Skip to main content
Log in

Regulation of Neuronal Gene Expression by Local Axonal Translation

  • Neurogenetics/Psychiatric Genetics (M Hiltunen and D Marenda, Section Editors)
  • Published:
Current Genetic Medicine Reports Aims and scope Submit manuscript

Abstract

RNA localization is a key mechanism in the regulation of protein expression. In neurons, this includes the axonal transport of select mRNAs based on the recognition of axonal localization motifs in these RNAs by RNA-binding proteins. Bioinformatic analyses of axonal RNAs suggest that selective inclusion of such localization motifs in mature mRNAs is one mechanism controlling the composition of the axonal transcriptome. The subsequent translation of axonal transcripts in response to specific stimuli provides precise spatiotemporal control of the axonal proteome. This axonal translation supports local phenomena including axon pathfinding, mitochondrial function, and synapse-specific plasticity. Axonal protein synthesis also provides transport machinery and signals for retrograde trafficking to the cell body to effect somatic changes including altering the transcriptional program. Here we review the remarkable progress made in recent years to identify and characterize these phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. • Kim S, Martin KC. Neuron-wide RNA transport combines with netrin-mediated local translation to spatially regulate the synaptic proteome. eLife. 2015;4:e04158. By investigating how presynaptic translation can be limited specifically to activated synapses despite broad distribution of presynaptic RNAs, this study identified that postsynaptic activity induces calcium-dependent release of netrin. This netrin binds to its presynaptic receptor to induce local translation only at activated synapses.

  2. Andreassi C, Zimmermann C, Mitter R, Fusco S, De Vita S, Devita S, et al. An NGF-responsive element targets myo-inositol monophosphatase-1 mRNA to sympathetic neuron axons. Nat Neurosci. 2010;13(3):291–301.

    Article  CAS  PubMed  Google Scholar 

  3. •• Baleriola J, Walker CA, Jean YY, Crary JF, Troy CM, Nagy PL, et al. Axonally synthesized ATF4 transmits a neurodegenerative signal across brain regions. Cell. 2014;158(5):1159–72. Alzheimer’s pathology appears to spread over long distances between brain regions that are connected with each other. This paper reveals that axon exposure to pathogenic Aβ oligomers induces the axonal transport and subsequent axonal translation of transcripts that can induce neurodegeneration.

  4. Merianda TT, Coleman J, Kim HH, Kumar Sahoo P, Gomes C, Brito-Vargas P, et al. Axonal amphoterin mRNA is regulated by translational control and enhances axon outgrowth. J Neurosci. 2015;35(14):5693–706.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Kislauskis EH, Zhu X, Singer RH. Sequences responsible for intracellular localization of beta-actin messenger RNA also affect cell phenotype. J Cell Biol. 1994;127(2):441–51.

    Article  CAS  PubMed  Google Scholar 

  6. Ross AF, Oleynikov Y, Kislauskis EH, Taneja KL, Singer RH. Characterization of a beta-actin mRNA zipcode-binding protein. Mol Cell Biol. 1997;17(4):2158–65.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Bassell GJ, Zhang H, Byrd AL, Femino AM, Singer RH, Taneja KL, et al. Sorting of beta-actin mRNA and protein to neurites and growth cones in culture. J Neurosci. 1998;18(1):251–65.

    CAS  PubMed  Google Scholar 

  8. • Minis A, Dahary D, Manor O, Leshkowitz D, Pilpel Y, Yaron A. Subcellular transcriptomics—dissection of the mRNA composition in the axonal compartment of sensory neurons. Dev Neurobiol. 2014;74(3):365–81. One of the most exhaustive surveys of an axonal transcriptome to date. Bioinformatic analysis revealed short sequence motifs that are enriched in axonal transcripts, which are candidate cis elements responsible for axonal localization.

