Skip to main content
Log in

Synaptic Inhibition, Excitation, and Plasticity in Neurons of the Cerebellar Nuclei

  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

Neurons of the cerebellar nuclei generate the non-vestibular output of the cerebellum. Like other neurons, they integrate excitatory and inhibitory synaptic inputs and filter them through their intrinsic properties to produce patterns of action potential output. The synaptic and intrinsic features of cerebellar nuclear cells are unusual in several respects, however: these neurons receive an overwhelming amount of basal and driven inhibition from Purkinje neurons, but are also spontaneously active, producing action potentials even without excitation. Moreover, not only is spiking by nuclear cells sensitive to the amount of inhibition, but the strength of inhibition is also sensitive to the amount of spiking, through multiple forms of long-term plasticity. Here, we review the properties of synaptic excitation and inhibition, their short-term plasticity, and their influence on action potential firing of cerebellar nuclear neurons, as well as the interactions among excitation, inhibition, and spiking that produce long-term changes in synaptic strength. The data provide evidence that electrical and synaptic signaling in the cerebellar circuit is both plastic and resilient: the strength of IPSPs and EPSPs readily changes as the activity of cerebellar nuclear cells is modified. Notably, however, many of the identified forms of plasticity have an apparently homeostatic effect, responding to perturbations of input by restoring cerebellar output toward pre-perturbation values. Such forms of self-regulation appear consistent with the role of cerebellar output in coordinating movements. In contrast, other forms of plasticity in nuclear cells, including a long-term potentiation of excitatory postsynaptic currents (EPSCs) and excitation-driven increases in intrinsic excitability, are non-homeostatic, and instead appear suited to bring the circuit to a new set point. Interestingly, the combinations of inhibitory and excitatory stimuli that potentiate EPSCs resemble patterns of activity predicted to occur during eyelid conditioning, suggesting that this form long-term potentiation, perhaps amplified by intrinsic plasticity, may represent a cellular mechanism that is engaged during cerebellar learning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Chan-Palay V (1977) Cerebellar dentate nucleus. Organization, Cytology, and Transmitters. Springer, New York

    Google Scholar 

  2. Teune TM, van der Burg J, Ruigrok TJ (1995) Cerebellar projections to the red nucleus and inferior olive originate from separate populations of neurons in the rat: a non-fluorescent double labeling study. Brain Res 673(2):313–319

    Article  CAS  PubMed  Google Scholar 

  3. Teune TM, van der Burg J, van der Moer J, Voogd J, Ruigrok TJ (2000) Topography of cerebellar nuclear projections to the brain stem in the rat. Prog Brain Res 124:141–172

    Article  CAS  PubMed  Google Scholar 

  4. Fredette BJ, Mugnaini E (1991) The GABAergic cerebello-olivary projection in the rat. Anat Embryol (Berl) 184(3):225–243

    Article  CAS  Google Scholar 

  5. Medina JF, Nores WL, Mauk MD (2002) Inhibition of climbing fibres is a signal for the extinction of conditioned eyelid responses. Nature 416(6878):330–333

    Article  CAS  PubMed  Google Scholar 

  6. Jahnsen H (1986) Electrophysiological characteristics of neurones in the guinea-pig deep cerebellar nuclei in vitro. J Physiol 372:129–147

    CAS  PubMed  Google Scholar 

  7. Llinás R, Mühlethaler M (1988) Electrophysiology of guinea-pig cerebellar nuclear cells in the in vitro brain stem-cerebellar preparation. J Physiol 404:241–258

    PubMed  Google Scholar 

  8. Mouginot D, Gähwiler BH (1995) Characterization of synaptic connections between cortex and deep nuclei of the rat cerebellum in vitro. Neuroscience 64(3):699–712

    Article  CAS  PubMed  Google Scholar 

  9. Aizenman CD, Linden DJ (1999) Regulation of the rebound depolarization and spontaneous firing patterns of deep nuclear neurons in slices of rat cerebellum. J Neurophysiol 82(4):1697–1709

