Skip to main content

Advertisement

Log in

Dopamine and Gambling Disorder: Prospects for Personalized Treatment

  • Gambling (L Clark, Section Editor)
  • Published:
Current Addiction Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

To address variation in the severity of gambling disorder, this review evaluates the contribution of mesocorticolimbic dopamine neurons to potential behavioral endophenotypes, the influence of individual differences in the dopamine system on gambling and related behaviors, and the possible role for dopaminergic medications in the treatment of gambling disorder.

Recent Findings

Newer work has suggested that dopaminergic dysfunction can lead to increased reward anticipation and a greater sensitivity to uncertainty, which in turn may drive addictive gambling behaviors. In addition, increased impulsivity, a well-recognized risk factor for gambling disorder, has been linked to dopaminergic dysfunction. More recently, emerging evidence has suggested that dopaminergic medications can influence the discounting of delayed rewards.

Summary

Dopaminergic drugs that increase the salience of long-term over short-term goals may ameliorate symptoms of impulsive individuals with gambling disorder. More broadly, improved understanding of intermediate behavioral and other phenotypes with a defined neurobiological substrate may allow for personalized treatment of gambling disorder and other psychiatric conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Kozak K, Lucatch AM, Lowe DJE, Balodis IM, MacKillop J, George TP. The neurobiology of impulsivity and substance use disorders: implications for treatment. Ann N Y Acad Sci. 2018;5. https://doi.org/10.1111/nyas.13977. [Epub ahead of print].

  2. Zald DH, Treadway MT. Reward processing, Neuroeconomics, and psychopathology. Annu Rev Clin Psychol. 2017;13:471–95.

    Article  PubMed  PubMed Central  Google Scholar 

  3. George O, Koob G. Individual differences in the neuropsychopathology of addiction. Dialogues Clin Neurosci. 2018;19(3):217–29.

    Google Scholar 

  4. Maclaren VV, Fugelsang JA, Harrigan KA, Dixon MJ. The personality of pathological gamblers: a meta-analysis. Clin Psychol Rev. 2011;31(6):1057–67.

    Article  PubMed  Google Scholar 

  5. Suomi A, Dowling NA, Jackson AC. Problem gambling subtypes based on psychological distress, alcohol abuse and impulsivity. Addict Behav. 2014;39(12):1741–5.

    Article  PubMed  Google Scholar 

  6. Stewart SH, Zack M, Collins P, Klein RM. Subtyping pathological gamblers on the basis of affective motivations for gambling: relations to gambling problems, drinking problems, and affective motivations for drinking. Psychol Addict Behav. 2008;22(2):257–68.

    Article  PubMed  Google Scholar 

  7. Khazaal Y, Chatton A, Achab S, Monney G, Thorens G, Dufour M, et al. Internet gamblers differ on social variables: a latent class analysis. J Gambl Stud. 2017;33(3):881–97.

    Article  PubMed  Google Scholar 

  8. Challet-Bouju G, Hardouin JB, Renard N, Legauffre C, Valleur M, Magalon D, et al. A gamblers clustering based on their favorite gambling activity. J Gambl Stud. 2015;31(4):1767–88.

    Article  PubMed  Google Scholar 

  9. Heiskanen M, Toikka A. Clustering Finnish gambler profiles based on the money and time consumed in gambling activities. J Gambl Stud. 2016;32(2):363–77.

    Article  PubMed  Google Scholar 

  10. Bullock SA, Potenza MN. Pathological gambling: Neuropsychopharmacology and treatment. Curr Psychopharmacol. 2012;1(1). https://doi.org/10.2174/2211556011201010067.

  11. Blaszczynski A, Nower L. A pathways model of problem and pathological gambling. Addiction. 2002;97(5):487–99.

    Article  PubMed  Google Scholar 

  12. Volkow ND, Wise RA, Baler R. The dopamine motive system: implications for drug and food addiction. Nat Rev Neurosci. 2017;18(12):741–52.

