke RE (2006) Oncoprotein Akt/PKB induces trophic effects in murine models of Parkinson’s disease. Proc Natl Acad Sci U S A 103:18757–18762

    Article  CAS  PubMed  Google Scholar 

  77. Hanger DP, Hughes K, Woodgett JR, Brion JP, Anderton BH (1992) Glycogen synthase kinase-3 induces Alzheimer’s disease-like phosphorylation of tau: generation of paired helical filament epitopes and neuronal localisation of the kinase. Neurosci Lett 147:58–62

    Article  CAS  PubMed  Google Scholar 

  78. Magrane J, Rosen KM, Smith RC, Walsh K, Gouras GK, Querfurth HW (2005) Intraneuronal beta-amyloid expression downregulates the Akt survival pathway and blunts the stress response. J Neurosci 25:10960–10969

    Article  CAS  PubMed  Google Scholar 

  79. Cyr M, Beaulieu JM, Laakso A, Sotnikova TD, Yao WD, Bohn LM, Gainetdinov RR, Caron MG (2003) Sustained elevation of extracellular dopamine causes motor dysfunction and selective degeneration of striatal GABAergic neurons. Proc Natl Acad Sci U S A 100:11035–11040

    Article  CAS  PubMed  Google Scholar 

  80. Cyr M, Sotnikova TD, Gainetdinov RR, Caron MG (2006) Dopamine enhances motor and neuropathological consequences of polyglutamine expanded huntingtin. FASEB J 20:2541–2543

    Article  CAS  PubMed  Google Scholar 

  81. Charvin D, Vanhoutte P, Pages C, Borrelli E, Caboche J (2005) Unraveling a role for dopamine in Huntington’s disease: the dual role of reactive oxygen species and D2 receptor stimulation. Proc Natl Acad Sci U S A 102:12218–12223

    Article  CAS  PubMed  Google Scholar 

  82. Benchoua A, Trioulier Y, Diguet E, Malgorn C, Gaillard MC, Dufour N, Elalouf JM, Krajewski S, Hantraye P, Deglon N, Brouillet E (2008) Dopamine determines the vulnerability of striatal neurons to the N-terminal fragment of mutant huntingtin through the regulation of mitochondrial complex II. Hum Mol Genet 17:1446–1456

    Article  CAS  PubMed  Google Scholar 

  83. Charvin D, Roze E, Perrin V, Deyts C, Betuing S, Pages C, Regulier E, Luthi-Carter R, Brouillet E, Deglon N, Caboche J (2008) Haloperidol protects striatal neurons from dysfunction induced by mutated huntingtin in vivo. Neurobiol Dis 29:22–29

    Article  CAS  PubMed  Google Scholar 

  84. Deyts C, Galan-Rodriguez B, Martin E, Bouveyron N, Roze E, Charvin D, Caboche J, Betuing S (2009) Dopamine D2 receptor stimulation potentiates PolyQ-Huntingtin-induced mouse striatal neuron dysfunctions via Rho/ROCK-II activation. PLoS One 4:e8287

    Article  PubMed  CAS  Google Scholar 

  85. Tang TS, Chen X, Liu J, Bezprozvanny I (2007) Dopaminergic signaling and striatal neurodegeneration in Huntington’s disease. J Neurosci 27:7899–7910

    Article  CAS  PubMed  Google Scholar 

  86. Paoletti P, Vila I, Rife M, Lizcano JM, Alberch J, Gines S (2008) Dopaminergic and glutamatergic signaling crosstalk in Huntington’s disease neurodegeneration: the role of p25/cyclin-dependent kinase 5. J Neurosci 28:10090–10101

    Article  CAS  PubMed  Google Scholar 

  87. Gaoni Y, Mechoulam R (1964) Isolation, structure and partial synthesis of an active constituent of hashish. J Am Chem Soc 86:1646–1647

    Article  CAS  Google Scholar 

  88. Matsuda LA, Lolait SJ, Brownstein MJ, Young AC, Bonner TI (1990) Structure of a cannabinoid receptor and functional expression of the cloned cDNA. Nature 346:561–564

    Article  CAS  PubMed  Google Scholar 

  89. Munro S, Thomas KL, bu-Shaar M (1993) Molecular characterization of a peripheral receptor for cannabinoids. Nature 365:61–65

    Article  CAS  PubMed  Google Scholar 

  90. Devane WA, Hanus L, Breuer A, Pertwee RG, Stevenson LA, Griffin G, Gibson D, Mandelbaum A, Etinger A, Mechoulam R (1992) Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science 258:1946–1949

