Skip to main content

Advertisement

Log in

Brain-Derived Neurotrophic Factor in Alzheimer’s Disease: Risk, Mechanisms, and Therapy

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Brain-derived neurotrophic factor (BDNF) has a neurotrophic support on neuron of central nervous system (CNS) and is a key molecule in the maintenance of synaptic plasticity and memory storage in hippocampus. However, changes of BDNF level and expression have been reported in the CNS as well as blood of Alzheimer’s disease (AD) patients in the last decade, which indicates a potential role of BDNF in the pathogenesis of AD. Therefore, this review aims to summarize the latest progress in the field of BDNF and its biological roles in AD pathogenesis. We will discuss the interaction between BDNF and amyloid beta (Aβ) peptide, the effect of BDNF on synaptic repair in AD, and the association between BDNF polymorphism and AD risk. The most important is, enlightening the detailed biological ability and complicated mechanisms of action of BDNF in the context of AD would provide a future BDNF-related remedy for AD, such as increment in the production or release of endogenous BDNF by some drugs or BDNF mimics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Bothwell M (2014) NGF, BDNF, NT3, and NT4. Handb Exp Pharmacol 220:3–15. doi:10.1007/978-3-642-45106-5_1

    Article  CAS  PubMed  Google Scholar 

  2. Lu B, Nagappan G, Guan X, Nathan PJ, Wren P (2013) BDNF-based synaptic repair as a disease-modifying strategy for neurodegenerative diseases. Nat Rev Neurosci 14(6):401–416

    Article  CAS  PubMed  Google Scholar 

  3. Lu B, Nagappan G, Lu Y (2014) BDNF and synaptic plasticity, cognitive function, and dysfunction. Handb Exp Pharmacol 220:223–250. doi:10.1007/978-3-642-45106-5_9

    Article  CAS  PubMed  Google Scholar 

  4. Lattanzio F, Carboni L, Carretta D, Rimondini R, Candeletti S, Romualdi P (2013) Human apolipoprotein E4 modulates the expression of Pin1, Sirtuin 1, and Presenilin 1 in brain regions of targeted replacement apoE mice. Neuroscience. doi:10.1016/j.neuroscience.2013.10.017

    PubMed  Google Scholar 

  5. Weinstein G, Beiser AS, Choi SH, Preis SR, Chen TC, Vorgas D, Au R, Pikula A, Wolf PA, Destefano AL, Vasan RS, Seshadri S (2013) Serum brain-derived neurotrophic factor and the risk for dementia: the Framingham Heart Study. JAMA Neurol. doi:10.1001/jamaneurol.2013.4781

    Google Scholar 

  6. Francis BM, Kim J, Barakat ME, Fraenkl S, Yucel YH, Peng S, Michalski B, Fahnestock M, McLaurin J, Mount HT (2012) Object recognition memory and BDNF expression are reduced in young TgCRND8 mice. Neurobiol Aging 33(3):555–563. doi:10.1016/j.neurobiolaging.2010.04.003

    Article  CAS  PubMed  Google Scholar 

  7. Peng S, Garzon DJ, Marchese M, Klein W, Ginsberg SD, Francis BM, Mount HT, Mufson EJ, Salehi A, Fahnestock M (2009) Decreased brain-derived neurotrophic factor depends on amyloid aggregation state in transgenic mouse models of Alzheimer’s disease. J Neurosci Off J Soc Neurosci 29(29):9321–9329. doi:10.1523/jneurosci. 4736-08.2009

    Article  CAS  Google Scholar 

  8. Nagata T, Kobayashi N, Shinagawa S, Yamada H, Kondo K, Nakayama K (2013) Plasma BDNF levels are correlated with aggressiveness in patients with amnestic mild cognitive impairment or Alzheimer disease. J Neural Transm (Vienna, Austria: 1996). doi:10.1007/s00702-013-1121-y

  9. Ventriglia M, Zanardini R, Bonomini C, Zanetti O, Volpe D, Pasqualetti P, Gennarelli M, Bocchio-Chiavetto L (2013) Serum brain-derived neurotrophic factor levels in different neurological diseases. BioMed Res Int 2013:901082. doi:10.1155/2013/901082

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Boiocchi C, Maggioli E, Zorzetto M, Sinforiani E, Cereda C, Ricevuti G, Cuccia M (2013) Brain-derived neurotrophic factor gene variants and Alzheimer disease: an association study in an Alzheimer disease Italian population. Rejuvenation Res 16(1):57–66. doi:10.1089/rej.2012.1381

    Article  CAS  PubMed  Google Scholar 

  11. Voineskos AN, Lerch JP, Felsky D, Shaikh S, Rajji TK, Miranda D, Lobaugh NJ, Mulsant BH, Pollock BG, Kennedy JL (2011) The brain-derived neurotrophic factor Val66Met polymorphism and prediction of neural risk for Alzheimer disease. Arch Gen Psychiatry 68(2):198–206. doi:10.1001/archgenpsychiatry.2010.194

    Article  PubMed  Google Scholar 

  12. Laske C, Stellos K, Hoffmann N, Stransky E, Straten G, Eschweiler GW, Leyhe T (2011) Higher BDNF serum levels predict slower cognitive decline in Alzheimer’s disease patients. Int J Neuropsychopharmacol Off Sci J Coll Int Neuropsychopharmacol (CINP) 14(3):399–404. doi:10.1017/s1461145710001008

    CAS  Google Scholar 

  13. Li QS, Yang W, Pan YF, Min J, Zhang Z, Gao HZ, Qi JS (2012) Brain-derived neurotrophic factor prevents against amyloid beta protein-induced impairment of hippocampal in vivo long-term potentiation in rats. Zhongguo ying yong sheng li xue za zhi = Zhongguo yingyong shenglixue zazhi = Chin J Appl Physiol 28(5):425–429

    CAS  Google Scholar 

  14. Rohe M, Synowitz M, Glass R, Paul SM, Nykjaer A, Willnow TE (2009) Brain-derived neurotrophic factor reduces amyloidogenic processing through control of SORLA gene expression. J Neurosci Off J Soc Neurosci 29(49):15472–15478. doi:10.1523/jneurosci. 3960-09.2009

    Article  CAS  Google Scholar 

  15. Bollen E, Vanmierlo T, Akkerman S, Wouters C, Steinbusch HM, Prickaerts J (2013) 7,8-Dihydroxyflavone improves memory consolidation processes in rats and mice. Behav Brain Res 257C:8–12. doi:10.1016/j.bbr.2013.09.029

    Article  CAS  Google Scholar 

  16. Murer MG, Boissiere F, Yan Q, Hunot S, Villares J, Faucheux B, Agid Y, Hirsch E, Raisman-Vozari R (1999) An immunohistochemical study of the distribution of brain-derived neurotrophic factor in the adult human brain, with particular reference to Alzheimer’s disease. Neuroscience 88(4):1015–1032