  9. Wang DO, Kim SM, Zhao Y, Hwang H, Miura SK, Sossin WS, et al. Synapse- and stimulus-specific local translation during long-term neuronal plasticity. Science. 2009;324(5934):1536–40.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Meer EJ, Wang DO, Kim S, Barr I, Guo F, Martin KC. Identification of a cis-acting element that localizes mRNA to synapses. Proc Natl Acad Sci. 2012;109(12):4639–44.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Donnelly CJ, Willis DE, Xu M, Tep C, Jiang C, Yoo S, et al. Limited availability of ZBP1 restricts axonal mRNA localization and nerve regeneration capacity. EMBO J. 2011;30(22):4665–77.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. • Donnelly CJ, Park M, Spillane M, Yoo S, Pacheco A, Gomes C, et al. Axonally synthesized β-actin and GAP-43 proteins support distinct modes of axonal growth. J Neurosci. 2013;33(8):3311–22. This work shows that RNAs with similar structures can compete for association with RNA granules that mediate axonal transport. As a result, modulating the relative axonal levels of β-actin and GAP-43 mRNAs can influence the size and shape of the axonal arbor.

  13. Fallini C, Rouanet JP, Donlin-Asp PG, Guo P, Zhang H, Singer RH, et al. Dynamics of survival of motor neuron (SMN) protein interaction with the mRNA-binding protein IMP1 facilitates its trafficking into motor neuron axons. Dev Neurobiol. 2014;74(3):319–32.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. •• Zhang P, Abdelmohsen K, Liu Y, Tominaga-Yamanaka K, Yoon J-H, Ioannis G, et al. Novel RNA- and FMRP-binding protein TRF2-S regulates axonal mRNA transport and presynaptic plasticity. Nat Commun. 2015;6:8888. This study identified TRF2-S as a novel RNA binding protein that directs the axonal transport of its target mRNAs to support axonal elongation and presynaptic transmitter release. This transport role is antagonized by competitive interactions with another RNA binding protein, FMRP. Competition between mRNA and FMRP for binding to TRF2-S is thus an important mechanism for regulating axonal RNA transport.

  15. Akins MR, LeBlanc HF, Stackpole EE, Chyung E, Fallon JR. Systematic mapping of fragile X granules in the mouse brain reveals a potential role for presynaptic FMRP in sensorimotor functions. J Comp Neurol. 2012;520(16):3687–706.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Christie SB, Akins MR, Schwob JE, Fallon JR. The FXG: a presynaptic fragile X granule expressed in a subset of developing brain circuits. J Neurosci. 2009;29(5):1514–24.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Tcherkezian J, Brittis PA, Thomas F, Roux PP, Flanagan JG. Transmembrane receptor DCC associates with protein synthesis machinery and regulates translation. Cell. 2010;141(4):632–44.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Piper M, Lee AC, van Horck FPG, McNeilly H, Lu TB, Harris WA, et al. Differential requirement of F-actin and microtubule cytoskeleton in cue-induced local protein synthesis in axonal growth cones. Neural Develop. 2015;10:3.

    Article  Google Scholar 

  19. • Gracias NG, Shirkey-Son NJ, Hengst U. Local translation of TC10 is required for membrane expansion during axon outgrowth. Nat Commun. 2014;5:3506. Axon growth requires a rapid and directed expansion of the plasma membrane. These studies indicate that local translation of TC10 regulates an exocyst-mediated increase in plasma membrane phospholipids.

  20. Willis DE, van Niekerk EA, Sasaki Y, Mesngon M, Merianda TT, Williams GG, et al. Extracellular stimuli specifically regulate localized levels of individual neuronal mRNAs. J Cell Biol. 2007;178(6):965–80.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Campbell DS, Holt CE. Chemotropic responses of retinal growth cones mediated by rapid local protein synthesis and degradation. Neuron. 2001;32(6):1013–26.