    Article  CAS  PubMed  Google Scholar 

  13. Lind PA, Zhu G, Montgomery GW, Madden PA, Heath AC, Martin NG, et al. Genome-wide association study of a quantitative disordered gambling trait. Addict Biol. 2013;18(3):511–22.

    Article  CAS  PubMed  Google Scholar 

  14. Lobo DS, Aleksandrova L, Knight J, Casey DM. el-Guebaly N, Nobrega JN, et al. addiction-related genes in gambling disorders: new insights from parallel human and pre-clinical models. Mol Psychiatry. 2015;20(8):1002–10.

    Article  CAS  PubMed  Google Scholar 

  15. Sescousse G, den Ouden HE. Gambling rats and gambling addiction: reconciling the role of dopamine in irrationality. J Neurosci. 2013;33(8):3256–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. •• Sittig LJ, Carbonetto P, Engel KA, Krauss KS, Barrios-Camacho CM, Palmer AA. Genetic Background Limits Generalizability of Genotype-Phenotype Relationships. Neuron. 2016;91(6):1253–9 This important study demonstrates that the behavioral effects of genetic mutations introduced into rodents depend greatly on the specific rodent strain, pointing toward the importance of individual differences in humans.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lobo DS, Souza RP, Tong RP, Casey DM, Hodgins DC, Smith GJ, et al. Association of functional variants in the dopamine D2-like receptors with risk for gambling behaviour in healthy Caucasian subjects. Biol Psychol. 2010;85(1):33–7.

    Article  PubMed  Google Scholar 

  18. Lim S, Ha J, Choi SW, Kang SG, Shin YC. Association study on pathological gambling and polymorphisms of dopamine D1, D2, D3, and D4 receptor genes in a Korean population. J Gambl Stud. 2012;28(3):481–91.

    Article  PubMed  Google Scholar 

  19. Vallelunga A, Flaibani R, Formento-Dojot P, Biundo R, Facchini S, Antonini A. Role of genetic polymorphisms of the dopaminergic system in Parkinson's disease patients with impulse control disorders. Parkinsonism Relat Disord. 2012;18(4):397–9.

    Article  PubMed  Google Scholar 

  20. Hillemacher T, Frieling H, Buchholz V, Hussein R, Bleich S, Meyer C, et al. Alterations in DNA-methylation of the dopamine-receptor 2 gene are associated with abstinence and health care utilization in individuals with a lifetime history of pathologic gambling. Prog Neuro-Psychopharmacol Biol Psychiatry. 2015;63:30–4.

    Article  CAS  Google Scholar 

  21. Grant JE, Leppink EW, Redden SA, Odlaug BL, Chamberlain SR. COMT genotype, gambling activity, and cognition. J Psychiatr Res. 2015;68:371–6.

    Article  PubMed  Google Scholar 

  22. Yang BZ, Balodis IM, Lacadie CM, Xu J, Potenza MN. A preliminary study of DBH (encoding dopamine Beta-hydroxylase) genetic variation and neural correlates of emotional and motivational processing in individuals with and without pathological gambling. J Behav Addict. 2016;5(2):282–92.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Fagundo AB, Fernandez-Aranda F, de la Torre R, Verdejo-Garcia A, Granero R, Penelo E, et al. Dopamine DRD2/ANKK1 Taq1A and DAT1 VNTR polymorphisms are associated with a cognitive flexibility profile in pathological gamblers. J Psychopharmacol. 2014;28(12):1170–7.

    Article  CAS  PubMed  Google Scholar 

  24. Gray JC, MacKillop J. Genetic basis of delay discounting in frequent gamblers: examination of a priori candidates and exploration of a panel of dopamine-related loci. Brain Behav. 2014;4(6):812–21.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Voon V, Napier TC, Frank MJ, Sgambato-Faure V, Grace AA, Rodriguez-Oroz M, et al. Impulse control disorders and levodopa-induced dyskinesias in Parkinson's disease: an update. Lancet Neurol. 2017;16(3):238–50.