    Article  CAS  PubMed  Google Scholar 

  17. Murer MG, Yan Q, Raisman-Vozari R (2001) Brain-derived neurotrophic factor in the control human brain, and in Alzheimer’s disease and Parkinson’s disease. Prog Neurobiol 63(1):71–124

    Article  CAS  PubMed  Google Scholar 

  18. Fujimura H, Altar CA, Chen R, Nakamura T, Nakahashi T, Kambayashi J, Sun B, Tandon NN (2002) Brain-derived neurotrophic factor is stored in human platelets and released by agonist stimulation. Thromb Haemost 87(4):728–734

    CAS  PubMed  Google Scholar 

  19. Hochstrasser T, Ehrlich D, Sperner-Unterweger B, Humpel C (2013) Antidepressants and anti-inflammatory drugs differentially reduce the release of NGF and BDNF from rat platelets. Pharmacopsychiatry 46(1):29–34. doi:10.1055/s-0032-1314843

    CAS  PubMed  Google Scholar 

  20. Watanabe K, Hashimoto E, Ukai W, Ishii T, Yoshinaga T, Ono T, Tateno M, Watanabe I, Shirasaka T, Saito S, Saito T (2010) Effect of antidepressants on brain-derived neurotrophic factor (BDNF) release from platelets in the rats. Prog Neuro-Psychopharmacol Biol Psychiatry 34(8):1450–1454. doi:10.1016/j.pnpbp.2010.07.036

    Article  CAS  Google Scholar 

  21. Sandhya VK, Raju R, Verma R, Advani J, Sharma R, Radhakrishnan A, Nanjappa V, Narayana J, Somani BL, Mukherjee KK, Pandey A, Christopher R, Prasad TS (2013) A network map of BDNF/TRKB and BDNF/p75NTR signaling system. J Cell Commun Signal 7(4):301–307. doi:10.1007/s12079-013-0200-z

    Article  PubMed  PubMed Central  Google Scholar 

  22. Nagahara AH, Mateling M, Kovacs I, Wang L, Eggert S, Rockenstein E, Koo EH, Masliah E, Tuszynski MH (2013) Early BDNF treatment ameliorates cell loss in the entorhinal cortex of APP transgenic mice. J Neurosci Off J Soc Neurosci 33(39):15596–15602. doi:10.1523/jneurosci. 5195-12.2013

    Article  CAS  Google Scholar 

  23. Nagahara AH, Merrill DA, Coppola G, Tsukada S, Schroeder BE, Shaked GM, Wang L, Blesch A, Kim A, Conner JM, Rockenstein E, Chao MV, Koo EH, Geschwind D, Masliah E, Chiba AA, Tuszynski MH (2009) Neuroprotective effects of brain-derived neurotrophic factor in rodent and primate models of Alzheimer’s disease. Nat Med 15(3):331–337. doi:10.1038/nm.1912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Erickson KI, Prakash RS, Voss MW, Chaddock L, Heo S, McLaren M, Pence BD, Martin SA, Vieira VJ, Woods JA, McAuley E, Kramer AF (2010) Brain-derived neurotrophic factor is associated with age-related decline in hippocampal volume. J Neurosci Off J Soc Neurosci 30(15):5368–5375. doi:10.1523/jneurosci. 6251-09.2010

    Article  CAS  Google Scholar 

  25. Gezen-Ak D, Dursun E, Hanagasi H, Bilgic B, Lohman E, Araz OS, Atasoy I, Alaylioglu M, Onal B, Gurvit H, Yilmazer S (2013) BDNF, TNFalpha, HSP90, CFH, and IL-10 serum levels in patients with early or late onset Alzheimer’s disease or mild cognitive impairment. J Alzheimer’s Dis: JAD. doi:10.3233/jad-130497

    Google Scholar 

  26. Coelho FG, Vital TM, Stein AM, Arantes FJ, Rueda AV, Teodorov E, Santos-Galduroz RF (2013) Acute aerobic exercise increases brain derived neurotrophic factor levels in elderly with Alzheimer’s disease. J Alzheimer’s Dis JAD. doi:10.3233/jad-131073

    Google Scholar 

  27. Phillips HS, Hains JM, Armanini M, Laramee GR, Johnson SA, Winslow JW (1991) BDNF mRNA is decreased in the hippocampus of individuals with Alzheimer’s disease. Neuron 7(5):695–702

    Article  CAS  PubMed  Google Scholar 

  28. Connor B, Young D, Yan Q, Faull RL, Synek B, Dragunow M (1997) Brain-derived neurotrophic factor is reduced in Alzheimer’s disease. Brain Res Mol Brain Res 49(1–2):71–81

    Article  CAS  PubMed  Google Scholar 

  29. Ferrer I, Marin C, Rey MJ, Ribalta T, Goutan E, Blanco R, Tolosa E, Marti E (1999) BDNF and full-length and truncated TrkB expression in Alzheimer disease. Implications in therapeutic strategies. J Neuropathol Exp Neurol 58(7):729–739

    Article  CAS  PubMed  Google Scholar 

  30. Hock C, Heese K, Hulette C, Rosenberg C, Otten U (2000) Region-specific neurotrophin imbalances in Alzheimer disease: decreased levels of brain-derived neurotrophic factor and increased levels of nerve growth factor in hippocampus and cortical areas. Arch Neurol 57(6):846–851

    Article  CAS  PubMed  Google Scholar 

  31. Holsinger RM, Schnarr J, Henry P, Castelo VT, Fahnestock M (2000) Quantitation of BDNF mRNA in human parietal cortex by competitive reverse transcription-polymerase chain reaction: decreased levels in Alzheimer’s disease. Brain Res Mol Brain Res 76(2):347–354

    Article  CAS  PubMed  Google Scholar 

  32. Garzon D, Yu G, Fahnestock M (2002) A new brain-derived neurotrophic factor transcript and decrease in brain-derived neurotrophic factor transcripts 1, 2 and 3 in Alzheimer’s disease parietal cortex. J Neurochem 82(5):1058–1064

    Article  CAS  PubMed  Google Scholar 

  33. Peng S, Wuu J, Mufson EJ, Fahnestock M (2005) Precursor form of brain-derived neurotrophic factor and mature brain-derived neurotrophic factor are decreased in the pre-clinical stages of Alzheimer’s disease. J Neurochem 93(6):1412–1421. doi:10.1111/j.1471-4159.2005.03135.x

    Article  CAS  PubMed  Google Scholar 

  34. Narisawa-Saito M, Wakabayashi K, Tsuji S, Takahashi H, Nawa H (1996) Regional specificity of alterations in NGF, BDNF and NT-3 levels in Alzheimer’s disease. Neuroreport 7(18):2925–2928

    Article  CAS  PubMed  Google Scholar 

  35. Murray KD, Gall CM, Jones EG, Isackson PJ (1994) Differential regulation of brain-derived neurotrophic factor and type II calcium/calmodulin-dependent protein kinase messenger RNA expression in Alzheimer’s disease. Neuroscience 60(1):37–48