    Article  CAS  PubMed  Google Scholar 

  91. Stella N, Schweitzer P, Piomelli D (1997) A second endogenous cannabinoid that modulates long-term potentiation. Nature 388:773–778

    Article  CAS  PubMed  Google Scholar 

  92. Wilson RI, Nicoll RA (2001) Endogenous cannabinoids mediate retrograde signalling at hippocampal synapses. Nature 410:588–592

    Article  CAS  PubMed  Google Scholar 

  93. Ameri A (1999) The effects of cannabinoids on the brain. Prog Neurobiol 58:315–348

    Article  CAS  PubMed  Google Scholar 

  94. Iversen L (2003) Cannabis and the brain. Brain 126:1252–1270

    Article  PubMed  Google Scholar 

  95. De Oliveira AL, Genro BP, Diehl F, Quillfeldt JA (2008) Differential role of the hippocampal endocannabinoid system in the memory consolidation and retrieval mechanisms. Neurobiol Learn Mem 90:1–9

    Article  CAS  Google Scholar 

  96. Kinsey SG, Long JZ, Cravatt BF, Lichtman AH (2010) Fatty acid amide hydrolase and monoacylglycerol lipase inhibitors produce anti-allodynic effects in mice through distinct cannabinoid receptor mechanisms. J Pain 11(12):1420–8

    Article  CAS  PubMed  Google Scholar 

  97. Starowicz K, Nigam S, Di Marzo V (2007) Biochemistry and pharmacology of endovanilloids. Pharmacol Ther 114:13–33

    Article  CAS  PubMed  Google Scholar 

  98. Micale V, Mazzola C, Drago F (2007) Endocannabinoids and neurodegenerative diseases. Pharmacol Res 56:382–392

    Article  CAS  PubMed  Google Scholar 

  99. Fride E, Mechoulam R (1993) Pharmacological activity of the cannabinoid receptor agonist, anandamide, a brain constituent. Eur J Pharmacol 231:313–314

    Article  CAS  PubMed  Google Scholar 

  100. Beltramo M, de Fonseca FR, Navarro M, Calignano A, Gorriti MA, Grammatikopoulos G, Sadile AG, Giuffrida A, Piomelli D (2000) Reversal of dopamine D(2) receptor responses by an anandamide transport inhibitor. J Neurosci 20:3401–3407

    CAS  PubMed  Google Scholar 

  101. Fernandez-Ruiz J (2009) The endocannabinoid system as a target for the treatment of motor dysfunction. Br J Pharmacol 156:1029–1040

    Article  CAS  PubMed  Google Scholar 

  102. Fernandez-Ruiz J, Hernandez M, Ramos JA (2010) Cannabinoid–dopamine interaction in the pathophysiology and treatment of CNS disorders. CNS Neurosci Ther 16:e72–e91

    Article  CAS  PubMed  Google Scholar 

  103. Glass M, Faull RL, Dragunow M (1993) Loss of cannabinoid receptors in the substantia nigra in Huntington’s disease. Neuroscience 56:523–527

    Article  CAS  PubMed  Google Scholar 

  104. Glass M, Dragunow M, Faull RL (2000) The pattern of neurodegeneration in Huntington’s disease: a comparative study of cannabinoid, dopamine, adenosine and GABA(A) receptor alterations in the human basal ganglia in Huntington’s disease. Neuroscience 97:505–519

    Article  CAS  PubMed  Google Scholar 

  105. Page KJ, Besret L, Jain M, Monaghan EM, Dunnett SB, Everitt BJ (2000) Effects of systemic 3-nitropropionic acid-induced lesions of the dorsal striatum on cannabinoid and mu-opioid receptor binding in the basal ganglia. Exp Brain Res 130:142–150

    Article  CAS  PubMed  Google Scholar 

  106. Lastres-Becker I, Gomez M, De MR, Ramos JA, Fernandez-Ruiz J (2002) Loss of cannabinoid CB(1) receptors in the basal ganglia in the late akinetic phase of rats with experimental Huntington’s disease. Neurotox Res 4:601–608

    Article  CAS  PubMed  Google Scholar 

  107. Naver B, Stub C, Moller M, Fenger K, Hansen AK, Hasholt L, Sorensen SA (2003) Molecular and behavioral analysis of the R6/1 Huntington’s disease transgenic mouse. Neuroscience 122:1049–1057