    Article  CAS  PubMed  Google Scholar 

  22. Leung K-M, van Horck FP, Lin AC, Allison R, Standart N, Holt CE. Asymmetrical beta-actin mRNA translation in growth cones mediates attractive turning to netrin-1. Nat Neurosci. 2006;9(10):1247–56.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Höpker VH, Shewan D, Tessier-Lavigne M, Poo M, Holt C. Growth-cone attraction to netrin-1 is converted to repulsion by laminin-1. Nature. 1999;401(6748):69–73.

    Article  PubMed  Google Scholar 

  24. Jung H, Yoon BC, Holt CE. Axonal mRNA localization and local protein synthesis in nervous system assembly, maintenance and repair. Nat Rev Neurosci. 2012;13(5):308–24.

    PubMed Central  CAS  PubMed  Google Scholar 

  25. Shigeoka T, Lu B, Holt CE. Cell biology in neuroscience: RNA-based mechanisms underlying axon guidance. J Cell Biol. 2013;202(7):991–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Nédelec S, Peljto M, Shi P, Amoroso MW, Kam LC, Wichterle H. Concentration-dependent requirement for local protein synthesis in motor neuron subtype-specific response to axon guidance cues. J Neurosci. 2012;32(4):1496–506.

    Article  PubMed Central  Google Scholar 

  27. Lin AC, Holt CE. Local translation and directional steering in axons. EMBO J. 2007;26(16):3729–36.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Wang J, Boja ES, Tan W, Tekle E, Fales HM, English S, et al. Reversible glutathionylation regulates actin polymerization in A431 cells. J Biol Chem. 2001;276(51):47763–6.

    CAS  PubMed  Google Scholar 

  29. Karakozova M, Kozak M, Wong CCL, Bailey AO, Yates JR, Mogilner A, et al. Arginylation of beta-actin regulates actin cytoskeleton and cell motility. Science. 2006;313(5784):192–6.

    Article  CAS  PubMed  Google Scholar 

  30. Saha S, Mundia MM, Zhang F, Demers RW, Korobova F, Svitkina T, et al. Arginylation regulates intracellular actin polymer level by modulating actin properties and binding of capping and severing proteins. Mol Biol Cell. 2010;21(8):1350–61.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. • Kalinski AL, Sachdeva R, Gomes C, Lee SJ, Shah Z, Houle JD, et al. mRNAs and protein synthetic machinery localize into regenerating spinal cord axons when they are provided a substrate that supports growth. J Neurosci. 2015;35(28):10357–70. One of the key differences between the PNS neurons that regenerate and the CNS neurons that do not is that only PNS growth cones exhibit local translation. However, when CNS neurons are grown in a condition that promotes regeneration, local translation is upregulated, suggesting that the lack of local translation may contribute to the inability of CNS neurons to regenerate.

  32. Court FA, Hendriks WTJ, MacGillavry HD, Alvarez J, van Minnen J. Schwann cell to axon transfer of ribosomes: toward a novel understanding of the role of glia in the nervous system. J Neurosci. 2008;28(43):11024–9.

    Article  CAS  PubMed  Google Scholar 

  33. Court FA, Midha R, Cisterna BA, Grochmal J, Shakhbazau A, Hendriks WT, et al. Morphological evidence for a transport of ribosomes from Schwann cells to regenerating axons. Glia. 2011;59(10):1529–39.

    Article  PubMed  Google Scholar 

  34. Gumy LF, Yeo GSH, Tung Y-CL, Zivraj KH, Willis D, Coppola G, et al. Transcriptome analysis of embryonic and adult sensory axons reveals changes in mRNA repertoire localization. RNA. 2011;17(1):85–98.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Antar LN, Li C, Zhang H, Carroll RC, Bassell GJ. Local functions for FMRP in axon growth cone motility and activity-dependent regulation of filopodia and spine synapses. Mol Cell Neurosci. 2006;32(1–2):37–48.

