Skip to main content
Log in

Neurofilament Heavy Chain Expression Reveals a Unique Parasagittal Stripe Topography in the Mouse Cerebellum

  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

Despite the general uniformity in cellular composition of the adult cerebellum (Cb), the expression of proteins such as ZebrinII/AldolaseC and the small heat shock protein HSP25 reveal striking patterns of parasagittal Purkinje cell (PC) stripes. Based on differences in the stripe configuration within subsets of lobules, the Cb can be further divided into four anterior–posterior transverse zones: anterior zone (AZ) = lobules I–V, central zone (CZ) = lobules VI–VII, posterior zone (PZ) = lobules VIII and anterior IX, and the nodular zone (NZ) = lobules posterior IX–X. Here we used whole-mount and tissue section immunohistochemistry to show that neurofilament heavy chain (NFH) expression alone divides all lobules of the mouse Cb into a complex series of parasagittal stripes of PCs. We revealed that the striped pattern of NFH in the vermis of the AZ and PZ was complementary to ZebrinII and phospholipase C ß3 (PLCß3), and corresponded to phospholipase C ß4 (PLCß4). In the CZ and NZ the stripe pattern of NFH was complementary to HSP25 and corresponded to PLCß3. The boundaries of the NFH stripes were not always sharply delineated. Instead, a gradual decrease in NFH expression was observed toward the edges of particular stripes, resulting in domains comprised of overlapping expression patterns. Furthermore, the terminal field distributions of mossy and climbing fibers had a complex but consistent topographical alignment with NFH stripes. In summary, NFH expression reveals an exquisite level of Cb stripe complexity that respects the transverse zone divisions and delineates an intricately patterned target field for Cb afferents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

References

  1. Ahn AH, Dziennis S, Hawkes R, Herrup K (1994) The cloning of zebrin II reveals its identity with aldolase C. Development 120(8):2081–2090

    PubMed  CAS  Google Scholar 

  2. Brochu G, Maler L, Hawkes R (1990) Zebrin II: a polypeptide antigen expressed selectively by Purkinje cells reveals compartments in rat and fish cerebellum. J Comp Neurol 291(4):538–552

    Article  PubMed  CAS  Google Scholar 

  3. Armstrong CL, Krueger-Naug AM, Currie RW, Hawkes R (2000) Constitutive expression of the 25-kDa heat shock protein Hsp25 reveals novel parasagittal bands of purkinje cells in the adult mouse cerebellar cortex. J Comp Neurol 416(3):383–397

    Article  PubMed  CAS  Google Scholar 

  4. Sarna JR, Marzban H, Watanabe M, Hawkes R (2006) Complementary stripes of phospholipase Cbeta3 and Cbeta4 expression by Purkinje cell subsets in the mouse cerebellum. J Comp Neurol 496(3):303–313

    Article  PubMed  CAS  Google Scholar 

  5. Armstrong CL, Hawkes R (2000) Pattern formation in the cerebellar cortex. Biochem Cell Biol 78(5):551–562

    Article  PubMed  CAS  Google Scholar 

  6. Larouche M, Hawkes R (2006) From clusters to stripes: the developmental origins of adult cerebellar compartmentation. Cerebellum 5(2):77–88

    Article  PubMed  CAS  Google Scholar 

  7. Sillitoe RV, Joyner AL (2007) Morphology, molecular codes, and circuitry produce the three-dimensional complexity of the cerebellum. Annu Rev Cell Dev Biol 23:549–577

    Article  PubMed  CAS  Google Scholar 

  8. Ozol K, Hayden JM, Oberdick J, Hawkes R (1999) Transverse zones in the vermis of the mouse cerebellum. J Comp Neurol 412(1):95–111

    Article  PubMed  CAS  Google Scholar 

  9. Gravel C, Hawkes R (1990) Parasagittal organization of the rat cerebellar cortex: direct comparison of Purkinje cell compartments and the organization of the spinocerebellar projection. J Comp Neurol 291(1):79–102