    Article  PubMed  Google Scholar 

  26. Moore TJ, Glenmullen J, Mattison DR. Reports of pathological gambling, hypersexuality, and compulsive shopping associated with dopamine receptor agonist drugs. JAMA Intern Med. 2014;174(12):1930–3.

    Article  PubMed  Google Scholar 

  27. Martini A, Dal Lago D, Edelstyn NMJ, Grange JA, Tamburin S. Impulse control disorder in Parkinson's disease: a meta-analysis of cognitive, affective, and motivational correlates. Front Neurol. 2018;9:654.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Santangelo G, Raimo S, Barone P. The relationship between impulse control disorders and cognitive dysfunctions in Parkinson's disease: a meta-analysis. Neurosci Biobehav Rev. 2017;77:129–47.

    Article  PubMed  Google Scholar 

  29. Bancos I, Nannenga MR, Bostwick JM, Silber MH, Erickson D, Nippoldt TB. Impulse control disorders in patients with dopamine agonist-treated prolactinomas and nonfunctioning pituitary adenomas: a case-control study. Clin Endocrinol. 2014;80(6):863–8.

    Article  Google Scholar 

  30. Martinkova J, Trejbalova L, Sasikova M, Benetin J, Valkovic P. Impulse control disorders associated with dopaminergic medication in patients with pituitary adenomas. Clin Neuropharmacol. 2011;34(5):179–81.

    Article  CAS  PubMed  Google Scholar 

  31. Cornelius JR, Tippmann-Peikert M, Slocumb NL, Frerichs CF, Silber MH. Impulse control disorders with the use of dopaminergic agents in restless legs syndrome: a case-control study. Sleep. 2010;33(1):81–7.

    PubMed  PubMed Central  Google Scholar 

  32. Voon V, Schoerling A, Wenzel S, Ekanayake V, Reiff J, Trenkwalder C, et al. Frequency of impulse control behaviours associated with dopaminergic therapy in restless legs syndrome. BMC Neurol. 2011;11:117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Dang D, Cunnington D, Swieca J. The emergence of devastating impulse control disorders during dopamine agonist therapy of the restless legs syndrome. Clin Neuropharmacol. 2011;34(2):66–70.

    CAS  PubMed  Google Scholar 

  34. Gendreau KE, Potenza MN. Detecting associations between behavioral addictions and dopamine agonists in the Food & Drug Administration's adverse event database. J Behav Addict. 2014;3(1):21–6.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Boileau I, Payer D, Chugani B, Lobo D, Behzadi A, Rusjan PM, et al. The D2/3 dopamine receptor in pathological gambling: a positron emission tomography study with [11C]-(+)-propyl-hexahydro-naphtho-oxazin and [11C]raclopride. Addiction. 2013;108(5):953–63.

    Article  PubMed  Google Scholar 

  36. Clark L, Stokes PR, Wu K, Michalczuk R, Benecke A, Watson BJ, et al. Striatal dopamine D(2)/D(3) receptor binding in pathological gambling is correlated with mood-related impulsivity. Neuroimage. 2012;63(1):40–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Joutsa J, Voon V, Johansson J, Niemela S, Bergman J, Kaasinen V. Dopaminergic function and intertemporal choice. Transl Psychiatry. 2015;5:e491.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. van Holst RJ, Sescousse G, Janssen LK, Janssen M, Berry AS, Jagust WJ, et al. Increased striatal dopamine synthesis capacity in gambling addiction. Biol Psychiatry. 2018;83(12):1036–43.

    Article  CAS  PubMed  Google Scholar 

  39. Majuri J, Joutsa J, Johansson J, Voon V, Alakurtti K, Parkkola R, et al. Dopamine and opioid neurotransmission in behavioral addictions: a comparative PET study in pathological gambling and binge eating. Neuropsychopharmacology. 2017;42(5):1169–77.