    Article  CAS  PubMed  Google Scholar 

  36. Li C, Bassell GJ, Sasaki Y. Fragile X mental retardation protein is involved in protein synthesis-dependent collapse of growth cones induced by Semaphorin-3A. Front Neural Circuits. 2009;3:11.

    Article  PubMed Central  PubMed  Google Scholar 

  37. Hancock ML, Preitner N, Quan J, Flanagan JG. MicroRNA-132 is enriched in developing axons, locally regulates Rasa1 mRNA, and promotes axon extension. J Soc Neurosci. 2014;34(1):66–78.

    Article  CAS  Google Scholar 

  38. •• Colak D, Ji S-J, Porse BT, Jaffrey SR. Regulation of axon guidance by compartmentalized nonsense-mediated mRNA decay. Cell. 2013;153(6):1252–65. Axons that traverse complex pathways often navigate by an initial attraction to intermediate targets, followed by subsequent repulsion from the same targets. In commissural neurons, this involves axon-specific mRNA isoforms that are uniquely subject to a decay signal released by its intermediate target, the floor-plate of the midline.

  39. Giorgi C, Yeo GW, Stone ME, Katz DB, Burge C, Turrigiano G, et al. The EJC factor eIF4AIII modulates synaptic strength and neuronal protein expression. Cell. 2007;130(1):179–91.

    Article  CAS  PubMed  Google Scholar 

  40. Sheng Z-H. Mitochondrial trafficking and anchoring in neurons: new insight and implications. J Cell Biol. 2014;204(7):1087–98.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Taylor AM, Berchtold NC, Perreau VM, Tu CH, Jeon N, Cotman CW. Axonal mRNA in uninjured and regenerating cortical mammalian axons. J Neurosci. 2009;29(15):4697–707.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Yoon BC, Jung H, Dwivedy A, O’Hare CM, Zivraj KH, Holt CE. Local translation of extranuclear lamin B promotes axon maintenance. Cell. 2012;148(4):752–64.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. • Kar AN, Sun C-Y, Reichard K, Gervasi NM, Pickel J, Nakazawa K, et al. Dysregulation of the axonal trafficking of nuclear-encoded mitochondrial mRNA alters neuronal mitochondrial activity and mouse behavior. Dev Neurobiol. 2014;74(3):333–50. One of the first studies to identify a behavioral phenotype resulting from the axon-specific loss of a gene, Cytochrome C oxidase IV (COXIV).

  44. Sherff CM, Carew TJ. Coincident induction of long-term facilitation in aplysia: cooperativity between cell bodies and remote synapses. Science. 1999;285(5435):1911–4.

    Article  CAS  PubMed  Google Scholar 

  45. Martin KC, Casadio A, Zhu H, Yaping E, Rose JC, Chen M, et al. Synapse-specific, long-term facilitation of aplysia sensory to motor synapses: a function for local protein synthesis in memory storage. Cell. 1997;91(7):927–38.

    Article  CAS  PubMed  Google Scholar 

  46. Liu K, Hu JY, Wang D, Schacher S. Protein synthesis at synapse versus cell body: enhanced but transient expression of long-term facilitation at isolated synapses. J Neurobiol. 2003;56(3):275–86.

    Article  CAS  PubMed  Google Scholar 

  47. Casadio A, Martin KC, Giustetto M, Zhu H, Chen M, Bartsch D, et al. A transient, neuron-wide form of CREB-mediated long-term facilitation can be stabilized at specific synapses by local protein synthesis. Cell. 1999;99(2):221–37.

    Article  CAS  PubMed  Google Scholar 

  48. Beaumont V, Zhong N, Fletcher R, Froemke RC, Zucker RS. Phosphorylation and local presynaptic protein synthesis in calcium-and calcineurin-dependent induction of crayfish long-term facilitation. Neuron. 2001;32(3):489–501.