    Article  PubMed  CAS  Google Scholar 

  10. Akintunde A, Eisenman LM (1994) External cuneocerebellar projection and Purkinje cell zebrin II bands: a direct comparison of parasagittal banding in the mouse cerebellum. J Chem Neuroanat 7(1–2):75–86

    Article  PubMed  CAS  Google Scholar 

  11. Ji Z, Hawkes R (1994) Topography of Purkinje cell compartments and mossy fiber terminal fields in lobules II and III of the rat cerebellar cortex: spinocerebellar and cuneocerebellar projections. Neuroscience 61(4):935–954

    Article  PubMed  CAS  Google Scholar 

  12. Voogd J, Pardoe J, Ruigrok TJ, Apps R (2003) The distribution of climbing and mossy fiber collateral branches from the copula pyramidis and the paramedian lobule: congruence of climbing fiber cortical zones and the pattern of zebrin banding within the rat cerebellum. J Neurosci 23(11):4645–4656

    PubMed  CAS  Google Scholar 

  13. Paradies MA, Grishkat H, Smeyne RJ, Oberdick J, Morgan JI, Eisenman LM (1996) Correspondence between L7-lacZ-expressing Purkinje cells and labeled olivocerebellar fibers during late embryogenesis in the mouse. J Comp Neurol 374(3):451–466

    Article  PubMed  CAS  Google Scholar 

  14. Wassef M, Cholley B, Heizmann CW, Sotelo C (1992) Development of the olivocerebellar projection in the rat: II. Matching of the developmental compartmentations of the cerebellum and inferior olive through the projection map. J Comp Neurol 323(4):537–550

    Article  PubMed  CAS  Google Scholar 

  15. Gravel C, Eisenman LM, Sasseville R, Hawkes R (1987) Parasagittal organization of the rat cerebellar cortex: direct correlation between antigenic Purkinje cell bands revealed by mabQ113 and the organization of the olivocerebellar projection. J Comp Neurol 265(2):294–310

    Article  PubMed  CAS  Google Scholar 

  16. Chockkan V, Hawkes R (1994) Functional and antigenic maps in the rat cerebellum: zebrin compartmentation and vibrissal receptive fields in lobule IXa. J Comp Neurol 345(1):33–45

    Article  PubMed  CAS  Google Scholar 

  17. Chen G, Hanson CL, Ebner TJ (1996) Functional parasagittal compartments in the rat cerebellar cortex: an in vivo optical imaging study using neutral red. J Neurophysiol 76(6):4169–4174

    PubMed  CAS  Google Scholar 

  18. Hallem JS, Thompson JH, Gundappa-Sulur G, Hawkes R, Bjaalie JG, Bower JM (1999) Spatial correspondence between tactile projection patterns and the distribution of the antigenic Purkinje cell markers anti-zebrin I and anti-zebrin II in the cerebellar folium crus IIA of the rat. Neuroscience 93(3):1083–1094

    Article  PubMed  CAS  Google Scholar 

  19. Wadiche JI, Jahr CE (2005) Patterned expression of Purkinje cell glutamate transporters controls synaptic plasticity. Nat Neurosci 8(10):1329–1334

    Article  PubMed  CAS  Google Scholar 

  20. Perrot R, Berges R, Bocquet A, Eyer J (2008) Review of the multiple aspects of neurofilament functions, and their possible contribution to neurodegeneration. Mol Neurobiol 38(1):27–65

    Article  PubMed  CAS  Google Scholar 

  21. Lee MK, Cleveland DW (1996) Neuronal intermediate filaments. Annu Rev Neurosci 19:187–217

    Article  PubMed  CAS  Google Scholar 

  22. Angelides KJ, Smith KE, Takeda M (1989) Assembly and exchange of intermediate filament proteins of neurons: neurofilaments are dynamic structures. J Cell Biol 108(4):1495–1506

    Article  PubMed  CAS  Google Scholar 

  23. Julien JP, Meyer D, Flavell D, Hurst J, Grosveld F (1986) Cloning and developmental expression of the murine neurofilament gene family. Brain Res 387(3):243–250