    Article  CAS  PubMed  Google Scholar 

  108. Dowie MJ, Bradshaw HB, Howard ML, Nicholson LF, Faull RL, Hannan AJ, Glass M (2009) Altered CB1 receptor and endocannabinoid levels precede motor symptom onset in a transgenic mouse model of Huntington’s disease. Neuroscience 163:456–465

    Article  CAS  PubMed  Google Scholar 

  109. Lastres-Becker I, Fezza F, Cebeira M, Bisogno T, Ramos JA, Milone A, Fernandez-Ruiz J, Di Marzo V (2001) Changes in endocannabinoid transmission in the basal ganglia in a rat model of Huntington’s disease. NeuroReport 12:2125–2129

    Article  CAS  PubMed  Google Scholar 

  110. Lastres-Becker I, De MR, De PL, Makriyannis A, Di Marzo V, Fernandez-Ruiz J (2003) Compounds acting at the endocannabinoid and/or endovanilloid systems reduce hyperkinesia in a rat model of Huntington’s disease. J Neurochem 84:1097–1109

    Article  CAS  PubMed  Google Scholar 

  111. Connor B, Dragunow M (1998) The role of neuronal growth factors in neurodegenerative disorders of the human brain. Brain Res Brain Res Rev 27:1–39

    Article  CAS  PubMed  Google Scholar 

  112. Gauthier LR, Charrin BC, Borrell-Pages M, Dompierre JP, Rangone H, Cordelieres FP, De MJ, MacDonald ME, Lessmann V, Humbert S, Saudou F (2004) Huntingtin controls neurotrophic support and survival of neurons by enhancing BDNF vesicular transport along microtubules. Cell 118:127–138

    Article  CAS  PubMed  Google Scholar 

  113. Zuccato C, Ciammola A, Rigamonti D, Leavitt BR, Goffredo D, Conti L, MacDonald ME, Friedlander RM, Silani V, Hayden MR, Timmusk T, Sipione S, Cattaneo E (2001) Loss of huntingtin-mediated BDNF gene transcription in Huntington’s disease. Science 293:493–498

    Article  CAS  PubMed  Google Scholar 

  114. Zuccato C, Tartari M, Crotti A, Goffredo D, Valenza M, Conti L, Cataudella T, Leavitt BR, Hayden MR, Timmusk T, Rigamonti D, Cattaneo E (2003) Huntingtin interacts with REST/NRSF to modulate the transcription of NRSE-controlled neuronal genes. Nat Genet 35:76–83

    Article  CAS  PubMed  Google Scholar 

  115. Perez-Navarro E, Canudas AM, Akerund P, Alberch J, Arenas E (2000) Brain-derived neurotrophic factor, neurotrophin-3, and neurotrophin-4/5 prevent the death of striatal projection neurons in a rodent model of Huntington’s disease. J Neurochem 75:2190–2199

    Article  CAS  PubMed  Google Scholar 

  116. Kells AP, Fong DM, Dragunow M, During MJ, Young D, Connor B (2004) AAV-mediated gene delivery of BDNF or GDNF is neuroprotective in a model of Huntington disease. Mol Ther 9:682–688

    Article  CAS  PubMed  Google Scholar 

  117. Ryu JK, Kim J, Cho SJ, Hatori K, Nagai A, Choi HB, Lee MC, McLarnon JG, Kim SU (2004) Proactive transplantation of human neural stem cells prevents degeneration of striatal neurons in a rat model of Huntington disease. Neurobiol Dis 16:68–77

    Article  CAS  PubMed  Google Scholar 

  118. Huang EJ, Reichardt LF (2001) Neurotrophins: roles in neuronal development and function. Annu Rev Neurosci 24:677–736

    Article  CAS  PubMed  Google Scholar 

  119. Almeida S, Laco M, Cunha-Oliveira T, Oliveira CR, Rego AC (2009) BDNF regulates BIM expression levels in 3-nitropropionic acid-treated cortical neurons. Neurobiol Dis 35:448–456

    Article  CAS  PubMed  Google Scholar 

  120. Simmons DA, Rex CS, Palmer L, Pandyarajan V, Fedulov V, Gall CM, Lynch G (2009) Up-regulating BDNF with an ampakine rescues synaptic plasticity and memory in Huntington’s disease knockin mice. Proc Natl Acad Sci U S A 106:4906–4911

