Skip to main content

Advertisement

Log in

Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) Enhances Hippocampal Synaptic Plasticity and Improves Memory Performance in Huntington’s Disease

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Deficits in hippocampal synaptic plasticity result in cognitive impairment in Huntington’s disease (HD). Pituitary adenylate cyclase-activating polypeptide (PACAP) is a neuropeptide that exerts neuroprotective actions, mainly through the PAC1 receptor. However, the role of PACAP in cognition is poorly understood, and no data exists in the context of Huntington’s disease (HD). Here, we investigated the ability of PACAP receptor stimulation to enhance memory development in HD. First, we observed a hippocampal decline of all three PACAP receptor expressions, i.e., PAC1, VPAC1, and VPAC2, in two different HD mouse models, R6/1 and HdhQ7/Q111, from the onset of cognitive dysfunction. In hippocampal post-mortem human samples, we found a specific decrease of PAC1, without changes in VPAC1 and VPAC2 receptors. To determine whether activation of PACAP receptors could contribute to improve memory performance, we conducted daily intranasal administration of PACAP38 to R6/1 mice at the onset of cognitive impairment for seven days. We found that PACAP treatment rescued PAC1 level in R6/1 mice, promoted expression of the hippocampal brain-derived neurotrophic factor, and reduced the formation of mutant huntingtin aggregates. Furthermore, PACAP administration counteracted R6/1 mice memory deficits as analyzed by the novel object recognition test and the T-maze spontaneous alternation task. Importantly, the effect of PACAP on cognitive performance was associated with an increase of VGlut-1 and PSD95 immunolabeling in hippocampus of R6/1 mice. Taken together, these results suggest that PACAP, acting through stimulation of PAC1 receptor, may have a therapeutic potential to counteract cognitive deficits induced in HD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. HDCRG (1993) A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes. The Huntington’s disease collaborative research group. Cell 72:971–983

    Article  Google Scholar 

  2. Lawrence AD, Sahakian BJ, Hodges JR, Rosser AE, Lange KW, Robbins TW (1996) Executive and mnemonic functions in early Huntington’s disease. Brain 119:1633–1645

    Article  Google Scholar 

  3. Vonsattel JP, DiFiglia M (1998) Huntington disease. J Neuropathol Exp Neurol 57:369–384

    Article  CAS  Google Scholar 

  4. Montoya A, Price BH, Menear M, Lepage M (2006) Brain imaging and cognitive dysfunctions in Huntington’s disease. J Psychiatry Neurosci 31:21–29

    PubMed  PubMed Central  Google Scholar 

  5. Stout JC, Paulsen JS, Queller S, Solomon AC, Whitlock KB, Campbell JC, Carlozzi N, Duff K et al (2011) Neurocognitive signs in prodromal Huntington disease. Neuropsychology 25:1–14

    Article  Google Scholar 

  6. Giralt A, Saavedra A, Alberch J, Pérez-Navarro E (2012) Cognitive dysfunction in Huntington’s disease: humans, mouse models and molecular mechanisms. J Huntingtons Dis 1:155–173

    PubMed  Google Scholar 

  7. Brooks SP, Jones L, Dunnett SB (2012) Comparative analysis of pathology and behavioural phenotypes in mouse models of Huntington’s disease. Brain Res Bull 88:81–93

    Article  Google Scholar 

  8. Brito V, Giralt A, Enriquez-Barreto L, Puigdellívol M, Suelves N, Zamora-Moratalla A, Ballesteros JJ, Martín ED et al (2014) Neurotrophin receptor p75NTR mediates Huntington’s disease-associated synaptic and memory dysfunction. J Clin Invest 124:4411–4428

    Article  CAS  Google Scholar 

  9. Sugars KL, Rubinsztein DC (2003) Transcriptional abnormalities in Huntington disease. Trends Genet 19:233–238

    Article  CAS  Google Scholar 

  10. Nithianantharajah J, Barkus C, Murphy M, Hannan AJ (2008) Gene–environment interactions modulating cognitive function and molecular correlates of synaptic plasticity in Huntington’s disease transgenic mice. Neurobiol Dis 29:490–504