    PubMed  CAS  Google Scholar 

  24. Carden MJ, Trojanowski JQ, Schlaepfer WW, Lee VM (1987) Two-stage expression of neurofilament polypeptides during rat neurogenesis with early establishment of adult phosphorylation patterns. J Neurosci 7(11):3489–3504

    PubMed  CAS  Google Scholar 

  25. Hoffman PN, Thompson GW, Griffin JW, Price DL (1985) Changes in neurofilament transport coincide temporally with alterations in the caliber of axons in regenerating motor fibers. J Cell Biol 101(4):1332–1340

    Article  PubMed  CAS  Google Scholar 

  26. Elder GA, Friedrich VL Jr, Kang C, Bosco P, Gourov A, Tu PH et al (1998) Requirement of heavy neurofilament subunit in the development of axons with large calibers. J Cell Biol 143(1):195–205

    Article  PubMed  CAS  Google Scholar 

  27. Julien JP, Mushynski WE (1983) The distribution of phosphorylation sites among identified proteolytic fragments of mammalian neurofilaments. J Biol Chem 258(6):4019–4025

    PubMed  CAS  Google Scholar 

  28. Carden MJ, Schlaepfer WW, Lee VM (1985) The structure, biochemical properties, and immunogenicity of neurofilament peripheral regions are determined by phosphorylation state. J Biol Chem 260(17):9805–9817

    PubMed  CAS  Google Scholar 

  29. Goldstein ME, Cooper HS, Bruce J, Carden MJ, Lee VM, Schlaepfer WW (1987) Phosphorylation of neurofilament proteins and chromatolysis following transection of rat sciatic nerve. J Neurosci 7(5):1586–1594

    PubMed  CAS  Google Scholar 

  30. Shea TB, Chan WK (2008) Regulation of neurofilament dynamics by phosphorylation. Eur J NeuroSci 27(8):1893–1901

    Article  PubMed  Google Scholar 

  31. Wang S, Hamberger A, Yang Q, Haglid KG (1994) Changes in neurofilament protein NF-L and NF-H immunoreactivity following kainic acid-induced seizures. J Neurochem 62(2):739–748

    Article  PubMed  CAS  Google Scholar 

  32. Hashimoto R, Nakamura Y, Komai S, Kashiwagi Y, Tamura K, Goto T et al (2000) Site-specific phosphorylation of neurofilament-L is mediated by calcium/calmodulin-dependent protein kinase II in the apical dendrites during long-term potentiation. J Neurochem 75(1):373–382

    Article  PubMed  CAS  Google Scholar 

  33. Posmantur RM, Newcomb JK, Kampfl A, Hayes RL (2000) Light and confocal microscopic studies of evolutionary changes in neurofilament proteins following cortical impact injury in the rat. Exp Neurol 161(1):15–26

    Article  PubMed  CAS  Google Scholar 

  34. Lein ES, Hawrylycz MJ, Ao N, Ayres M, Bensinger A, Bernard A et al (2007) Genome-wide atlas of gene expression in the adult mouse brain. Nature 445(7124):168–176

    Article  PubMed  CAS  Google Scholar 

  35. Sillitoe RV, Stephen D, Lao Z, Joyner AL (2008) Engrailed homeobox genes determine the organization of Purkinje cell sagittal stripe gene expression in the adult cerebellum. J Neurosci 28(47):12150–12162

    Article  PubMed  CAS  Google Scholar 

  36. Sillitoe RV, Benson MA, Blake DJ, Hawkes R (2003) Abnormal dysbindin expression in cerebellar mossy fiber synapses in the mdx mouse model of Duchenne muscular dystrophy. J Neurosci 23(16):6576–6585

    PubMed  CAS  Google Scholar 

  37. Sillitoe RV, Hawkes R (2002) Whole-mount immunohistochemistry: a high-throughput screen for patterning defects in the mouse cerebellum. J Histochem Cytochem 50(2):235–244

    Article  PubMed  CAS  Google Scholar 

  38. Langley OK, Sternberger NH, Sternberger LA (1988) Expression of neurofilament proteins by Purkinje cells: ultrastructural immunolocalization with monoclonal antibodies. Brain Res 457(1):12–20