    Article  CAS  PubMed  Google Scholar 

  121. Zeron MM, Hansson O, Chen N, Wellington CL, Leavitt BR, Brundin P, Hayden MR, Raymond LA (2002) Increased sensitivity to N-methyl-d-aspartate receptor-mediated excitotoxicity in a mouse model of Huntington’s disease. Neuron 33:849–860

    Article  CAS  PubMed  Google Scholar 

  122. Dong XX, Wang Y, Qin ZH (2009) Molecular mechanisms of excitotoxicity and their relevance to pathogenesis of neurodegenerative diseases. Acta Pharmacol Sin 30:379–387

    Article  CAS  PubMed  Google Scholar 

  123. Koller WC, Cersosimo MG (2004) Neuroprotection in Parkinson’s disease: an elusive goal. Curr Neurol Neurosci Rep 4:277–283

    Article  PubMed  Google Scholar 

  124. Rego AC, de Almeida LP (2005) Molecular targets and therapeutic strategies in Huntington’s disease. Curr Drug Targets CNS Neurol Disord 4:361–381

    Article  CAS  PubMed  Google Scholar 

  125. Yi JH, Hazell AS (2006) Excitotoxic mechanisms and the role of astrocytic glutamate transporters in traumatic brain injury. Neurochem Int 48:394–403

    Article  CAS  PubMed  Google Scholar 

  126. Corona JC, Romo LB, Tapia R (2007) Glutamate excitotoxicity and therapeutic targets for amyotrophic lateral sclerosis. Expert Opin Ther Targets 11:1415–1428

    Article  CAS  PubMed  Google Scholar 

  127. Hazell AS (2007) Excitotoxic mechanisms in stroke: an update of concepts and treatment strategies. Neurochem Int 50:941–953

    Article  CAS  PubMed  Google Scholar 

  128. Mamelak M (2007) Alzheimer’ s disease, oxidative stress and gammahydroxybutyrate. Neurobiol Aging 28:1340–1360

    Article  CAS  PubMed  Google Scholar 

  129. Turley KR, Toledo-Pereyra LH, Kothari RU (2005) Molecular mechanisms in the pathogenesis and treatment of acute ischemic stroke. J Invest Surg 18:207–218

    Article  PubMed  Google Scholar 

  130. Sims NR, Muyderman H (2010) Mitochondria, oxidative metabolism and cell death in stroke. Biochim Biophys Acta 1802(1):80–91

    CAS  PubMed  Google Scholar 

  131. Albin RL, Young AB, Penney JB, Handelin B, Balfour R, Anderson KD, Markel DS, Tourtellotte WW, Reiner A (1990) Abnormalities of striatal projection neurons and N-methyl-d-aspartate receptors in presymptomatic Huntington’s disease. N Engl J Med 322:1293–1298

    Article  CAS  PubMed  Google Scholar 

  132. Young AB, Greenamyre JT, Hollingsworth Z, Albin R, D’Amato C, Shoulson I, Penney JB (1988) NMDA receptor losses in putamen from patients with Huntington’s disease. Science 241:981–983

    Article  CAS  PubMed  Google Scholar 

  133. Beal MF, Kowall NW, Ellison DW, Mazurek MF, Swartz KJ, Martin JB (1986) Replication of the neurochemical characteristics of Huntington’s disease by quinolinic acid. Nature 321:168–171

    Article  CAS  PubMed  Google Scholar 

  134. Hantraye P, Riche D, Maziere M, Isacson O (1990) A primate model of Huntington’s disease: behavioral and anatomical studies of unilateral excitotoxic lesions of the caudate-putamen in the baboon. Exp Neurol 108:91–104

    Article  CAS  PubMed  Google Scholar 

  135. Zeron MM, Chen N, Moshaver A, Lee AT, Wellington CL, Hayden MR, Raymond LA (2001) Mutant huntingtin enhances excitotoxic cell death. Mol Cell Neurosci 17:41–53

    Article  CAS  PubMed  Google Scholar 

  136. Landwehrmeyer GB, Standaert DG, Testa CM, Penney JB Jr, Young AB (1995) NMDA receptor subunit mRNA expression by projection neurons and interneurons in rat striatum. J Neurosci 15:5297–5307

    CAS  PubMed  Google Scholar 

  137. Monyer H, Burnashev N, Laurie DJ, Sakmann B, Seeburg PH (1994) Developmental and regional expression in the rat brain and functional properties of four NMDA receptors. Neuron 12:529–540