    Article  CAS  PubMed  Google Scholar 

  36. Fahnestock M, Garzon D, Holsinger RM, Michalski B (2002) Neurotrophic factors and Alzheimer’s disease: are we focusing on the wrong molecule? J Neural Transm Suppl 62:241–252

    Article  CAS  Google Scholar 

  37. Michalski B, Fahnestock M (2003) Pro-brain-derived neurotrophic factor is decreased in parietal cortex in Alzheimer’s disease. Brain Res Mol Brain Res 111(1–2):148–154

    Article  CAS  PubMed  Google Scholar 

  38. Meng C, He Z, Xing D (2013) Low-level laser therapy rescues dendrite atrophy via upregulating BDNF expression: implications for Alzheimer’s disease. J Neurosci Off J Soc Neurosci 33(33):13505–13517. doi:10.1523/jneurosci. 0918-13.2013

    Article  CAS  Google Scholar 

  39. Kim SE, Ko IG, Kim BK, Shin MS, Cho S, Kim CJ, Kim SH, Baek SS, Lee EK, Jee YS (2010) Treadmill exercise prevents aging-induced failure of memory through an increase in neurogenesis and suppression of apoptosis in rat hippocampus. Exp Gerontol 45(5):357–365. doi:10.1016/j.exger.2010.02.005

    Article  PubMed  Google Scholar 

  40. Naert G, Rivest S (2012) Age-related changes in synaptic markers and monocyte subsets link the cognitive decline of APPSwe/PS1 mice. Front Cell Neurosci 6

  41. Maioli S, Puerta E, Merino-Serrais P, Fusari L, Gil-Bea F, Rimondini R, Cedazo-Minguez A (2012) Combination of apolipoprotein E4 and high carbohydrate diet reduces hippocampal BDNF and arc levels and impairs memory in young mice. J Alzheimer’s Dis JAD 32(2):341–355. doi:10.3233/jad-2012-120697

    CAS  PubMed  Google Scholar 

  42. Li Q, Zhao HF, Zhang ZF, Liu ZG, Pei XR, Wang JB, Cai MY, Li Y (2009) Long-term administration of green tea catechins prevents age-related spatial learning and memory decline in C57BL/6 J mice by regulating hippocampal cyclic amp-response element binding protein signaling cascade. Neuroscience 159(4):1208–1215. doi:10.1016/j.neuroscience.2009.02.008

    Article  CAS  PubMed  Google Scholar 

  43. Schliebs R, Arendt T (2011) The cholinergic system in aging and neuronal degeneration. Behav Brain Res 221(2):555–563. doi:10.1016/j.bbr.2010.11.058

    Article  CAS  PubMed  Google Scholar 

  44. Durany N, Michel T, Kurt J, Cruz-Sanchez FF, Cervas-Navarro J, Riederer P (2000) Brain-derived neurotrophic factor and neurotrophin-3 levels in Alzheimer’s disease brains. Int J Dev Neurosci Off J Int Soc Dev Neurosci 18(8):807–813

    Article  CAS  Google Scholar 

  45. Burbach GJ, Hellweg R, Haas CA, Del Turco D, Deicke U, Abramowski D, Jucker M, Staufenbiel M, Deller T (2004) Induction of brain-derived neurotrophic factor in plaque-associated glial cells of aged APP23 transgenic mice. J Neurosci Off J Soc Neurosci 24(10):2421–2430. doi:10.1523/jneurosci. 5599-03.2004

    Article  CAS  Google Scholar 

  46. Reverte I, Klein AB, Ratner C, Domingo JL, Colomina MT (2012) Behavioral phenotype and BDNF differences related to apoE isoforms and sex in young transgenic mice. Exp Neurol 237(1):116–125. doi:10.1016/j.expneurol.2012.06.015

    Article  CAS  PubMed  Google Scholar 

  47. Kao PF, Banigan MG, Vanderburg CR, McKee AC, Polgar PR, Seshadri S, Delalle I (2012) Increased expression of TrkB and Capzb2 accompanies preserved cognitive status in early Alzheimer disease pathology. J Neuropathol Exp Neurol 71(7):654–664. doi:10.1097/NEN.0b013e31825d06b7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Laske C, Stransky E, Leyhe T, Eschweiler GW, Maetzler W, Wittorf A, Soekadar S, Richartz E, Koehler N, Bartels M, Buchkremer G, Schott K (2007) BDNF serum and CSF concentrations in Alzheimer’s disease, normal pressure hydrocephalus and healthy controls. J Psychiatr Res 41(5):387–394. doi:10.1016/j.jpsychires.2006.01.014

    Article  PubMed  Google Scholar 

  49. Li G, Peskind ER, Millard SP, Chi P, Sokal I, Yu CE, Bekris LM, Raskind MA, Galasko DR, Montine TJ (2009) Cerebrospinal fluid concentration of brain-derived neurotrophic factor and cognitive function in non-demented subjects. PLoS One 4(5):e5424. doi:10.1371/journal.pone.0005424

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Turana Y, Ranakusuma TA, Purba JS, Amir N, Ahmad SA, Machfoed MH, Handayani YS, Asmarinah WS (2014) Enhancing diagnostic accuracy of aMCI in the elderly: combination of olfactory test, pupillary response test, BDNF plasma level, and APOE genotype. Int J Alzheimers Dis 2014:912586. doi:10.1155/2014/912586

    PubMed  PubMed Central  Google Scholar 

  51. Platenik J, Fisar Z, Buchal R, Jirak R, Kitzlerova E, Zverova M, Raboch J (2013) GSK3beta, CREB, and BDNF in peripheral blood of patients with Alzheimer’s disease and depression. Prog Neuro-Psychopharmacol Biol Psychiatry. doi:10.1016/j.pnpbp.2013.12.001

    Google Scholar 

  52. Forlenza OV, Diniz BS, Teixeira AL, Ojopi EB, Talib LL, Mendonca VA, Izzo G, Gattaz WF (2010) Effect of brain-derived neurotrophic factor Val66Met polymorphism and serum levels on the progression of mild cognitive impairment. World J Biol Psychiatry Off J World Fed Soc Biol Psychiatry 11(6):774–780. doi:10.3109/15622971003797241

    Article  Google Scholar 

  53. Lee JG, Shin BS, You YS, Kim JE, Yoon SW, Jeon DW, Baek JH, Park SW, Kim YH (2009) Decreased serum brain-derived neurotrophic factor levels in elderly Korean with dementia. Psychiatry Investig 6(4):299–305. doi:10.4306/pi.2009.6.4.299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Leyhe T, Stransky E, Eschweiler GW, Buchkremer G, Laske C (2008) Increase of BDNF serum concentration during donepezil treatment of patients with early Alzheimer’s disease. Eur Arch Psychiatry Clin Neurosci 258(2):124–128. doi:10.1007/s00406-007-0764-9

    Article  CAS  PubMed  Google Scholar 

  55. Angelucci F, Spalletta G, di Iulio F, Ciaramella A, Salani F, Colantoni L, Varsi AE, Gianni W, Sancesario G, Caltagirone C, Bossu P (2010) Alzheimer’s disease (AD) and mild cognitive impairment (MCI) patients are characterized by increased BDNF serum levels. Curr Alzheimer Res 7(1):15–20