    Article  CAS  PubMed  Google Scholar 

  49. Till SM, Li H-L, Miniaci MC, Kandel ER, Choi Y-B. A presynaptic role for FMRP during protein synthesis–dependent long-term plasticity in Aplysia. Learn Mem. 2011;18(1):39–48.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Zhang X, Poo M. Localized synaptic potentiation by BDNF requires local protein synthesis in the developing axon. Neuron. 2002;36(4):675–88.

    Article  CAS  PubMed  Google Scholar 

  51. Huang C-C, Hsu K-S. Local protein synthesis and GABAB receptors regulate the reversibility of long-term potentiation at murine hippocampal mossy fibre–CA3 synapses. J Physiol. 2004;561(Pt 1):91–108.

    Article  PubMed Central  CAS  Google Scholar 

  52. Yin HH, Davis MI, Ronesi JA, Lovinger DM. The role of protein synthesis in striatal long-term depression. J Neurosci. 2006;26(46):11811–20.

    Article  CAS  PubMed  Google Scholar 

  53. Schacher S, Wu F, Panyko JD, Sun Z-Y, Wang D. Expression and branch-specific export of mRNA are regulated by synapse formation and interaction with specific postsynaptic targets. J Neurosci. 1999;19(15):6338–47.

    CAS  PubMed  Google Scholar 

  54. Lyles V, Zhao Y, Martin KC. Synapse formation and mRNA localization in cultured aplysia neurons. Neuron. 2006;49(3):349–56.

    Article  CAS  PubMed  Google Scholar 

  55. • Taylor AM, Wu J, Tai H-C, Schuman EM. Axonal translation of β-catenin regulates synaptic vesicle dynamics. J Neurosci. 2013;33(13):5584–9. Synaptogenic signals induce the presynaptic accumulation and translation of the RNA encoding β-catenin, a critical regulator of synaptic morphology and function. This translation impacts the organization of the synaptic vesicle pool.

  56. Bamji SX, Shimazu K, Kimes N, Huelsken J, Birchmeier W, Lu B, et al. Role of β-catenin in synaptic vesicle localization and presynaptic assembly. Neuron. 2003;40(4):719–31.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Bolshakov VY, Siegelbaum SA. Regulation of hippocampal transmitter release during development and long-term potentiation. Science. 1995;269(5231):1730–4.

    Article  CAS  PubMed  Google Scholar 

  58. Sebeo J, Hsiao K, Bozdagi O, Dumitriu D, Ge Y, Zhou Q, et al. Requirement for protein synthesis at developing synapses. J Neurosci. 2009;29(31):9778–93.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Hsiao K, Bozdagi O, Benson DL. Axonal cap-dependent translation regulates presynaptic p35. Dev Neurobiol. 2014;74(3):351–64.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Kesavapany S, Lau KF, McLoughlin DM, Brownlees J, Ackerley S, Leigh PN, et al. p35/cdk5 binds and phosphorylates beta-catenin and regulates beta-catenin/presenilin-1 interaction. Eur J Neurosci. 2001;13(2):241–7.

    CAS  PubMed  Google Scholar 

  61. Flentke GR, Garic A, Hernandez M, Smith SM. CaMKII represses transcriptionally active β-catenin to mediate acute ethanol neurodegeneration and can phosphorylate β-catenin. J Neurochem. 2014;128(4):523–35.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Pratt T, Davey JW, Nowakowski TJ, Raasumaa C, Rawlik K, McBride D, et al. The expression and activity of β-catenin in the thalamus and its projections to the cerebral cortex in the mouse embryo. BMC Neurosci. 2012;13(1):20.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Kundel M, Jones KJ, Shin CY, Wells DG. Cytoplasmic polyadenylation element-binding protein regulates neurotrophin-3-dependent Β-catenin mRNA translation in developing hippocampal neurons. J Neurosci. 2009;29(43):13630–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Darnell JC, Van Driesche SJ, Zhang C, Hung KYS, Mele A, Fraser CE, et al. FMRP stalls ribosomal translocation on mrnas linked to synaptic function and autism. Cell. 2011;146(2):247–61.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  65. O’Roak BJ, Vives L, Girirajan S, Karakoc E, Krumm N, Coe BP, et al. Sporadic autism exomes reveal a highly interconnected protein network of de novo mutations. Nature. 2012;485(7397):246–50.