    CAS  PubMed  Google Scholar 

  10. Raman IM, Gustafson AE, Padgett DE (2000) Ionic currents and spontaneous firing in neurons isolated from the cerebellar nuclei. J Neurosci 20(24):9004–9016

    CAS  PubMed  Google Scholar 

  11. Gauck V, Jaeger D (2000) The control of rate and timing of spikes in the deep cerebellar nuclei by inhibition. J Neurosci 20(8):3006–3016

    CAS  PubMed  Google Scholar 

  12. Czubayko U, Sultan F, Thier P, Schwarz C (2001) Two types of neurons in the rat cerebellar nuclei as distinguished by membrane potentials and intracellular fillings. J Neurophysiol 85(5):2017–2029

    CAS  PubMed  Google Scholar 

  13. Monaghan PL, Beitz AJ, Larson AA, Altschuler RA, Madl JE, Mullett MA (1986) Immunocytochemical localization of glutamate-, glutaminase- and aspartate aminotransferase-like immunoreactivity in the rat deep cerebellar nuclei. Brain Res 363(2):364–370

    Article  CAS  PubMed  Google Scholar 

  14. Chen S, Hillman DE (1993) Colocalization of neurotransmitters in the deep cerebellar nuclei. J Neurocytol 22(2):81–91

    Article  CAS  PubMed  Google Scholar 

  15. Teune TM, van der Burg J, de Zeeuw CI, Voogd J, Ruigrok TJ (1998) Single Purkinje cell can innervate multiple classes of projection neurons in the cerebellar nuclei of the rat: a light microscopic and ultrastructural triple-tracer study in the rat. J Comp Neurol 392(2):164–178

    Article  CAS  PubMed  Google Scholar 

  16. Uusisaari M, Obata K, Knöpfel T (2007) Morphological and electrophysiological properties of GABAergic and non-GABAergic cells in the deep cerebellar nuclei. J Neurophysiol 97(1):901–911

    Article  CAS  PubMed  Google Scholar 

  17. Bagnall MW, Zingg B, Sakatos A, Moghadam S, Zeilhofer HU, du Lac S (2009) Glycinergic projection neurons of the cerebellum. J Neurosci 29(32):10104–10110

    Article  CAS  PubMed  Google Scholar 

  18. Palkovits M, Mezey E, Hamori J, Szentagothai J (1977) Quantitative histological analysis of the cerebellar nuclei in the cat. I. Numerical data on cells and on synapses. Exp Brain Res 28(1–2):189–209

    CAS  PubMed  Google Scholar 

  19. Häusser M, Clark BA (1997) Tonic synaptic inhibition modulates neuronal output pattern and spatiotemporal synaptic integration. Neuron 19(3):665–678

    Article  PubMed  Google Scholar 

  20. Raman IM, Bean BP (1997) Resurgent sodium current and action potential formation in dissociated cerebellar Purkinje neurons. J Neurosci 17(12):4517–4526

    CAS  PubMed  Google Scholar 

  21. Nam SC, Hockberger PE (1997) Analysis of spontaneous electrical activity in cerebellar Purkinje cells acutely isolated from postnatal rats. J Neurobiol 33(1):18–32

    Article  CAS  PubMed  Google Scholar 

  22. Thach WT (1968) Discharge of Purkinje and cerebellar nuclear neurons during rapidly alternating arm movements in the monkey. J Neurophysiol 31(5):785–797

    CAS  PubMed  Google Scholar 

  23. Latham A, Paul DH (1971) Spontaneous activity of cerebellar Purkinje cells and their responses to impulses in climbing fibres. J Physiol 213(1):135–156

    CAS  PubMed  Google Scholar 

  24. Khaliq ZM, Raman IM (2005) Axonal propagation of simple and complex spikes in cerebellar Purkinje neurons. J Neurosci 25(2):454–463