    Article  CAS  PubMed  Google Scholar 

  56. Laske C, Stransky E, Leyhe T, Eschweiler GW, Wittorf A, Richartz E, Bartels M, Buchkremer G, Schott K (2006) Stage-dependent BDNF serum concentrations in Alzheimer’s disease. J Neural Transm (Vienna, Austria 1996) 113(9):1217–1224. doi:10.1007/s00702-005-0397-y

    Article  CAS  Google Scholar 

  57. O’Bryant SE, Hobson VL, Hall JR, Barber RC, Zhang S, Johnson L, Diaz-Arrastia R (2011) Serum brain-derived neurotrophic factor levels are specifically associated with memory performance among Alzheimer’s disease cases. Dement Geriatr Cogn Disord 31(1):31–36. doi:10.1159/000321980

    Article  PubMed  CAS  Google Scholar 

  58. Nettiksimmons J, Simonsick EM, Harris T, Satterfield S, Rosano C, Yaffe K (2014) The associations between serum brain-derived neurotrophic factor, potential confounders, and cognitive decline: a longitudinal study. PLoS One 9(3):e91339. doi:10.1371/journal.pone.0091339

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. O’Bryant SE, Hobson V, Hall JR, Waring SC, Chan W, Massman P, Lacritz L, Cullum CM, Diaz-Arrastia R (2009) Brain-derived neurotrophic factor levels in Alzheimer’s disease. J Alzheimers Dis 17(2):337–341

    PubMed  PubMed Central  Google Scholar 

  60. Shimada H, Makizako H, Doi T, Yoshida D, Tsutsumimoto K, Anan Y, Uemura K, Lee S, Park H, Suzuki T (2014) A large, cross-sectional observational study of serum BDNF, cognitive function, and mild cognitive impairment in the elderly. Front Aging Neurosci 6

  61. Sonali N, Tripathi M, Sagar R, Vivekanandhan S (2013) Val66Met polymorphism and BDNF levels in Alzheimer’s disease patients in North Indian population. Int J Neurosci 123(6):409–416. doi:10.3109/00207454.2012.762515

    Article  CAS  PubMed  Google Scholar 

  62. Tardito D, Perez J, Tiraboschi E, Musazzi L, Racagni G, Popoli M (2006) Signaling pathways regulating gene expression, neuroplasticity, and neurotrophic mechanisms in the action of antidepressants: a critical overview. Pharmacol Rev 58(1):115–134. doi:10.1124/pr.58.1.7

    Article  CAS  PubMed  Google Scholar 

  63. Pluchino N, Russo M, Santoro AN, Litta P, Cela V, Genazzani AR (2013) Steroid hormones and BDNF. Neuroscience 239:271–279. doi:10.1016/j.neuroscience.2013.01.025

    Article  CAS  PubMed  Google Scholar 

  64. Lommatzsch M, Zingler D, Schuhbaeck K, Schloetcke K, Zingler C, Schuff-Werner P, Virchow JC (2005) The impact of age, weight and gender on BDNF levels in human platelets and plasma. Neurobiol Aging 26(1):115–123. doi:10.1016/j.neurobiolaging.2004.03.002

    Article  CAS  PubMed  Google Scholar 

  65. Klein AB, Williamson R, Santini MA, Clemmensen C, Ettrup A, Rios M, Knudsen GM, Aznar S (2011) Blood BDNF concentrations reflect brain-tissue BDNF levels across species. Int J Neuropsychopharmacol Off Sci J Coll Int Neuropsychopharmacol (CINP) 14(3):347–353. doi:10.1017/s1461145710000738

    CAS  Google Scholar 

  66. Hoppe JB, Coradini K, Frozza RL, Oliveira CM, Meneghetti AB, Bernardi A, Pires ES, Beck RC, Salbego CG (2013) Free and nanoencapsulated curcumin suppress beta-amyloid-induced cognitive impairments in rats: involvement of BDNF and Akt/GSK-3beta signaling pathway. Neurobiol Learn Mem 106:134–144. doi:10.1016/j.nlm.2013.08.001

    Article  CAS  PubMed  Google Scholar 

  67. Zussy C, Brureau A, Keller E, Marchal S, Blayo C, Delair B, Ixart G, Maurice T, Givalois L (2013) Alzheimer’s disease related markers, cellular toxicity and behavioral deficits induced six weeks after oligomeric amyloid-beta peptide injection in rats. PLoS One 8(1):e53117. doi:10.1371/journal.pone.0053117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Garzon DJ, Fahnestock M (2007) Oligomeric amyloid decreases basal levels of brain-derived neurotrophic factor (BDNF) mRNA via specific downregulation of BDNF transcripts IV and V in differentiated human neuroblastoma cells. J Neurosci Off J Soc Neurosci 27(10):2628–2635. doi:10.1523/jneurosci. 5053-06.2007

    Article  CAS  Google Scholar 

  69. Ciaramella A, Salani F, Bizzoni F, Orfei MD, Langella R, Angelucci F, Spalletta G, Taddei AR, Caltagirone C, Bossu P (2013) The stimulation of dendritic cells by amyloid beta 1–42 reduces BDNF production in Alzheimer’s disease patients. Brain Behav Immun 32:29–32. doi:10.1016/j.bbi.2013.04.001

    Article  CAS  PubMed  Google Scholar 

  70. Castello NA, Green KN, LaFerla FM (2012) Genetic knockdown of brain-derived neurotrophic factor in 3xTg-AD mice does not alter Abeta or tau pathology. PLoS One 7(8):e39566. doi:10.1371/journal.pone.0039566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Zuccato C, Cattaneo E (2009) Brain-derived neurotrophic factor in neurodegenerative diseases. Nat Rev Neurol 5(6):311–322

    Article  CAS  PubMed  Google Scholar 

  72. Moghbelinejad S, Nassiri-Asl M, Farivar TN, Abbasi E, Sheikhi M, Taghiloo M, Farsad F, Samimi A, Haji-Ali F (2013) Rutin activates the MAPK pathway and BDNF gene expression on beta-amyloid induced neurotoxicity in rats. Toxicol Lett. doi:10.1016/j.toxlet.2013.10.010

    PubMed  Google Scholar 

  73. Jimenez S, Torres M, Vizuete M, Sanchez-Varo R, Sanchez-Mejias E, Trujillo-Estrada L, Carmona-Cuenca I, Caballero C, Ruano D, Gutierrez A (2011) Age-dependent accumulation of soluble amyloid β (Aβ) oligomers reverses the neuroprotective effect of soluble amyloid precursor protein-α (sAPPα) by modulating phosphatidylinositol 3-kinase (PI3K)/Akt-GSK-3β pathway in Alzheimer mouse model. J Biol Chem 286(21):18414–18425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Liu R, Zhang TT, Zhou D, Bai XY, Zhou WL, Huang C, Song JK, Meng FR, Wu CX, Li L, Du GH (2013) Quercetin protects against the Abeta(25–35)-induced amnesic injury: involvement of inactivation of rage-mediated pathway and conservation of the NVU. Neuropharmacology 67:419–431. doi:10.1016/j.neuropharm.2012.11.018