    Article  CAS  PubMed  Google Scholar 

  138. Thompson CL, Drewery DL, Atkins HD, Stephenson FA, Chazot PL (2000) Immunohistochemical localization of N-methyl-d-aspartate receptor NR1, NR2A, NR2B and NR2C/D subunits in the adult mammalian cerebellum. Neurosci Lett 283:85–88

    Article  CAS  PubMed  Google Scholar 

  139. Gerber AM, Vallano ML (2006) Structural properties of the NMDA receptor and the design of neuroprotective therapies. Mini Rev Med Chem 6:805–815

    Article  CAS  PubMed  Google Scholar 

  140. Ikonomidou C, Turski L (2002) Why did NMDA receptor antagonists fail clinical trials for stroke and traumatic brain injury? Lancet Neurol 1:383–386

    Article  CAS  PubMed  Google Scholar 

  141. Schiefer J, Sprunken A, Puls C, Luesse HG, Milkereit A, Milkereit E, Johann V, Kosinski CM (2004) The metabotropic glutamate receptor 5 antagonist MPEP and the mGluR2 agonist LY379268 modify disease progression in a transgenic mouse model of Huntington’s disease. Brain Res 1019:246–254

    Article  CAS  PubMed  Google Scholar 

  142. Pellegrini-Giampietro DE, Peruginelli F, Meli E, Cozzi A, Albani-Torregrossa S, Pellicciari R, Moroni F (1999) Protection with metabotropic glutamate 1 receptor antagonists in models of ischemic neuronal death: time-course and mechanisms. Neuropharmacology 38:1607–1619

    Article  CAS  PubMed  Google Scholar 

  143. De VJ, Horvath E, Schreiber R (2001) Neuroprotective and behavioral effects of the selective metabotropic glutamate mGlu(1) receptor antagonist BAY 36-7620. Eur J Pharmacol 428:203–214

    Article  Google Scholar 

  144. Cozzi A, Meli E, Carla V, Pellicciari R, Moroni F, Pellegrini-Giampietro DE (2002) Metabotropic glutamate 1 (mGlu1) receptor antagonists enhance GABAergic neurotransmission: a mechanism for the attenuation of post-ischemic injury and epileptiform activity? Neuropharmacology 43:119–130

    Article  CAS  PubMed  Google Scholar 

  145. Meli E, Picca R, Attucci S, Cozzi A, Peruginelli F, Moroni F, Pellegrini-Giampietro DE (2002) Activation of mGlu1 but not mGlu5 metabotropic glutamate receptors contributes to postischemic neuronal injury in vitro and in vivo. Pharmacol Biochem Behav 73:439–446

    Article  CAS  PubMed  Google Scholar 

  146. Murotomi K, Takagi N, Takayanagi G, Ono M, Takeo S, Tanonaka K (2008) mGluR1 antagonist decreases tyrosine phosphorylation of NMDA receptor and attenuates infarct size after transient focal cerebral ischemia. J Neurochem 105:1625–1634

    Article  CAS  PubMed  Google Scholar 

  147. Ferraguti F, Pietra C, Valerio E, Corti C, Chiamulera C, Conquet F (1997) Evidence against a permissive role of the metabotropic glutamate receptor 1 in acute excitotoxicity. Neuroscience 79:1–5

    Article  CAS  PubMed  Google Scholar 

  148. Bruno V, Battaglia G, Copani A, Cespedes VM, Galindo MF, Cena V, Sanchez-Prieto J, Gasparini F, Kuhn R, Flor PJ, Nicoletti F (2001) An activity-dependent switch from facilitation to inhibition in the control of excitotoxicity by group I metabotropic glutamate receptors. Eur J Neurosci 13:1469–1478

    Article  CAS  PubMed  Google Scholar 

  149. Werner CG, Scartabelli T, Pancani T, Landucci E, Moroni F, Pellegrini-Giampietro DE (2007) Differential role of mGlu1 and mGlu5 receptors in rat hippocampal slice models of ischemic tolerance. Eur J Neurosci 25:3597–3604

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

S.S.G.F. holds a Tier I Canada Research Chair in Molecular Neurobiology and is a career investigator of the Heart and Stroke Foundation of Ontario. This work was supported by CIHR grant MA-15506 to S.S.G.F.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen S. G. Ferguson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ribeiro, F.M., Pires, R.G.W. & Ferguson, S.S.G. Huntington’s Disease and Group I Metabotropic Glutamate Receptors. Mol Neurobiol 43, 1–11 (2011). https://doi.org/10.1007/s12035-010-8153-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-010-8153-1

Keywords

Navigation