    Article  CAS  Google Scholar 

  11. Usdin MT, Shelbourne PF, Myers RM, Madison DV (1999) Impaired synaptic plasticity in mice carrying the Huntington’s disease mutation. Hum Mol Genet 8:839–846

    Article  CAS  Google Scholar 

  12. Milnerwood AJ, Cummings DM, Dallerac GM, Brown JY, Vatsavayai SC, Hirst MC, Rezaie P, Murphy KP (2006) Early development of aberrant synaptic plasticity in a mouse model of Huntington’s disease. Hum Mol Genet 15:1690–1703

    Article  CAS  Google Scholar 

  13. Cha JH (2000) Transcriptional dysregulation in Huntington’s disease. Trends Neurosci 23:387–392

    Article  CAS  Google Scholar 

  14. Bowles KR, Brooks SP, Dunnett SB, Jones L (2012) Gene expression and behaviour in mouse models of HD. Brain Res Bull 88:276–284

    Article  CAS  Google Scholar 

  15. Sharma S, Taliyan R (2015) Transcriptional dysregulation in Huntington’s disease: the role of histone deacetylases. Pharmacol Res 100:157–169

    Article  CAS  Google Scholar 

  16. Giralt A, Puigdellívol M, Carretón O, Paoletti P, Valero J, Parra-damas A, Saura CA, Alberch J et al (2012) Long-term memory deficits in Huntington’s disease are associated with reduced CBP histone acetylase activity. Hum Mol Genet 21:1203–1216

    Article  CAS  Google Scholar 

  17. Lynch G, Kramar EA, Rex CS, Jia Y, Chappas D, Gall CM, Simmons DA (2007) Brain-derived neurotrophic factor restores synaptic plasticity in a knock-in mouse model of Huntington’s disease. J Neurosci 27:4424–4434

    Article  CAS  Google Scholar 

  18. Giralt A, Rodrigo T, Martín ED, Gonzalez JR, Milà M, Ceña V, Dierssen M, Canals JM et al (2009) Brain-derived neurotrophic factor modulates the severity of cognitive alterations induced by mutant huntingtin: involvement of phospholipaseCgamma activity and glutamate receptor expression. Neuroscience 158:1234–1250

    Article  CAS  Google Scholar 

  19. Arimura A, Somogyvari-Vigh A, Weill C, Fiore RC, Tatsuno I, Bay V, Brenneman DE (1994) PACAP functions as a neurotrophic factor. Ann N Y Acad Sci 739:228–243

    Article  CAS  Google Scholar 

  20. Hannibal J (2002) Pituitary adenylate cyclase-activating peptide in the rat central nervous system: an immunohistochemical and in situ hybridization study. J Comp Neurol 453:389–417

    Article  CAS  Google Scholar 

  21. Vaudry D, Falluel-Morel A, Bourgault S, Basille M, Burel D, Wurtz O, Fournier A, Chow BK et al (2009) Pituitary adenylate cyclase-activating polypeptide and its receptors: 20 years after the discovery. Pharmacol Rev 61:283–357

    Article  CAS  Google Scholar 

  22. Seaborn T, Masmoudi-Kouli O, Fournier A, Vaudry H, Vaudry D (2011) Protective effect of pituitary adenylate cyclase-activating polypeptide (PACAP) against apoptosis. Curr Pharm Des 17:204–214

    Article  CAS  Google Scholar 

  23. Reglodi D, Kiss P, Lubics A, Tamas A (2011) Review on the protective effects of PACAP in models of neurodegenerative diseases in vitro and in vivo. Curr Pharm Des 17:962–972

    Article  CAS  Google Scholar 

  24. Reglodi D, Renaud J, Tamas A, Tizabi Y, Socías SB, Del-Bel E, Raisman-Vozari R (2017) Novel tactics for neuroprotection in Parkinson’s disease: role of antibiotics, polyphenols and neuropeptides. Prog Neurobiol 155:120–148