    Article  PubMed Central  PubMed  Google Scholar 

  66. De Boulle K, Verkerk AJMH, Reyniers E, Vits L, Hendrickx J, Van Roy B, et al. A point mutation in the FMR-1 gene associated with fragile X mental retardation. Nat Genet. 1993;3(1):31–5.

    Article  PubMed  Google Scholar 

  67. Cox LJ, Hengst U, Gurskaya NG, Lukyanov KA, Jaffrey SR. Intra-axonal translation and retrograde trafficking of CREB promotes neuronal survival. Nat Cell Biol. 2008;10(2):149–59.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  68. Ben-Yaakov K, Dagan SY, Segal-Ruder Y, Shalem O, Vuppalanchi D, Willis DE, et al. Axonal transcription factors signal retrogradely in lesioned peripheral nerve. EMBO J. 2012;31(6):1350–63.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  69. Ji S-J, Jaffrey SR. Intra-axonal translation of SMAD1/5/8 mediates retrograde regulation of trigeminal ganglia subtype specification. Neuron. 2012;74(1):95–107.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  70. • Ying Z, Misra V, Verge VMK. Sensing nerve injury at the axonal ER: activated Luman/CREB3 serves as a novel axonally synthesized retrograde regeneration signal. Proc Natl Acad Sci USA. 2014;111(45):16142–7. Identifies Luman/CREB3 as a transcription factor that is locally synthesized and activated in response to axonal injury, acting as a retrogradely-trafficked signal to regulate regeneration. This study provides the first pieces of evidence directly linking an axonally-synthesized transcription factor to regenerative axon outgrowth.

  71. Mandolesi G, Madeddu F, Bozzi Y, Maffei L, Ratto GM. Acute physiological response of mammalian central neurons to axotomy: ionic regulation and electrical activity. FASEB J. 2004;18(15):1934–6.

    CAS  PubMed  Google Scholar 

  72. Cho Y, Cavalli V. HDAC5 is a novel injury-regulated tubulin deacetylase controlling axon regeneration. EMBO J. 2012;31(14):3063–78.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  73. Cho Y, Sloutsky R, Naegle KM, Cavalli V. Injury-induced HDAC5 nuclear export is essential for axon regeneration. Cell. 2013;155(4):894–908.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  74. • Cho Y, Park D, Cavalli V. Filamin A is required in injured axons for HDAC5 activity and axon regeneration. J Biol Chem. 2015;290(37):22759–70. Although histone deacetylases are classically associated with regulating chromatin in the nucleus, HDAC5 also plays a role in axons. Specifically, HDAC5 interacts with axonally-synthesized Filamin A after injury to modify the microtubule cytoskeleton.

  75. Hanz S, Perlson E, Willis D, Zheng J-Q, Massarwa R, Huerta JJ, et al. Axoplasmic importins enable retrograde injury signaling in lesioned nerve. Neuron. 2003;40(6):1095–104.

    Article  CAS  PubMed  Google Scholar 

  76. Perry RB, Doron-Mandel E, Iavnilovitch E, Rishal I, Dagan SY, Tsoory M, et al. Subcellular knockout of importin β1 perturbs axonal retrograde signaling. Neuron. 2012;75(2):294–305.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  77. Yudin D, Hanz S, Yoo S, Iavnilovitch E, Willis D, Gradus T, et al. Localized regulation of axonal RanGTPase controls retrograde injury signaling in peripheral nerve. Neuron. 2008;59(2):241–52.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  78. Perlson E, Hanz S, Ben-Yaakov K, Segal-Ruder Y, Seger R, Fainzilber M. Vimentin-dependent spatial translocation of an activated MAP kinase in injured nerve. Neuron. 2005;45(5):715–26.