    Article  CAS  PubMed  Google Scholar 

  40. Boileau I, Payer D, Chugani B, Lobo DS, Houle S, Wilson AA, et al. In vivo evidence for greater amphetamine-induced dopamine release in pathological gambling: a positron emission tomography study with [(11)C]-(+)-PHNO. Mol Psychiatry. 2014;19(12):1305–13.

    Article  CAS  PubMed  Google Scholar 

  41. Joutsa J, Johansson J, Niemela S, Ollikainen A, Hirvonen MM, Piepponen P, et al. Mesolimbic dopamine release is linked to symptom severity in pathological gambling. Neuroimage. 2012;60(4):1992–9.

    Article  CAS  PubMed  Google Scholar 

  42. Linnet J. The Iowa gambling task and the three fallacies of dopamine in gambling disorder. Front Psychol. 2013;4:709.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Potenza MN. Searching for replicable dopamine-related findings in gambling disorder. Biol Psychiatry. 2018;83(12):984–6.

    Article  PubMed  Google Scholar 

  44. Clark L, Boileau I, Zack M. Neuroimaging of reward mechanisms in gambling disorder: an integrative review. Mol Psychiatry. 2018;13. https://doi.org/10.1038/s41380-018-0230-2. [Epub ahead of print].

  45. • Luijten M, Schellekens AF, Kuhn S, Machielse MW, Sescousse G. Disruption of reward processing in addiction : an image-based meta-analysis of functional magnetic resonance imaging studies. JAMA Psychiatry. 2017;74(4):387–98 This meta-analysis nicely summarizes the neuroimaging literature related to addiction, across both substance use and pathological gambling.

    Article  PubMed  Google Scholar 

  46. Campbell-Meiklejohn D, Simonsen A, Scheel-Kruger J, Wohlert V, Gjerloff T, Frith CD, et al. In for a penny, in for a pound: methylphenidate reduces the inhibitory effect of high stakes on persistent risky choice. J Neurosci. 2012;32(38):13032–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zack MH, Lobo DS, Biback C, Fang T, Smart K, Tatone D, et al. Parallel role for the dopamine D1 receptor in gambling and amphetamine reinforcement in healthy volunteers. J Psychopharmacol. 2017;31(1):31–42.

    Article  CAS  PubMed  Google Scholar 

  48. Rigoli F, Rutledge RB, Chew B, Ousdal OT, Dayan P, Dolan RJ. Dopamine increases a value-independent gambling propensity. Neuropsychopharmacology. 2016;41(11):2658–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Pine A, Shiner T, Seymour B, Dolan RJ. Dopamine, time, and impulsivity in humans. J Neurosci. 2010;30(26):8888–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Eisenegger C, Knoch D, Ebstein RP, Gianotti LR, Sandor PS, Fehr E. Dopamine receptor D4 polymorphism predicts the effect of L-DOPA on gambling behavior. Biol Psychiatry. 2010;67(8):702–6.

    Article  CAS  PubMed  Google Scholar 

  51. Norbury A, Manohar S, Rogers RD, Husain M. Dopamine modulates risk-taking as a function of baseline sensation-seeking trait. J Neurosci. 2013;33(32):12982–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Tremblay AM, Desmond RC, Poulos CX, Zack M. Haloperidol modifies instrumental aspects of slot machine gambling in pathological gamblers and healthy controls. Addict Biol. 2011;16(3):467–84.

    Article  CAS  PubMed  Google Scholar 

  53. Porchet RI, Boekhoudt L, Studer B, Gandamaneni PK, Rani N, Binnamangala S, et al. Opioidergic and dopaminergic manipulation of gambling tendencies: a preliminary study in male recreational gamblers. Front Behav Neurosci. 2013;7:138.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Janssen LK, Sescousse G, Hashemi MM, Timmer MH, ter Huurne NP, Geurts DE, et al. Abnormal modulation of reward versus punishment learning by a dopamine D2-receptor antagonist in pathological gamblers. Psychopharmacology. 2015;232(18):3345–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ojala KE, Janssen LK, Hashemi MM, Timmer MHM, Geurts DEM, Ter Huurne NP, et al. Dopaminergic drug effects on probability weighting during risky decision making. eNeuro. 2018;5(2). https://doi.org/10.1523/ENEURO.0330-18.2018.