    Article  CAS  Google Scholar 

  25. Vaudry D, Gonzalez BJ, Basille M, Pamantung TF, Fontaine M, Fournier A, Vaudry H (2000) The neuroprotective effect of pituitary adenylate cyclase-activating polypeptide on cerebellar granule cells is mediated through inhibition of the CED3-related cysteine protease caspase-3/CPP32. Proc Natl Acad Sci 97:13390–13395

    Article  CAS  Google Scholar 

  26. Botia B, Basille M, Allais A, Raoult E, Falluel-Morel A, Galas L, Jolivel V, Wurtz O et al (2007) Neurotrophic effects of PACAP in the cerebellar cortex. Peptides 28:1746–1752

    Article  CAS  Google Scholar 

  27. Vaudry D, Gonzalez BJ, Basille M, Anouar Y, Fournier A, Vaudry H (1998) Pituitary adenylate cyclase-activating polypeptide stimulates both c-fos gene expression and cell survival in rat cerebellar granule neurons through activation of the protein kinase A pathway. Neuroscience 84:801–812

    Article  CAS  Google Scholar 

  28. Aubert N, Falluel-Morel A, Vaudry D, Xifro X, Rodriguez-Alvarez J, Fisch C, de Jouffrey S, Lebigot JF et al (2006) PACAP and C2-ceramide generate different AP-1 complexes through a MAP-kinase-dependent pathway: involvement of c-Fos in PACAP-induced Bcl-2 expression. J Neurochem 99:1237–1250

    Article  CAS  Google Scholar 

  29. Falluel-Morel A, Aubert N, Vaudry D, Basille M, Fontaine M, Fournier A, Vaudry H, Gonzalez BJ (2004) Opposite regulation of the mitochondrial apoptotic pathway by C2-ceramide and PACAP through a MAP-kinase-dependent mechanism in cerebellar granule cells. J Neurochem 91:1231–1243

    Article  CAS  Google Scholar 

  30. Bhave SV, Hoffman PL (2004) Phosphatidylinositol 3′-OH kinase and protein kinase A pathways mediate the anti-apoptotic effect of pituitary adenylyl cyclase-activating polypeptide in cultured cerebellar granule neurons: modulation by ethanol. J Neurochem 88:359–369

    Article  CAS  Google Scholar 

  31. Ravni A, Vaudry D, Gerdin MJ, Eiden MV, Falluel-Morel A, Gonzalez BJ, Vaudry H, Eiden LE (2008) A cAMP-dependent, protein kinase A-independent signaling pathway mediating neuritogenesis through Egr1 in PC12 cells. Mol Pharmacol 73:1688–1708

    Article  CAS  Google Scholar 

  32. Ogata K, Shintani N, Hayata-Takano A, Kamo T, Higashi S, Seiriki K, Momosaki H, Vaudry D et al (2015) PACAP enhances axon outgrowth in cultured hippocampal neurons to a comparable extent as BDNF. PLoS One 10:e0120526

    Article  Google Scholar 

  33. Rat D, Schmitt U, Tippmann F, Dewachter I, Theunis C, Wieczerzak E, Postina R, van Leuven F et al (2011) Neuropeptidepituitaryadenylate cyclase-activating polypeptide (PACAP) slows down Alzheimer’s disease-like pathology in amyloid precursor protein-transgenic mice. FASEB J 25:3208–3218

    Article  CAS  Google Scholar 

  34. Han P, Liang W, Baxter LC, Yin J, Tang Z, Beach TG, Caselli RJ, Reiman EM et al (2014) Pituitary adenylate cyclase-activating polypeptide is reduced in Alzheimer disease. Neurology 82:1724–1728

    Article  CAS  Google Scholar 

  35. Wang G, Pan J, Tan Y, Sun X, Zhang Y, Zhou H et al (2008) Neuroprotective effects of PACAP27 in mice model of Parkinson’s disease involved in the modulation of K(ATP) subunits and D2 receptors in the striatum. Neuropeptides 42:267–276