    Article  PubMed  CAS  Google Scholar 

  39. Vega JA, Del Valle M, Amenta F (1994) Expression of neurofilament proteins in the rat cerebellar cortex as a function of age: an immunohistochemical study. Mech Ageing Dev 73(1):9–16

    Article  PubMed  CAS  Google Scholar 

  40. Marc C, Clavel MC, Rabie A (1986) Non-phosphorylated and phosphorylated neurofilaments in the cerebellum of the rat: an immunocytochemical study using monoclonal antibodies. Development in normal and thyroid-deficient animals. Brain Res 391(2):249–260

    PubMed  CAS  Google Scholar 

  41. Ango F, di Cristo G, Higashiyama H, Bennett V, Wu P, Huang ZJ (2004) Ankyrin-based subcellular gradient of neurofascin, an immunoglobulin family protein, directs GABAergic innervation at purkinje axon initial segment. Cell 119(2):257–272

    Article  PubMed  CAS  Google Scholar 

  42. Eisenman LM, Hawkes R (1993) Antigenic compartmentation in the mouse cerebellar cortex: zebrin and HNK-1 reveal a complex, overlapping molecular topography. J Comp Neurol 335(4):586–605

    Article  PubMed  CAS  Google Scholar 

  43. Marzban H, Sillitoe RV, Hoy M, Chung SH, Rafuse VF, Hawkes R (2004) Abnormal HNK-1 expression in the cerebellum of an N-CAM null mouse. J Neurocytol 33(1):117–130

    Article  PubMed  CAS  Google Scholar 

  44. Schonewille M, Luo C, Ruigrok TJ, Voogd J, Schmolesky MT, Rutteman M et al (2006) Zonal organization of the mouse flocculus: physiology, input, and output. J Comp Neurol 497(4):670–682

    Article  PubMed  Google Scholar 

  45. Armstrong CL, Chung SH, Armstrong JN, Hochgeschwender U, Jeong YG, Hawkes R (2009) A novel somatostatin-immunoreactive mossy fiber pathway associated with HSP25-immunoreactive purkinje cell stripes in the mouse cerebellum. J Comp Neurol 517(4):524–538

    Article  PubMed  CAS  Google Scholar 

  46. Sugihara I, Shinoda Y (2004) Molecular, topographic, and functional organization of the cerebellar cortex: a study with combined aldolase C and olivocerebellar labeling. J Neurosci 24(40):8771–8785

    Article  PubMed  CAS  Google Scholar 

  47. Sugihara I, Quy PN (2007) Identification of aldolase C compartments in the mouse cerebellar cortex by olivocerebellar labeling. J Comp Neurol 500(6):1076–1092

    Article  PubMed  CAS  Google Scholar 

  48. Sawada K, Fukui Y, Hawkes R (2008) Spatial distribution of corticotropin-releasing factor immunopositive climbing fibers in the mouse cerebellum: analysis by whole mount immunohistochemistry. Brain Res 1222:106–117

    Article  PubMed  CAS  Google Scholar 

  49. Goldowitz D, Hamre K (1998) The cells and molecules that make a cerebellum. Trends Neurosci 21(9):375–382

    Article  PubMed  CAS  Google Scholar 

  50. Voogd J, Glickstein M (1998) The anatomy of the cerebellum. Trends Neurosci 21(9):370–375

    Article  PubMed  CAS  Google Scholar 

  51. Ebner TJ, Chen G, Gao W, Reinert K (2005) Optical imaging of cerebellar functional architectures: parallel fiber beams, parasagittal bands and spreading acidification. Prog Brain Res 148:125–138

    Article  PubMed  Google Scholar 

  52. Sillitoe RV, Marzban H, Larouche M, Zahedi S, Affanni J, Hawkes R (2005) Conservation of the architecture of the anterior lobe vermis of the cerebellum across mammalian species. Prog Brain Res 148:283–297