    Article  CAS  PubMed  Google Scholar 

  75. Poon WW, Blurton-Jones M, Tu CH, Feinberg LM, Chabrier MA, Harris JW, Jeon NL, Cotman CW (2011) beta-Amyloid impairs axonal BDNF retrograde trafficking. Neurobiol Aging 32(5):821–833. doi:10.1016/j.neurobiolaging.2009.05.012

    Article  CAS  PubMed  Google Scholar 

  76. Ye X, Tai W, Zhang D (2012) The early events of Alzheimer’s disease pathology: from mitochondrial dysfunction to BDNF axonal transport deficits. Neurobiol Aging 33(6):1122, e1121-1122. e1110

    Article  PubMed  CAS  Google Scholar 

  77. Rantamaki T, Kemppainen S, Autio H, Staven S, Koivisto H, Kojima M, Antila H, Miettinen PO, Karkkainen E, Karpova N, Vesa L, Lindemann L, Hoener MC, Tanila H, Castren E (2013) The impact of Bdnf gene deficiency to the memory impairment and brain pathology of APPswe/PS1dE9 mouse model of Alzheimer’s disease. PLoS One 8(7):e68722. doi:10.1371/journal.pone.0068722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Gralle M, Botelho MG, Wouters FS (2009) Neuroprotective secreted amyloid precursor protein acts by disrupting amyloid precursor protein dimers. J Biol Chem 284(22):15016–15025. doi:10.1074/jbc.M808755200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Zhou JP, Feng ZG, Yuan BL, Yu SZ, Li Q, Qu HY, Sun MJ (2008) Transduced PTD-BDNF fusion protein protects against beta amyloid peptide-induced learning and memory deficits in mice. Brain Res 1191:12–19. doi:10.1016/j.brainres.2007.10.097

    Article  CAS  PubMed  Google Scholar 

  80. Shankar GM, Walsh DM (2009) Alzheimer’s disease: synaptic dysfunction and Abeta. Mol Neurodegener 4:48. doi:10.1186/1750-1326-4-48

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Selkoe DJ (2002) Alzheimer’s disease is a synaptic failure. Science 298(5594):789–791

    Article  CAS  PubMed  Google Scholar 

  82. Bittner T, Fuhrmann M, Burgold S, Ochs SM, Hoffmann N, Mitteregger G, Kretzschmar H, LaFerla FM, Herms J (2010) Multiple events lead to dendritic spine loss in triple transgenic Alzheimer’s disease mice. PLoS One 5(11):e15477. doi:10.1371/journal.pone.0015477

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Marchetti C, Marie H (2011) Hippocampal synaptic plasticity in Alzheimer’s disease: what have we learned so far from transgenic models? Rev Neurosci 22(4):373–402. doi:10.1515/rns.2011.035

    Article  CAS  PubMed  Google Scholar 

  84. Bosco P, Ferri R, Salluzzo MG, Castellano S, Signorelli M, Nicoletti F, Nuovo SD, Drago F, Caraci F (2013) Role of the transforming-growth-factor-beta1 gene in late-onset Alzheimer’s disease: implications for the treatment. Curr Gen 14(2):147–156. doi:10.2174/1389202911314020007

    Article  CAS  Google Scholar 

  85. Lin N, Pan XD, Chen AQ, Zhu YG, Wu M, Zhang J, Chen XC (2013) Tripchlorolide improves age-associated cognitive deficits by reversing hippocampal synaptic plasticity impairment and NMDA receptor dysfunction in SAMP8 mice. Behav Brain Res 258C:8–18. doi:10.1016/j.bbr.2013.10.010

    Google Scholar 

  86. Zeng Y, Zhao D, Xie CW (2010) Neurotrophins enhance CaMKII activity and rescue amyloid-beta-induced deficits in hippocampal synaptic plasticity. J Alzheimer’s Dis JAD 21(3):823–831. doi:10.3233/jad-2010-100264

    CAS  PubMed  Google Scholar 

  87. Zhao D, Watson JB, Xie CW (2004) Amyloid beta prevents activation of calcium/calmodulin-dependent protein kinase II and AMPA receptor phosphorylation during hippocampal long-term potentiation. J Neurophysiol 92(5):2853–2858. doi:10.1152/jn.00485.2004

    Article  CAS  PubMed  Google Scholar 

  88. Caccamo A, Maldonado MA, Bokov AF, Majumder S, Oddo S (2010) CBP gene transfer increases BDNF levels and ameliorates learning and memory deficits in a mouse model of Alzheimer’s disease. Proc Natl Acad Sci U S A 107(52):22687–22692. doi:10.1073/pnas.1012851108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Hiester BG, Galati DF, Salinas PC, Jones KR (2013) Neurotrophin and Wnt signaling cooperatively regulate dendritic spine formation. Mol Cell Neurosci 56:115–127. doi:10.1016/j.mcn.2013.04.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Lee PR, Cohen JE, Becker KG, Fields RD (2005) Gene expression in the conversion of early-phase to late-phase long-term potentiation. Ann N Y Acad Sci 1048:259–271. doi:10.1196/annals.1342.023

    Article  CAS  PubMed  Google Scholar 

  91. Monteggia LM, Barrot M, Powell CM, Berton O, Galanis V, Gemelli T, Meuth S, Nagy A, Greene RW, Nestler EJ (2004) Essential role of brain-derived neurotrophic factor in adult hippocampal function. Proc Natl Acad Sci U S A 101(29):10827–10832. doi:10.1073/pnas.0402141101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Ji Y, Lu Y, Yang F, Shen W, Tang TT, Feng L, Duan S, Lu B (2010) Acute and gradual increases in BDNF concentration elicit distinct signaling and functions in neurons. Nat Neurosci 13(3):302–309. doi:10.1038/nn.2505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Ninan I, Bath KG, Dagar K, Perez-Castro R, Plummer MR, Lee FS, Chao MV (2010) The BDNF Val66Met polymorphism impairs NMDA receptor-dependent synaptic plasticity in the hippocampus. J Neurosci Off J Soc Neurosci 30(26):8866–8870. doi:10.1523/jneurosci. 1405-10.2010

    Article  CAS  Google Scholar 

  94. Gomez-Palacio-Schjetnan A, Escobar ML (2013) Neurotrophins and synaptic plasticity. Curr Top Behav Neurosci 15:117–136. doi:10.1007/7854_2012_231

    Article  CAS  PubMed  Google Scholar 

  95. Huang R, Huang J, Cathcart H, Smith S, Poduslo SE (2007) Genetic variants in brain-derived neurotrophic factor associated with Alzheimer’s disease. J Med Genet 44(2):e66. doi:10.1136/jmg.2006.044883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Egan MF, Kojima M, Callicott JH, Goldberg TE, Kolachana BS, Bertolino A, Zaitsev E, Gold B, Goldman D, Dean M, Lu B, Weinberger DR (2003) The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell 112(2):257–269