    Article  CAS  Google Scholar 

  36. Tamas A, Lubics A, Lengvari I, Reglodi D (2006) Protective effects of PACAP in excitotoxic striatal lesion. Ann N Y Acad Sci 1070:570–574

    Article  CAS  Google Scholar 

  37. Mangiarini L, Sathasivam K, Seller M, Cozens B, Harper A, Hetherington C, Lawton M, Trottier Y et al (1996) Exon 1 of the HD gene with an expanded CAG repeat is sufficient to cause a progressive neurological phenotype in transgenic mice. Cell 87:493–506

    Article  CAS  Google Scholar 

  38. Wheeler VC, Auerbach W, White JK, Srinidhi J, Auerbach A, Ryan A, Duyao MP, Vrbanac V et al (1999) Length-dependent gametic CAG repeat instability in the Huntington’s disease knock-in mouse. Hum Mol Genet 8:1151–1122

    Article  Google Scholar 

  39. Anglada-Huguet M, Vidal-Sancho L, Giralt A, García-Díaz Barriga G, Xifró X, Alberch J (2016) Prostaglandin E2 EP2 activation reduces memory decline in R6/1 mouse model of Huntington’s disease by the induction of BDNF-dependent synaptic plasticity. Neurobiol Dis 95:22–34

    Article  CAS  Google Scholar 

  40. Jolivel V, Basille M, Aubert N, de Jouffrey S, Ancian P, Le Bigot JF, Noack P, Massonneau M et al (2009) Distribution and functional characterization of pituitary adenylate cyclase-activating polypeptide receptors in the brain of non-human primates. Neuroscience 160:434–451

    Article  CAS  Google Scholar 

  41. Bourgault S, Vaudry D, Dejda A, Doan ND, Vaudry H, Fournier A (2009) Pituitary adenylate cyclase-activating polypeptide: focus on structure–activity relationships of a neuroprotective peptide. Curr Med Chem 16:4462–4480

    Article  CAS  Google Scholar 

  42. Xifró X, García-Martínez JM, Del Toro D, Alberch J, Pérez-Navarro E (2008) Calcineurin is involved in the early activation of NMDA-mediated cell death in mutant huntingtin knock-in striatal cells. J Neurochem 105:1596–1612

    Article  Google Scholar 

  43. Xifró X, Giralt A, Saavedra A, García-Martínez JM, Díaz-Hernández M, Lucas JJ, Alberch J, Pérez-Navarro E (2009) Reduced calcineurin protein levels and activity in exon-1 mouse models of Huntington’s disease: role in excitotoxicity. Neurobiol Dis 36:461–469

    Article  Google Scholar 

  44. Anglada-Huguet M, Giralt A, Perez-Navarro E, Alberch J, Xifró X (2012) Activation of Elk-1 participates as a neuroprotective compensatory mechanism in models of Huntington’s disease. J Neurochem 121:639–648

    Article  CAS  Google Scholar 

  45. Giralt A, Carretón O, Lao-Peregrin C, Martín ED, Alberch J (2011) Conditional BDNF release under pathological conditions improves Huntington’s disease pathology by delaying neuronal dysfunction. Mol Neurodegener 6:71

    Article  CAS  Google Scholar 

  46. Anglada-Huguet M, Xifró X, Giralt A, Zamora-Moratalla A, Martín ED, Alberch J (2014) Prostaglandin E2 EP1 receptor antagonist improves motor deficits and rescues memory decline in R6/1 mouse model of Huntington’s disease. Mol Neurobiol 49:7847–7895

    Article  Google Scholar 

  47. Gorski JA, Zeiler SR, Tamowski S, Jones KR (2003) Brain-derived neurotrophic factor is required for the maintenance of cortical dendrites. J Neurosci 23:6856–6865