  56. Etminan M, Sodhi M, Samii A, Procyshyn RM, Guo M, Carleton BC. Risk of gambling disorder and impulse control disorder with aripiprazole, Pramipexole, and Ropinirole: a Pharmacoepidemiologic study. J Clin Psychopharmacol. 2017;37(1):102–4.

    Article  CAS  PubMed  Google Scholar 

  57. Yau YH, Potenza MN. Gambling disorder and other behavioral addictions: recognition and treatment. Harv Rev Psychiatry. 2015;23(2):134–46.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Bartley CA, Bloch MH. Meta-analysis: pharmacological treatment of pathological gambling. Expert Rev Neurother. 2013;13(8):887–94.

    Article  CAS  PubMed  Google Scholar 

  59. Arnsten AF, Wang M. Targeting prefrontal cortical Systems for Drug Development: potential therapies for cognitive disorders. Annu Rev Pharmacol Toxicol. 2016;56:339–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Cools R, D'Esposito M. Inverted-U-shaped dopamine actions on human working memory and cognitive control. Biol Psychiatry. 2011;69(12):e113–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. D'Esposito M, Postle BR. The cognitive neuroscience of working memory. Annu Rev Psychol. 2015;66:115–42.

    Article  PubMed  Google Scholar 

  62. Cools R, Gibbs SE, Miyakawa A, Jagust W, D'Esposito M. Working memory capacity predicts dopamine synthesis capacity in the human striatum. J Neurosci. 2008;28(5):1208–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kimberg DY, D'Esposito M, Farah MJ. Effects of bromocriptine on human subjects depend on working memory capacity. Neuroreport. 1997;8(16):3581–5.

    Article  CAS  PubMed  Google Scholar 

  64. Cools R, Barker RA, Sahakian BJ, Robbins TW. L-Dopa medication remediates cognitive inflexibility, but increases impulsivity in patients with Parkinson's disease. Neuropsychologia. 2003;41(11):1431–41.

    Article  PubMed  Google Scholar 

  65. Cools R, Sheridan M, Jacobs E, D'Esposito M. Impulsive personality predicts dopamine-dependent changes in frontostriatal activity during component processes of working memory. J Neurosci. 2007;27(20):5506–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Kayser AS, Allen DC, Navarro-Cebrian A, Mitchell JM, Fields HL. Dopamine, corticostriatal connectivity, and intertemporal choice. J Neurosci. 2012;32(27):9402–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. • Cools R. The costs and benefits of brain dopamine for cognitive control. Wiley Interdiscip Rev Cogn Sci. 2016;7(5):317–29 This recent review nicely summarizes the role of dopamine in the cognitive process about which we know the most, and places it in the context of other behaviors.

    Article  PubMed  Google Scholar 

  68. Floresco SB. Prefrontal dopamine and behavioral flexibility: shifting from an "inverted-U" toward a family of functions. Front Neurosci. 2013;7:62.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Potenza MN. The neural bases of cognitive processes in gambling disorder. Trends Cogn Sci. 2014;18(8):429–38.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Petry NM. Substance abuse, pathological gambling, and impulsiveness. Drug Alcohol Depend. 2001;63(1):29–38.

    Article  CAS  PubMed  Google Scholar 

  71. Bickel WK, Koffarnus MN, Moody L, Wilson AG. The behavioral- and neuro-economic process of temporal discounting: A candidate behavioral marker of addiction. Neuropharmacology. 2014;76(Pt B):518–27.

    Article  CAS  PubMed  Google Scholar 

  72. Andrade LF, Petry NM. Delay and probability discounting in pathological gamblers with and without a history of substance use problems. Psychopharmacology. 2012;219(2):491–9.