    Article  CAS  PubMed  Google Scholar 

  97. Honea RA, Cruchaga C, Perea RD, Saykin AJ, Burns JM, Weinberger DR, Goate AM (2013) Characterizing the role of brain derived neurotrophic factor genetic variation in Alzheimer’s disease neurodegeneration. PLoS One 8(9):e76001. doi:10.1371/journal.pone.0076001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Yang X, Liu P, Sun J, Wang G, Zeng F, Yuan K, Liu J, Dong M, von Deneen KM, Qin W, Tian J (2012) Impact of brain-derived neurotrophic factor Val66Met polymorphism on cortical thickness and voxel-based morphometry in healthy Chinese young adults. PLoS One 7(6):e37777. doi:10.1371/journal.pone.0037777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Xu C, Wang Z, Fan M, Liu B, Song M, Zhen X, Jiang T (2010) Effects of BDNF Val66Met polymorphism on brain metabolism in Alzheimer’s disease. Neuroreport 21(12):802–807. doi:10.1097/WNR.0b013e32833ccaf4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Harris SE, Fox H, Wright AF, Hayward C, Starr JM, Whalley LJ, Deary IJ (2006) The brain-derived neurotrophic factor Val66Met polymorphism is associated with age-related change in reasoning skills. Mol Psychiatry 11(5):505–513. doi:10.1038/sj.mp.4001799

    Article  CAS  PubMed  Google Scholar 

  101. Lim YY, Villemagne VL, Laws SM, Ames D, Pietrzak RH, Ellis KA, Harrington KD, Bourgeat P, Salvado O, Darby D, Snyder PJ, Bush AI, Martins RN, Masters CL, Rowe CC, Nathan PJ, Maruff P (2013) BDNF Val66Met, Abeta amyloid, and cognitive decline in preclinical Alzheimer’s disease. Neurobiol Aging 34(11):2457–2464. doi:10.1016/j.neurobiolaging.2013.05.006

    Article  CAS  PubMed  Google Scholar 

  102. Nagata T, Shinagawa S, Nukariya K, Yamada H, Nakayama K (2012) Association between BDNF polymorphism (Val66Met) and executive function in patients with amnestic mild cognitive impairment or mild Alzheimer disease. Dement Geriatr Cogn Disord 33(4):266–272. doi:10.1159/000339358

    Article  CAS  PubMed  Google Scholar 

  103. Fukumoto N, Fujii T, Combarros O, Kamboh MI, Tsai SJ, Matsushita S, Nacmias B, Comings DE, Arboleda H, Ingelsson M, Hyman BT, Akatsu H, Grupe A, Nishimura AL, Zatz M, Mattila KM, Rinne J, Goto Y, Asada T, Nakamura S, Kunugi H (2010) Sexually dimorphic effect of the Val66Met polymorphism of BDNF on susceptibility to Alzheimer’s disease: new data and meta-analysis. Am J Med Genet B Neuropsychiatr Genet Off Publ Int Soc Psychiatr Genet 153B(1):235–242. doi:10.1002/ajmg.b.30986

    CAS  Google Scholar 

  104. Lin Y, Cheng S, Xie Z, Zhang D (2014) Association of rs6265 and rs2030324 polymorphisms in brain-derived neurotrophic factor gene with Alzheimer’s disease: a meta-analysis. PLoS One 9(4):e94961. doi:10.1371/journal.pone.0094961

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Kunugi H, Ueki A, Otsuka M, Isse K, Hirasawa H, Kato N, Nabika T, Kobayashi S, Nanko S (2001) A novel polymorphism of the brain-derived neurotrophic factor (BDNF) gene associated with late-onset Alzheimer’s disease. Mol Psychiatry 6(1):83–86

    Article  CAS  PubMed  Google Scholar 

  106. Riemenschneider M, Schwarz S, Wagenpfeil S, Diehl J, Muller U, Forstl H, Kurz A (2002) A polymorphism of the brain-derived neurotrophic factor (BDNF) is associated with Alzheimer’s disease in patients lacking the Apolipoprotein E epsilon4 allele. Mol Psychiatry 7(7):782–785. doi:10.1038/sj.mp.4001073

    Article  CAS  PubMed  Google Scholar 

  107. Chen J, Liang X, Li B, Jiang X, Xu Z (2013) Gender-related association of brain-derived neurotrophic factor gene 196A/G polymorphism with Alzheimer’s disease—a meta-analysis including 6854 cases and 6868 controls. Int J Neurosci. doi:10.3109/00207454.2013.869594

    Google Scholar 

  108. Cunha C, Angelucci A, D’Antoni A, Dobrossy MD, Dunnett SB, Berardi N, Brambilla R (2009) Brain-derived neurotrophic factor (BDNF) overexpression in the forebrain results in learning and memory impairments. Neurobiol Dis 33(3):358–368. doi:10.1016/j.nbd.2008.11.004

    Article  CAS  PubMed  Google Scholar 

  109. Geral C, Angelova A, Lesieur S (2013) From molecular to nanotechnology strategies for delivery of neurotrophins: emphasis on brain-derived neurotrophic factor (BDNF). Pharmaceutics 5(1):127–167. doi:10.3390/pharmaceutics5010127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Autio H, Matlik K, Rantamaki T, Lindemann L, Hoener MC, Chao M, Arumae U, Castren E (2011) Acetylcholinesterase inhibitors rapidly activate Trk neurotrophin receptors in the mouse hippocampus. Neuropharmacology 61(8):1291–1296. doi:10.1016/j.neuropharm.2011.07.033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Sakr HF, Khalil KI, Hussein AM, Zaki MS, Eid RA, Alkhateeb M (2014) Effect of dehydroepiandrosterone (DHEA) on memory and brain derived neurotrophic factor (BDNF) in a rat model of vascular dementia. J Physiol Pharmacol Off J Polish Physiol Soc 65(1):41–53

    CAS  Google Scholar 

  112. Diniz BS, Reynolds CF 3rd, Begley A, Dew MA, Anderson SJ, Lotrich F, Erickson KI, Lopez O, Aizenstein H, Sibille EL, Butters MA (2014) Brain-derived neurotrophic factor levels in late-life depression and comorbid mild cognitive impairment: a longitudinal study. J Psychiatr Res 49:96–101. doi:10.1016/j.jpsychires.2013.11.004

    Article  PubMed  Google Scholar 

  113. Fumagalli F, Racagni G, Riva MA (2006) The expanding role of BDNF: a therapeutic target for Alzheimer’s disease? Pharmacogenomics J 6(1):8–15. doi:10.1038/sj.tpj.6500337