    Article  CAS  PubMed  Google Scholar 

  25. Monsivais P, Clark BA, Roth A, Häusser M (2005) Determinants of action potential propagation in cerebellar Purkinje cell axons. J Neurosci 25(2):464–472

    Article  CAS  PubMed  Google Scholar 

  26. van Kan PL, Gibson AR, Houk JC (1993) Movement-related inputs to intermediate cerebellum of the monkey. J Neurophysiol 69(1):74–94

    PubMed  Google Scholar 

  27. Armstrong DM, Edgley SA (1984) Discharges of nucleus interpositus neurones during locomotion in the cat. J Physiol 351:411–432

    CAS  PubMed  Google Scholar 

  28. McDevitt CJ, Ebner TJ, Bloedel JR (1987) Relationships between simultaneously recorded Purkinje cells and nuclear neurons. Brain Res 425(1):1–13

    Article  CAS  PubMed  Google Scholar 

  29. Lu B, Su Y, Das S, Liu J, Xia J, Ren D (2007) The neuronal channel NALCN contributes resting sodium permeability and is required for normal respiratory rhythm. Cell 129(2):371–383

    Article  CAS  PubMed  Google Scholar 

  30. Cody FW, Moore RB, Richardson HC (1981) Patterns of activity evoked in cerebellar interpositus nuclear neurones by natural somatosensory stimuli in awake cats. J Physiol 317:1–20

    CAS  PubMed  Google Scholar 

  31. Sánchez-Campusano R, Gruart A, Delgado-García JM (2007) The cerebellar interpositus nucleus and the dynamic control of learned motor responses. J Neurosci 27(25):6620–6632

    Article  PubMed  Google Scholar 

  32. Pugh JR, Raman IM (2006) Potentiation of mossy fiber EPSCs in the cerebellar nuclei by NMDA receptor activation followed by postinhibitory rebound current. Neuron 51(1):113–123

    Article  CAS  PubMed  Google Scholar 

  33. Audinat E, Gähwiler BH, Knöpfel T (1992) Excitatory synaptic potentials in neurons of the deep nuclei in olivo-cerebellar slice cultures. Neuroscience 49(4):903–911

    Article  CAS  PubMed  Google Scholar 

  34. Anchisi D, Scelfo B, Tempia F (2001) Postsynaptic currents in deep cerebellar nuclei. J Neurophysiol 85(1):323–331

    CAS  PubMed  Google Scholar 

  35. Akazawa C, Shigemoto R, Bessho Y, Nakanishi S, Mizuno N (1994) Differential expression of five N-methyl-D-aspartate receptor subunit mRNAs in the cerebellum of developing and adult rats. J Comp Neurol 347(1):150–160

    Article  CAS  PubMed  Google Scholar 

  36. Monyer H, Burnashev N, Laurie DJ, Sakmann B, Seeburg PH (1994) Developmental and regional expression in the rat brain and functional properties of four NMDA receptors. Neuron 12(3):529–540

    Article  CAS  PubMed  Google Scholar 

  37. Momiyama A, Feldmeyer D, Cull-Candy SG (1996) Identification of a native low-conductance NMDA channel with reduced sensitivity to Mg2+ in rat central neurones. J Physiol 494(Pt 2):479–492

    CAS  PubMed  Google Scholar 

  38. Pugh JR, Raman IM (2008) Mechanisms of potentiation of mossy fiber EPSCs in the cerebellar nuclei by coincident synaptic excitation and inhibition. J Neurosci 28(42):10549–10560

    Article  CAS  PubMed  Google Scholar 

  39. Telgkamp P, Raman IM (2002) Depression of inhibitory synaptic transmission between Purkinje cells and neurons of the cerebellar nuclei. J Neurosci 22(19):8447–8457

    CAS  PubMed  Google Scholar 

  40. Telgkamp P, Padgett DE, Ledoux V, Woolley CS, Raman IM (2004) Maintenance of high-frequency inhibitory transmission at Purkinje to cerebellar nuclear synapses by spillover from boutons with multiple release sites. Neuron 41:113–126