    Article  CAS  Google Scholar 

  79. Perlson E, Michaelevski I, Kowalsman N, Ben-Yaakov K, Shaked M, Seger R, et al. Vimentin binding to phosphorylated Erk sterically hinders enzymatic dephosphorylation of the kinase. J Mol Biol. 2006;364(5):938–44.

    Article  CAS  PubMed  Google Scholar 

  80. Koyuncu OO, Perlman DH, Enquist LW. Efficient retrograde transport of pseudorabies virus within neurons requires local protein synthesis in axons. Cell Host Microbe. 2013;13(1):54–66.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  81. De Vos KJ, Grierson AJ, Ackerley S, Miller CCJ. Role of axonal transport in neurodegenerative diseases. Annu Rev Neurosci. 2008;31:151–73.

    Article  PubMed  Google Scholar 

  82. Millecamps S, Julien J-P. Axonal transport deficits and neurodegenerative diseases. Nat Rev Neurosci. 2013;14(3):161–76.

    Article  CAS  PubMed  Google Scholar 

  83. Iqbal K, Liu F, Gong C-X, Alonso ADC, Grundke-Iqbal I. Mechanisms of tau-induced neurodegeneration. Acta Neuropathol (Berl). 2009;118(1):53–69.

    Article  CAS  Google Scholar 

  84. Liu Y, Yoo M-J, Savonenko A, Stirling W, Price DL, Borchelt DR, et al. Amyloid pathology is associated with progressive monoaminergic neurodegeneration in a transgenic mouse model of Alzheimer’s disease. J Neurosci. 2008;28(51):13805–14.

    Article  CAS  PubMed  Google Scholar 

  85. Um JW, Kaufman AC, Kostylev M, Heiss JK, Stagi M, Takahashi H, et al. Metabotropic glutamate receptor 5 is a coreceptor for Alzheimer Aβ oligomer bound to cellular prion protein. Neuron. 2013;79(5):887–902.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  86. Poon WW, Carlos AJ, Aguilar BL, Berchtold NC, Kawano CK, Zograbyan V, et al. β-Amyloid (Aβ) oligomers impair brain-derived neurotrophic factor retrograde trafficking by down-regulating ubiquitin C-terminal hydrolase, UCH-L1. J Biol Chem. 2013;288(23):16937–48.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  87. Harold D, Abraham R, Hollingworth P, Sims R, Gerrish A, Hamshere ML, et al. Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer’s disease. Nat Genet. 2009;41(10):1088–93.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  88. DeMattos RB. Apolipoprotein E dose-dependent modulation of beta-amyloid deposition in a transgenic mouse model of Alzheimer’s disease. J Mol Neurosci MN. 2004;23(3):255–62.

    Article  CAS  Google Scholar 

  89. Shulman JM, Imboywa S, Giagtzoglou N, Powers MP, Hu Y, Devenport D, et al. Functional screening in Drosophila identifies Alzheimer’s disease susceptibility genes and implicates Tau-mediated mechanisms. Hum Mol Genet. 2014;23(4):870–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  90. Lambert JC, Ibrahim-Verbaas CA, Harold D, Naj AC, Sims R, Bellenguez C, et al. Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer’s disease. Nat Genet. 2013;45(12):1452–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Work in the Akins lab is funded by NIMH Grant R00MH90237. We thank Ryan Y. Korsak for the artwork in our figure. Michael R. Akins reports grants from NIMH during the conduct of study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael R. Akins.

Additional information

This article is part of the Topical Collection on Neurogenetics and Psychiatric Genetics.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korsak, L.I.T., Mitchell, M.E., Shepard, K.A. et al. Regulation of Neuronal Gene Expression by Local Axonal Translation. Curr Genet Med Rep 4, 16–25 (2016). https://doi.org/10.1007/s40142-016-0085-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40142-016-0085-2

Keywords

Navigation