    Article  CAS  PubMed  Google Scholar 

  114. Wu HM, Tzeng NS, Qian L, Wei SJ, Hu X, Chen SH, Rawls SM, Flood P, Hong JS, Lu RB (2009) Novel neuroprotective mechanisms of memantine: increase in neurotrophic factor release from astroglia and anti-inflammation by preventing microglial activation. Neuropsychopharmac Off Publ Am Coll Neuropsychopharmacol 34(10):2344–2357. doi:10.1038/npp.2009.64

    Article  CAS  Google Scholar 

  115. Calabrese F, Luoni A, Guidotti G, Racagni G, Fumagalli F, Riva MA (2013) Modulation of neuronal plasticity following chronic concomitant administration of the novel antipsychotic lurasidone with the mood stabilizer valproic acid. Psychopharmacology 226(1):101–112. doi:10.1007/s00213-012-2900-0

    Article  CAS  PubMed  Google Scholar 

  116. Martisova E, Aisa B, Guerenu G, Ramirez MJ (2013) Effects of early maternal separation on biobehavioral and neuropathological markers of Alzheimer’s disease in adult male rats. Curr Alzheimer Res 10(4):420–432

    Article  CAS  PubMed  Google Scholar 

  117. Forlenza OV, de Paula VJ, Machado-Vieira R, Diniz BS, Gattaz WF (2012) Does lithium prevent Alzheimer’s disease? Drugs Aging 29(5):335–342. doi:10.2165/11599180-000000000-00000

  118. Lilja AM, Luo Y, Yu QS, Rojdner J, Li Y, Marini AM, Marutle A, Nordberg A, Greig NH (2013) Neurotrophic and neuroprotective actions of (−)- and (+)-phenserine, candidate drugs for Alzheimer’s disease. PLoS One 8(1):e54887. doi:10.1371/journal.pone.0054887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Luo J, Zhang L, Ning N, Jiang H, Yu SY (2013) Neotrofin reverses the effects of chronic unpredictable mild stress on behavior via regulating BDNF, PSD-95 and synaptophysin expression in rat. Behav Brain Res 253:48–53. doi:10.1016/j.bbr.2013.07.014

    Article  CAS  PubMed  Google Scholar 

  120. Lee HE, Lee SY, Kim JS, Park SJ, Kim JM, Lee YW, Jung JM, Kim DH, Shin BY, Jang DS, Kang SS, Ryu JH (2013) Ethanolic extract of the seed of Zizyphus jujuba var. spinosa ameliorates cognitive impairment induced by cholinergic blockade in mice. Biomol Ther 21(4):299–306. doi:10.4062/biomolther.2013.043

    Article  CAS  Google Scholar 

  121. Zhao L, Wang J-L, Liu R, Li X-X, Li J-F, Zhang L (2013) Neuroprotective, anti-amyloidogenic and neurotrophic effects of apigenin in an Alzheimer’s disease mouse model. Molecules 18(8):9949–9965

    Article  CAS  PubMed  Google Scholar 

  122. Zhang L, Zhao H, Zhang X, Chen L, Zhao X, Bai X, Zhang J (2013) Nobiletin protects against cerebral ischemia via activating the p-Akt, p-CREB, BDNF and Bcl-2 pathway and ameliorating BBB permeability in rat. Brain Res Bull 96:45–53. doi:10.1016/j.brainresbull.2013.04.009

    Article  CAS  PubMed  Google Scholar 

  123. Liu JP, Feng L, Zhang MH, Ma DY, Wang SY, Gu J, Fu Q, Qu R, Ma SP (2013) Neuroprotective effect of Liuwei Dihuang decoction on cognition deficits of diabetic encephalopathy in streptozotocin-induced diabetic rat. J Ethnopharmacol 150(1):371–381. doi:10.1016/j.jep.2013.09.003

    Article  PubMed  Google Scholar 

  124. Zhang RY, Zhang L, Ai HX, Zhang L, Li L (2013) Effects of icariin on beta-amyloid and neurotrophic factors in brain of mitochondrial deficiency model rats. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China J Chin Mater Med 38(9):1285–1289

    Google Scholar 

  125. Zhang C, Cheng Y, Wang H, Wang C, Wilson SP, Xu J, Zhang HT (2014) RNA interference-mediated knockdown of long-form phosphodiesterase-4D (PDE4D) enzyme reverses amyloid-beta42-induced memory deficits in mice. J Alzheimer’s Dis JAD 38(2):269–280. doi:10.3233/jad-122236

    PubMed  Google Scholar 

  126. Cuadrado-Tejedor M, Hervias I, Ricobaraza A, Puerta E, Perez-Roldan JM, Garcia-Barroso C, Franco R, Aguirre N, Garcia-Osta A (2011) Sildenafil restores cognitive function without affecting beta-amyloid burden in a mouse model of Alzheimer’s disease. Br J Pharmacol 164(8):2029–2041. doi:10.1111/j.1476-5381.2011.01517.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Atif F, Yousuf S, Sayeed I, Ishrat T, Hua F, Stein DG (2013) Combination treatment with progesterone and vitamin D hormone is more effective than monotherapy in ischemic stroke: the role of BDNF/TrkB/Erk1/2 signaling in neuroprotection. Neuropharmacology 67:78–87. doi:10.1016/j.neuropharm.2012.10.004

    Article  CAS  PubMed  Google Scholar 

  128. Crupi R, Paterniti I, Campolo M, Di Paola R, Cuzzocrea S, Esposito E (2013) Exogenous T3 administration provides neuroprotection in a murine model of traumatic brain injury. Pharmacol Res Off J Italian Pharmacol Soc 70(1):80–89. doi:10.1016/j.phrs.2012.12.009

    CAS  Google Scholar 

  129. Dobarro M, Gerenu G, Ramirez MJ (2013) Propranolol reduces cognitive deficits, amyloid and tau pathology in Alzheimer’s transgenic mice. Int J Neuropsychopharmacol Off Sci J Coll Int Neuropsychopharmacol (CINP) 16(10):2245–2257. doi:10.1017/s1461145713000631

    CAS  Google Scholar 

  130. Doi Y, Takeuchi H, Horiuchi H, Hanyu T, Kawanokuchi J, Jin S, Parajuli B, Sonobe Y, Mizuno T, Suzumura A (2013) Fingolimod phosphate attenuates oligomeric amyloid beta-induced neurotoxicity via increased brain-derived neurotrophic factor expression in neurons. PLoS One 8(4):e61988. doi:10.1371/journal.pone.0061988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Zhang Z, Liu X, Schroeder JP, Chan CB, Song M, Yu SP, Weinshenker D, Ye K (2013) 7,8-Dihydroxyflavone prevents synaptic loss and memory deficits in a mouse model of Alzheimer’s disease. Neuropsychopharmacol Off Publ Am Coll Neuropsychopharmacol. doi:10.1038/npp.2013.243

    Google Scholar 

  132. Liang D-Y, Li X, Clark JD (2013) Epigenetic regulation of opioid-induced hyperalgesia, dependence, and tolerance in mice. J Pain 14(1):36–47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Vassoler FM, White SL, Schmidt HD, Sadri-Vakili G, Pierce RC (2012) Epigenetic inheritance of a cocaine-resistance phenotype. Nat Neurosci