    Article  CAS  PubMed  Google Scholar 

  41. Pugh JR, Raman IM (2005) GABAA receptor kinetics in the cerebellar nuclei: evidence for detection of transmitter from distant release sites. Biophys J 88(3):1740–1754

    Article  CAS  PubMed  Google Scholar 

  42. Jahnsen H (1986) Extracellular activation and membrane conductances of neurones in the guinea-pig deep cerebellar nuclei in vitro. J Physiol 372:149–168

    CAS  PubMed  Google Scholar 

  43. Afshari FS, Ptak K, Khaliq ZM, Grieco TM, Slater NT, McCrimmon DR, Raman IM (2004) Resurgent Na currents in four classes of neurons of the cerebellum. J Neurophysiol 92(5):2831–2843

    Article  CAS  PubMed  Google Scholar 

  44. Aman TK, Raman IM (2007) Subunit dependence of Na channel slow inactivation and open channel block in cerebellar neurons. Biophys J 92(6):1938–1951

    Article  CAS  PubMed  Google Scholar 

  45. Zheng N, Raman IM (2009) Ca currents activated by spontaneous firing and synaptic disinhibition in neurons of the cerebellar nuclei. J Neurosci 29(31):9826–9838

    Article  CAS  PubMed  Google Scholar 

  46. Molineux ML, McRory JE, McKay BE, Hamid J, Mehaffey WH, Rehak R, Snutch TP, Zamponi GW, Turner RW (2006) Specific T-type calcium channel isoforms are associated with distinct burst phenotypes in deep cerebellar nuclear neurons. Proc Natl Acad Sci USA 103(14):5555–5560

    Article  CAS  PubMed  Google Scholar 

  47. Muri R, Knöpfel T (1994) Activity induced elevations of intracellular calcium concentration in neurons of the deep cerebellar nuclei. J Neurophysiol 71(1):420–428

    CAS  PubMed  Google Scholar 

  48. Gauck V, Thomann M, Jaeger D, Borst A (2001) Spatial distribution of low- and high-voltage-activated calcium currents in neurons of the deep cerebellar nuclei. J Neurosci 21(15):RC158

    CAS  PubMed  Google Scholar 

  49. Molineux ML, Mehaffey WH, Tadayonnejad R, Anderson D, Tennent AF, Turner RW (2008) Ionic factors governing rebound burst phenotype in rat deep cerebellar neurons. J Neurophysiol 100(5):2684–2701

    Article  PubMed  Google Scholar 

  50. Alviña K, Walter JT, Kohn A, Ellis-Davies G, Khodakhah K (2008) Questioning the role of rebound firing in the cerebellum. Nat Neurosci 11(11):1256–1258

    Article  PubMed  Google Scholar 

  51. Tadayonnejad R, Mehaffey WH, Anderson D, Turner RW (2009) Reliability of triggering postinhibitory rebound bursts in deep cerebellar neurons. Channels (Austin) 3(3):149–155

    CAS  Google Scholar 

  52. Morishita W, Sastry BR (1993) Long-term depression of IPSPs in rat deep cerebellar nuclei. Neuroreport 4(6):719–722

    Article  CAS  PubMed  Google Scholar 

  53. Aizenman CD, Manis PB, Linden DJ (1998) Polarity of long-term synaptic gain change is related to postsynaptic spike firing at a cerebellar inhibitory synapse. Neuron 21(4):827–835

    Article  CAS  PubMed  Google Scholar 

  54. Alviña K, Ellis-Davies G, Khodakhah K (2009) T-type calcium channels mediate rebound firing in intact deep cerebellar neurons. Neuroscience 158(2):635–641

    Article  PubMed  Google Scholar 

  55. Morishita W, Sastry BR (1995) Pharmacological characterization of pre- and postsynaptic GABAB receptors in the deep nuclei of rat cerebellar slices. Neuroscience 68(4):1127–1137