    Article  CAS  Google Scholar 

  48. Baydyuk M, Xu B (2012) BDNF in Huntington’s disease: role in pathogenesis and treatment. In: Tunali NE (ed) Huntington’s disease—core concepts and current advances, 1st edn. InTech, Rijeka (Croatia), pp. 495–506

    Google Scholar 

  49. Zuccato C, Valenza M, Cattaneo E (2010) Molecular mechanisms and potential therapeutical targets in Huntington’s disease. Physiol Rev 90:905–981

    Article  CAS  Google Scholar 

  50. Spires TL, Grote HE, Varshney NK, Cordery PM, van Dellen A, Blakemore C, Hannan AJ (2004) Environmental enrichment rescues protein deficits in a mouse model of Huntington’s disease, indicating a possible disease mechanism. J Neurosci 24:2270–2276

    Article  CAS  Google Scholar 

  51. Fahrenkrug J, Popovic N, Georg B, Brundin P, Hannibal J (2007) Decreased VIP and VPAC2 receptor expression in the biological clock of the R6/2 Huntington’s disease mouse. J Mol Neurosci 31:139–148

    CAS  PubMed  Google Scholar 

  52. Otto C, Martin M, Wolfer DP, Lipp HP, Maldonado R, Schütz G (2001) Altered emotional behavior in PACAP-type-I-receptor-deficient mice. Brain Res Mol Brain Res 92:78–84

    Article  CAS  Google Scholar 

  53. Roberto M, Brunelli M (2000) PACAP-38 enhances excitatory synaptic transmission in the rat hippocampal CA1 region. Learn Mem 7:303–311

    Article  CAS  Google Scholar 

  54. Han P, Caselli RJ, Baxter L, Serrano G, Yin J, Beach TG, Reiman EM, Shi J (2015) Association of pituitary adenylate cyclase-activating polypeptide with cognitive decline in mild cognitive impairment due to Alzheimer disease. JAMA Neurol 72:333–339

    Article  Google Scholar 

  55. Xu W (2011) PSD-95-like membrane associated guanylate kinases (PSD-MAGUKs) and synaptic plasticity. Curr Opin Neurobiol 21:306–312

    Article  CAS  Google Scholar 

  56. Hashimoto H, Hagihara N, Koga K, Yamamoto K, Shintani N, Tomimoto S, Mori W, Koyama Y et al (2000) Synergistic induction of pituitary adenylate cyclase-activating polypeptide (PACAP) gene expression by nerve growth factor and PACAP in PC12 cells. J Neurochem 74:501–507

    Article  CAS  Google Scholar 

  57. Guzowski JF (2002) Insights into immediate–early gene function in hippocampal memory consolidation using antisense oligonucleotide and fluorescent imaging approaches. Hippocampus 12:86–104

    Article  CAS  Google Scholar 

  58. Hardingham GE, Chawla S, Cruzalegui FH, Bading H (1999) Control of recruitment and transcription-activating function of CBP determines gene regulation by NMDA receptors and L-type calcium channels. Neuron 22:789–798

    Article  CAS  Google Scholar 

  59. Wood MA, Attner MA, Oliveira AM, Brindle PK, Abel T (2006) A transcription factor-binding domain of the coactivator CBP is essential for long-term memory and the expression of specific target genes. Learn Mem 13:609–617

    Article  CAS  Google Scholar 

  60. Altarejos JY, Montminy M (2011) CREB and the CRTC co-activators: sensors for hormonal and metabolic signals. Nat Rev Mol Cell Biol 12:141–151

    Article  CAS  Google Scholar 

  61. Korzus E, Rosenfeld MG, Mayford M (2004) CBP histone acetyltransferase activity is a critical component of memory consolidation. Neuron 42:961–972

    Article  CAS  Google Scholar 

  62. Vecsey CG, Hawk JD, Lattal KM, Stein JM, Fabian SA, Attner MA, Cabrera SM, McDonough CB et al (2007) Histone deacetylase inhibitors enhance memory and synaptic plasticity via CREB:CBP-dependent transcriptional activation. J Neurosci 27:6128–6140