    Article  PubMed  Google Scholar 

  53. Leclerc N, Schwarting GA, Herrup K, Hawkes R, Yamamoto M (1992) Compartmentation in mammalian cerebellum: Zebrin II and P-path antibodies define three classes of sagittally organized bands of Purkinje cells. Proc Natl Acad Sci U S A 89(11):5006–5010

    Article  PubMed  CAS  Google Scholar 

  54. Plioplys AV, Thibault J, Hawkes R (1985) Selective staining of a subset of Purkinje cells in the human cerebellum with monoclonal antibody mabQ113. J Neurol Sci 70(3):245–256

    Article  PubMed  CAS  Google Scholar 

  55. Sillitoe RV, Malz CR, Rockland K, Hawkes R (2004) Antigenic compartmentation of the primate and tree shrew cerebellum: a common topography of zebrin II in Macaca mulatta and Tupaia belangeri. J Anat 204(4):257–269

    Article  PubMed  Google Scholar 

  56. Sillitoe RV, Kunzle H, Hawkes R (2003) Zebrin II compartmentation of the cerebellum in a basal insectivore, the Madagascan hedgehog tenrec Echinops telfairi. J Anat 203(3):283–296

    Article  PubMed  Google Scholar 

  57. Milosevic A, Zecevic N (1998) Developmental changes in human cerebellum: expression of intracellular calcium receptors, calcium-binding proteins, and phosphorylated and nonphosphorylated neurofilament protein. J Comp Neurol 396(4):442–460

    Article  PubMed  CAS  Google Scholar 

  58. Ashwell KW, Paxinos G, Watson CR (2007) Cyto- and chemoarchitecture of the cerebellum of the short-beaked echidna (Tachyglossus aculeatus). Brain Behav Evol 70(2):71–89

    Article  PubMed  CAS  Google Scholar 

  59. Sillitoe RV, Gopal N, Joyner AL (2009) Embryonic origins of ZebrinII parasagittal stripes and establishment of topographic Purkinje cell projections. Neuroscience 162(3):574–588

    Article  PubMed  CAS  Google Scholar 

  60. Marzban H, Chung S, Watanabe M, Hawkes R (2007) Phospholipase Cbeta4 expression reveals the continuity of cerebellar topography through development. J Comp Neurol 502(5):857–871

    Article  PubMed  Google Scholar 

  61. Marzban H, Kim CT, Doorn D, Chung SH, Hawkes R (2008) A novel transverse expression domain in the mouse cerebellum revealed by a neurofilament-associated antigen. Neuroscience 153(4):1190–1201

    Article  PubMed  CAS  Google Scholar 

  62. Sillitoe RV, Hulliger M, Dyck R, Hawkes R (2003) Antigenic compartmentation of the cat cerebellar cortex. Brain Res 977(1):1–15

    Article  PubMed  CAS  Google Scholar 

  63. Hisano S, Sawada K, Kawano M, Kanemoto M, Xiong G, Mogi K et al (2002) Expression of inorganic phosphate/vesicular glutamate transporters (BNPI/VGLUT1 and DNPI/VGLUT2) in the cerebellum and precerebellar nuclei of the rat. Brain Res Mol Brain Res 107(1):23–31

    Article  PubMed  CAS  Google Scholar 

  64. Hioki H, Fujiyama F, Taki K, Tomioka R, Furuta T, Tamamaki N et al (2003) Differential distribution of vesicular glutamate transporters in the rat cerebellar cortex. Neuroscience 117(1):1–6

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Richard Hawkes for critically reading the manuscript and Dr. Alexandra Joyner for advice and research support. RVS is supported by new investigator start-up funds from Albert Einstein College of Medicine of Yeshiva University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roy V. Sillitoe.

Additional information

Adrien Demilly and Stacey L. Reeber contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Demilly, A., Reeber, S.L., Gebre, S.A. et al. Neurofilament Heavy Chain Expression Reveals a Unique Parasagittal Stripe Topography in the Mouse Cerebellum. Cerebellum 10, 409–421 (2011). https://doi.org/10.1007/s12311-010-0156-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-010-0156-y

Keywords

Navigation