  134. Perna MK, Brown RW (2013) Adolescent nicotine sensitization and effects of nicotine on accumbal dopamine release in a rodent model of increased dopamine D2 receptor sensitivity. Behav Brain Res 242:102–109. doi:10.1016/j.bbr.2012.12.037

    Article  CAS  PubMed  Google Scholar 

  135. Rossi C, Angelucci A, Costantin L, Braschi C, Mazzantini M, Babbini F, Fabbri ME, Tessarollo L, Maffei L, Berardi N, Caleo M (2006) Brain-derived neurotrophic factor (BDNF) is required for the enhancement of hippocampal neurogenesis following environmental enrichment. Eur J Neurosci 24(7):1850–1856. doi:10.1111/j.1460-9568.2006.05059.x

    Article  PubMed  Google Scholar 

  136. Hu YS, Long N, Pigino G, Brady ST, Lazarov O (2013) Molecular mechanisms of environmental enrichment: impairments in Akt/GSK3beta, neurotrophin-3 and CREB signaling. PLoS One 8(5):e64460. doi:10.1371/journal.pone.0064460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Alvarez-Lopez MJ, Castro-Freire M, Cosin-Tomas M, Sanchez-Roige S, Lalanza JF, Del Valle J, Parrizas M, Camins A, Pallas M, Escorihuela RM, Kaliman P (2013) Long-term exercise modulates hippocampal gene expression in senescent female mice. J Alzheimer’s Dis JAD 33(4):1177–1190. doi:10.3233/jad-121264

    CAS  PubMed  Google Scholar 

  138. Garcia-Mesa Y, Pareja-Galeano H, Bonet-Costa V, Revilla S, Gomez-Cabrera MC, Gambini J, Gimenez-Llort L, Cristofol R, Vina J, Sanfeliu C (2014) Physical exercise neuroprotects ovariectomized 3xTg-AD mice through BDNF mechanisms. Psychoneuroendocrinology 45:154–166. doi:10.1016/j.psyneuen.2014.03.021

    Article  CAS  PubMed  Google Scholar 

  139. Coelho FG, Gobbi S, Andreatto CA, Corazza DI, Pedroso RV, Santos-Galduroz RF (2013) Physical exercise modulates peripheral levels of brain-derived neurotrophic factor (BDNF): a systematic review of experimental studies in the elderly. Arch Gerontol Geriatr 56(1):10–15. doi:10.1016/j.archger.2012.06.003

    Article  CAS  PubMed  Google Scholar 

  140. Knaepen K, Goekint M, Heyman EM, Meeusen R (2010) Neuroplasticity—exercise-induced response of peripheral brain-derived neurotrophic factor: a systematic review of experimental studies in human subjects. Sports Med (Auckland, NZ) 40(9):765–801. doi:10.2165/11534530-000000000-00000

    Article  Google Scholar 

  141. Marlatt MW, Potter MC, Bayer TA, van Praag H, Lucassen PJ (2013) Prolonged running, not fluoxetine treatment, increases neurogenesis, but does not alter neuropathology, in the 3xTg mouse model of Alzheimer’s disease. Curr Top Behav Neurosci 15:313–340. doi:10.1007/7854_2012_237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Tomi M, Zhao Y, Thamotharan S, Shin BC, Devaskar SU (2013) Early life nutrient restriction impairs blood–brain metabolic profile and neurobehavior predisposing to Alzheimer’s disease with aging. Brain Res 1495:61–75. doi:10.1016/j.brainres.2012.11.050

    Article  CAS  PubMed  Google Scholar 

  143. Moy GA, McNay EC (2013) Caffeine prevents weight gain and cognitive impairment caused by a high-fat diet while elevating hippocampal BDNF. Physiol Behav 109:69–74. doi:10.1016/j.physbeh.2012.11.008

    Article  CAS  PubMed  Google Scholar 

  144. Sharma N, Castorena CM, Cartee GD (2012) Greater insulin sensitivity in calorie restricted rats occurs with unaltered circulating levels of several important myokines and cytokines. Nutr Metab 9(1):90. doi:10.1186/1743-7075-9-90

    Article  CAS  Google Scholar 

  145. Bus B, Molendijk M, Penninx B, Buitelaar J, Kenis G, Prickaerts J, Elzinga B, Voshaar R (2011) Determinants of serum brain-derived neurotrophic factor. Psychoneuroendocrinology 36(2):228–239

    Article  CAS  PubMed  Google Scholar 

  146. Hjorth E, Zhu M, Toro VC, Vedin I, Palmblad J, Cederholm T, Freund-Levi Y, Faxen-Irving G, Wahlund LO, Basun H, Eriksdotter M, Schultzberg M (2013) Omega-3 fatty acids enhance phagocytosis of Alzheimer’s disease-related amyloid-beta42 by human microglia and decrease inflammatory markers. J Alzheimer’s Dis JAD 35(4):697–713. doi:10.3233/jad-130131

    PubMed  Google Scholar 

  147. Cimini A, Gentile R, D’Angelo B, Benedetti E, Cristiano L, Avantaggiati ML, Giordano A, Ferri C, Desideri G (2013) Cocoa powder triggers neuroprotective and preventive effects in a human Alzheimer’s disease model by modulating BDNF signaling pathway. J Cell Biochem 114(10):2209–2220. doi:10.1002/jcb.24548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Blurton-Jones M, Kitazawa M, Martinez-Coria H, Castello NA, Muller FJ, Loring JF, Yamasaki TR, Poon WW, Green KN, LaFerla FM (2009) Neural stem cells improve cognition via BDNF in a transgenic model of Alzheimer disease. Proc Natl Acad Sci U S A 106(32):13594–13599. doi:10.1073/pnas.0901402106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Ben Menachem Zidon O, Ben Menahem Y, Ben Hur T, Yirmiya R (2013) Intra-hippocampal transplantation of neural precursor cells with transgenic over-expression of IL-1 receptor antagonist rescues memory and neurogenesis impairments in an Alzheimer’s disease model. Neuropsychopharmacol Off Publ Am Coll Neuropsychopharmacol 38(13):2736. doi:10.1038/npp.2013.253

    Article  Google Scholar 

  150. Nam M-H, Ahn KS, Choi S-H (2013) Acupuncture stimulation induces neurogenesis in adult brain. Int Rev Neurobiol 111:67

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Natural Science Foundation of China (81471309, 81171209, 81371406) and Shandong Provincial Natural Science Foundation, China (ZR2010HQ004, ZR2011HZ001).

Conflict of Interest

We declare that we have no conflict of interests.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jin-Tai Yu or Lan Tan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, JH., Yu, JT. & Tan, L. Brain-Derived Neurotrophic Factor in Alzheimer’s Disease: Risk, Mechanisms, and Therapy. Mol Neurobiol 52, 1477–1493 (2015). https://doi.org/10.1007/s12035-014-8958-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-014-8958-4

Keywords

Navigation