    Article  CAS  Google Scholar 

  63. Oliveira JM, Chen S, Almeida S, Riley R, Gonçalves J, Oliveira CR, Hayden MR, Nicholls DG et al (2006) Mitochondrial-dependent Ca2+ handling in Huntington’s disease striatal cells: effect of histone deacetylase inhibitors. J Neurosci 26:11174–11186

    Article  CAS  Google Scholar 

  64. Giralt A, Saavedra A, Carretón O, Arumí H, Tyebji S, Alberch J, Pérez-Navarro E (2013) PDE10 inhibition increases GluA1 and CREB phosphorylation and improves spatial and recognition memories in a Huntington’s disease mouse model. Hippocampus 23:684–695

    Article  CAS  Google Scholar 

  65. Binder DK, Scharfman HE (2004) Brain-derived neurotrophic factor. Growth Factors 22:123–131

    Article  CAS  Google Scholar 

  66. Lu H, Park H, Poo MM (2013) Spike-timing-dependent BDNF secretion and synaptic plasticity. Philos Trans R Soc Lond Ser B Biol Sci 369:20130132

    Article  Google Scholar 

  67. Zuccato C, Cattaneo E (2007) Role of brain-derived neurotrophic factor in Huntington’s disease. Prog Neurobiol 81:294–330

    Article  CAS  Google Scholar 

  68. Canals JM, Pineda JR, Torres-Peraza JF, Bosch M, Martín-Ibañez R, Muñoz MT, Mengod G, Ernfors P et al (2004) Brain-derived neurotrophic factor regulates the onset and severity of motor dysfunction associated with enkephalinergic neuronal degeneration in Huntington’s disease. J Neurosci 24:7727–7739

    Article  CAS  Google Scholar 

  69. Simmons DA, Rex CS, Palmer L, Pandyarajan V, Fedulov V, Gall CM, Lynch G (2009) Up-regulating BDNF with an ampakine rescues synaptic plasticity and memory in Huntington’s disease knockin mice. Proc Natl Acad Sci U S A 106:4906–4911

    Article  CAS  Google Scholar 

  70. Yaka R, He DY, Phamluong K, Ron D (2003) Pituitary adenylate cyclase-activating polypeptide (PACAP(1-38)) enhances N-methyl-d-aspartate receptor function and brain-derived neurotrophic factor expression via RACK1. J Biol Chem 278:9630–9638

    Article  CAS  Google Scholar 

  71. Zink M, Otto C, Zörner B, Zacher C, Schütz G, Henn FA, Gass P (2004) Reduced expression of brain-derived neurotrophic factor in mice deficient for pituitary adenylate cyclase activating polypeptide type-I-receptor. Neurosci Lett 360:106–108

    Article  CAS  Google Scholar 

  72. Yamamoto A, Lucas JJ, Hen R (2000) Reversal of neuropathology and motor dysfunction in a conditional model of Huntington’s disease. Cell 101:57–66

    Article  CAS  Google Scholar 

  73. Chen X, Wu J, Lvovskaya S, Herndon E, Supnet C, Bezprozvanny I (2011) Dantrolene is neuroprotective in Huntington’s disease transgenic mouse model. Mol Neurodegener 6:81

    Article  Google Scholar 

  74. DiFiglia M, Sapp E, Chase KO, Davies SW, Bates GP, Vonsattel JP, Aronin N (1997) Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain. Science 277:1990–1993

    Article  CAS  Google Scholar 

  75. Hodgson JG, Agopyan N, Gutekunst CA, Leavitt BR, LePiane F, Singaraja R, Smith DJ, Bissada N et al (1999) A YAC mouse model for Huntington’s disease with full-length mutant huntingtin, cytoplasmic toxicity, and selective striatal neurodegeneration. Neuron 23:181–192

    Article  CAS  Google Scholar 

  76. Wellington CL, Leavitt BR, Hayden MR (2000) Huntington disease: new insights on the role of huntingtin cleavage. J Neural Transm Suppl 58:1–17