    Article  CAS  PubMed  Google Scholar 

  56. Ouardouz M, Sastry BR (2005) Activity-mediated shift in reversal potential of GABA-ergic synaptic currents in immature neurons. Brain Res Dev Brain Res 160(1):78–84

    Article  CAS  PubMed  Google Scholar 

  57. Rheims S, Holmgren CD, Chazal G, Mulder J, Harkany T, Zilberter T, Zilberter Y (2009) GABA action in immature neocortical neurons directly depends on the availability of ketone bodies. J Neurochem 110:1330–1338

    Article  CAS  PubMed  Google Scholar 

  58. Morishita W (1996) Sastry BR Postsynaptic mechanisms underlying long-term depression of GABAergic transmission in neurons of the deep cerebellar nuclei. J Neurophysiol 76(1):59–68

    CAS  PubMed  Google Scholar 

  59. Ouardouz M, Sastry BR (2000) Mechanisms underlying LTP of inhibitory synaptic transmission in the deep cerebellar nuclei. J Neurophysiol 84(3):1414–1421

    CAS  PubMed  Google Scholar 

  60. Alviña K, Khodakhah K (2008) Selective regulation of spontaneous activity of neurons of the deep cerebellar nuclei by N-type calcium channels in juvenile rats. J Physiol 586(10):2523–2538

    Article  PubMed  Google Scholar 

  61. Linden DJ, Connor JA (1993) Cellular mechanisms of long-term depression in the cerebellum. Curr Opin Neurobiol 3(3):401–406

    Article  CAS  PubMed  Google Scholar 

  62. Miles FA (1981) Lisberger SG Plasticity in the vestibulo-ocular reflex: a new hypothesis. Annu Rev Neurosci 4:273–299

    Article  CAS  PubMed  Google Scholar 

  63. Medina JF, Mauk MD (1999) Simulations of cerebellar motor learning: computational analysis of plasticity at the mossy fiber to deep nucleus synapse. J Neurosci 19(16):7140–7151

    CAS  PubMed  Google Scholar 

  64. Pugh JR, Raman IM (2009) Nothing can be coincidence: synaptic inhibition and plasticity in the cerebellar nuclei. Trends Neurosci 32(3):170–177

    Article  CAS  PubMed  Google Scholar 

  65. Zhang W, Linden DJ (2006) Long-term depression at the mossy fiber-deep cerebellar nucleus synapse. J Neurosci 26(26):6935–6944

    Article  CAS  PubMed  Google Scholar 

  66. Nelson AB, Krispel CM, Sekirnjak C, Du Lac S (2003) Long-lasting increases in intrinsic excitability triggered by inhibition. Neuron 40(3):609–620

    Article  CAS  PubMed  Google Scholar 

  67. Nelson AB, Gittis AH, du Lac S (2005) Decreases in CaMKII activity trigger persistent potentiation of intrinsic excitability in spontaneously firing vestibular nucleus neurons. Neuron 46(4):623–631

    Article  CAS  PubMed  Google Scholar 

  68. McCormick DA, Thompson RF (1984) Cerebellum: essential involvement in the classically conditioned eyelid response. Science 223(4633):296–299

    Article  CAS  PubMed  Google Scholar 

  69. Medina JF, Nores WL, Ohyama T, Mauk MD (2000) Mechanisms of cerebellar learning suggested by eyelid conditioning. Curr Opin Neurobiol 10(6):717–724

    Article  CAS  PubMed  Google Scholar 

  70. Hesslow G, Svensson P, Ivarsson M (1999) Learned movements elicited by direct stimulation of cerebellar mossy fiber afferents. Neuron 24(1):179–185

    Article  CAS  PubMed  Google Scholar 

  71. Jirenhed DA, Bengtsson F, Hesslow G (2007) Acquisition, extinction, and reacquisition of a cerebellar cortical memory trace. J Neurosci 27(10):2493–2502

    Article  CAS  PubMed  Google Scholar 

  72. Aizenman CD, Linden DJ (2000) Rapid, synaptically driven increases in the intrinsic excitability of cerebellar deep nuclear neurons. Nat Neurosci 3(2):109–111