    Google Scholar 

  77. Waelter S, Boeddrich A, Lurz R, Scherzinger E, Lueder G, Lehrach H, Wanker EE (2001) Accumulation of mutant huntingtin fragments in aggresome-like inclusion bodies as a result of insufficient protein degradation. Mol Biol Cell 12:1393–1407

    Article  CAS  Google Scholar 

  78. Glickman MH, Ciechanover A (2002) The ubiquitin–proteasome proteolytic pathway: destruction for the sake of construction. Physiol Rev 82:373–428

    Article  CAS  Google Scholar 

  79. Wang G, Pan J, Tan YY, Sun XK, Zhang YF, Zhou HY, Ren RJ, Wang XJ et al (2008) Neuroprotective effects of PACAP27 in mice model of Parkinson’s disease involved in the modulation of K(ATP) subunits and D2 receptors in the striatum. Neuropeptides 42:267–276

    Article  CAS  Google Scholar 

  80. Zhang W, Smith A, Liu JP, Cheung NS, Zhou S, Liu K, Li QT, Duan W (2007) GSK3beta modulates PACAP-induced neuritogenesis in PC12 cells by acting downstream of Rap1 in a caveolae-dependent manner. Cell Signal 21:237–245

    Article  Google Scholar 

  81. Chiang MC, Chen HM, Lai HL, Chen HW, Chou SY, Chen CM, Tsai FJ, Chern Y (2009) The A2A adenosine receptor rescues the urea cycle deficiency of Huntington’s disease by enhancing the activity of the ubiquitin–proteasome system. Hum Mol Genet 18:2929–2942

    Article  CAS  Google Scholar 

  82. Li M, Maderdrut JL, Lertora JJ, Batuman V (2007) Intravenous infusion of pituitary adenylate cyclase-activating polypeptide (PACAP) in a patient with multiple myeloma and myeloma kidney: a case study. Peptides 28:1891–1895

    Article  CAS  Google Scholar 

  83. Born J, Lange T, Kern W, McGregor GP, Bickel U, Fehm HL (2002) Sniffing neuropeptides: a transnasal approach to the human brain. Nat Neurosci 5:514–516

    Article  CAS  Google Scholar 

  84. Doberer D, Gschwandtner M, Mosgoeller W, Bieglmayer C, Heinzl H, Petkov V (2007) Pulmonary and systemic effects of inhaled PACAP38 in healthy male subjects. Eur J Clin Investig 37:665–672

    Article  CAS  Google Scholar 

  85. Lamine A, Létourneau M, Doan ND, Maucotel J, Couvineau A, Vaudry H, Chatenet D, Vaudry D et al (2016) Characterizations of a synthetic pituitary adenylate cyclase-activating polypeptide analog displaying potent neuroprotective activity and reduced in vivo cardiovascular side effects in a Parkinson’s disease model. Neuropharmacology 108:440–450

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Ana Lopez and the staff of the animal care facility (Facultat de Medicina, Universitat de Barcelona) for their help. We are very grateful to Hubert Vaudry for his comments and language review.

Funding

Financial supports were obtained from the University of Girona (MPCUdG2016/036 to XX), Inserm (U1239 to DV), University of Rouen Normandy (to DV), Spanish Ministry of Economy and Competitiveness (MINECO) (SAF-2014-57160R, SAF-2017-88076-R and RETICS RD12/0019/0002 to JA), Fundació Marató TV3 to JA, Generalitat de Catalunya (2014SGR-968 to JA), and Instituto Carlos III to JA: Centro de Investigación Biomédica en Red sobre enfermedades neurodegenerativas (CIBERNED).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. Xifró.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cabezas-Llobet, N., Vidal-Sancho, L., Masana, M. et al. Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) Enhances Hippocampal Synaptic Plasticity and Improves Memory Performance in Huntington’s Disease. Mol Neurobiol 55, 8263–8277 (2018). https://doi.org/10.1007/s12035-018-0972-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-018-0972-5

Keywords

Navigation