    Article  CAS  PubMed  Google Scholar 

  73. Zhang W, Shin JH, Linden DJ (2004) Persistent changes in the intrinsic excitability of rat deep cerebellar nuclear neurones induced by EPSP or IPSP bursts. J Physiol 561(Pt 3):703–719

    Article  CAS  PubMed  Google Scholar 

  74. Caddy KW, Biscoe TJ (1979) Structural and quantitative studies on the normal C3H and Lurcher mutant mouse. Philos Trans R Soc Lond B Biol Sci 287(1020):167–201

    Article  CAS  PubMed  Google Scholar 

  75. Wetts R, Herrup K (1982) Interaction of granule. Purkinje and inferior olivary neurons in lurcher chimaeric mice. I. Qualitative studies. J Embryol Exp Morphol 68:87–98

    CAS  PubMed  Google Scholar 

  76. Zuo J, De Jager PL, Takahashi KA, Jiang W, Linden DJ, Heintz N (1997) Neurodegeneration in Lurcher mice caused by mutation in δ2 glutamate receptor gene. Nature 388(6644):769–773

    Article  CAS  PubMed  Google Scholar 

  77. Sultan F, König T, Möck M, Thier P (2002) Quantitative organization of neurotransmitters in the deep cerebellar nuclei of the Lurcher mutant. J Comp Neurol 452(4):311–323

    Article  CAS  PubMed  Google Scholar 

  78. Linnemann C, Sultan F, Pedroarena CM, Schwarz C, Thier P (2004) Lurcher mice exhibit potentiation of GABA(A)-receptor-mediated conductance in cerebellar nuclei neurons in close temporal relationship to Purkinje cell death. J Neurophysiol 91(2):1102–1107

    Article  CAS  PubMed  Google Scholar 

  79. Garin N, Hornung JP, Escher G (2002) Distribution of postsynaptic GABA(A) receptor aggregates in the deep cerebellar nuclei of normal and mutant mice. J Comp Neurol 447(3):210–217

    Article  CAS  PubMed  Google Scholar 

  80. LeDoux MS, Lorden JF, Ervin JM (1993) Cerebellectomy eliminates the motor syndrome of the genetically dystonic rat. Exp Neurol 120(2):302–310

    Article  CAS  PubMed  Google Scholar 

  81. LeDoux MS, Lorden JF (2002) Abnormal spontaneous and harmaline-stimulated Purkinje cell activity in the awake genetically dystonic rat. Exp Brain Res 145(4):457–467

    Article  PubMed  Google Scholar 

  82. Beales M, Lorden JF, Walz E, Oltmans GA (1990) Quantitative autoradiography reveals selective changes in cerebellar GABA receptors of the rat mutant dystonic. J Neurosci 10(6):1874–1885

    CAS  PubMed  Google Scholar 

  83. LeDoux MS, Hurst DC, Lorden JF (1998) Single-unit activity of cerebellar nuclear cells in the awake genetically dystonic rat. Neuroscience 86(2):533–545

    Article  CAS  PubMed  Google Scholar 

  84. Walter JT, Alviña K, Womack MD, Chevez C, Khodakhah K (2006) Decreases in the precision of Purkinje cell pacemaking cause cerebellar dysfunction and ataxia. Nat Neurosci 9(3):389–397

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge all the members of the laboratory whose research is reviewed in this article: Fatemeh Afshari, Teresa Aman, Amy Gustafson, Zayd Khaliq, Dan Padgett, Jason Pugh, and Petra Telgkamp. We are especially grateful to Jason Bant and Teresa Aman for their contributions to Figures. Supported by NIH NS39395 (IMR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Indira M. Raman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zheng, N., Raman, I.M. Synaptic Inhibition, Excitation, and Plasticity in Neurons of the Cerebellar Nuclei. Cerebellum 9, 56–66 (2010). https://doi.org/10.1007/s12311-009-0140-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-009-0140-6

Keywords

Navigation