    Article  CAS  PubMed  Google Scholar 

  73. Mackillop J, Miller JD, Fortune E, Maples J, Lance CE, Campbell WK, et al. Multidimensional examination of impulsivity in relation to disordered gambling. Exp Clin Psychopharmacol. 2014;22(2):176–85.

    Article  PubMed  PubMed Central  Google Scholar 

  74. • Miedl SF, Peters J, Buchel C. Altered neural reward representations in pathological gamblers revealed by delay and probability discounting. Arch Gen Psychiatry. 2012;69(2):177–86 This study demonstrates that not all forms of discounting are affected in subjects with gambling disorder.

    Article  PubMed  Google Scholar 

  75. Miedl SF, Wiswede D, Marco-Pallares J, Ye Z, Fehr T, Herrmann M, et al. The neural basis of impulsive discounting in pathological gamblers. Brain Imaging Behav. 2015;9(4):887–98.

    Article  PubMed  Google Scholar 

  76. •• Peters J, Buchel C. The neural mechanisms of inter-temporal decision-making: understanding variability. Trends Cogn Sci. 2011;15(5):227–39 This excellent review introduces and evaluates different potential mechanisms that account for individual differences in delay discounting.

    Article  PubMed  Google Scholar 

  77. Miedl SF, Buchel C, Peters J. Cue-induced craving increases impulsivity via changes in striatal value signals in problem gamblers. J Neurosci. 2014;34(13):4750–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Buckholtz JW, Treadway MT, Cowan RL, Woodward ND, Li R, Ansari MS, et al. Dopaminergic network differences in human impulsivity. Science. 2010;329(5991):532.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. de Wit H, Enggasser JL, Richards JB. Acute administration of d-amphetamine decreases impulsivity in healthy volunteers. Neuropsychopharmacology. 2002;27(5):813–25.

    Article  PubMed  Google Scholar 

  80. Bechara A. Decision making, impulse control and loss of willpower to resist drugs: a neurocognitive perspective. Nat Neurosci. 2005;8(11):1458–63.

    Article  CAS  PubMed  Google Scholar 

  81. Badre D, Kayser AS, D'Esposito M. Frontal cortex and the discovery of abstract action rules. Neuron. 2010;66(2):315–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Kayser AS, Vega T, Weinstein D, Peters J, Mitchell JM. Right inferior frontal cortex activity correlates with tolcapone responsivity in problem and pathological gamblers. NeuroImage Clin. 2017;13:339–48.

    Article  PubMed  Google Scholar 

  83. Hare TA, Camerer CF, Rangel A. Self-control in decision-making involves modulation of the vmPFC valuation system. Science. 2009;324(5927):646–8.

    Article  CAS  PubMed  Google Scholar 

  84. Peters J, Buchel C. Episodic future thinking reduces reward delay discounting through an enhancement of prefrontal-mediotemporal interactions. Neuron. 2010;66(1):138–48.

    Article  CAS  PubMed  Google Scholar 

  85. Chen J, Lipska BK, Halim N, Ma QD, Matsumoto M, Melhem S, et al. Functional analysis of genetic variation in catechol-O-methyltransferase (COMT): effects on mRNA, protein, and enzyme activity in postmortem human brain. Am J Hum Genet. 2004;75(5):807–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Yavich L, Forsberg MM, Karayiorgou M, Gogos JA, Mannisto PT. Site-specific role of catechol-O-methyltransferase in dopamine overflow within prefrontal cortex and dorsal striatum. J Neurosci. 2007;27(38):10196–209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Gogos JA, Morgan M, Luine V, Santha M, Ogawa S, Pfaff D, et al. Catechol-O-methyltransferase-deficient mice exhibit sexually dimorphic changes in catecholamine levels and behavior. Proc Natl Acad Sci U S A. 1998;95(17):9991–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Mitchell JM, Weinstein D, Vega T, Kayser AS. Dopamine, time perception, and future time perspective. Psychopharmacology. 2018;235(10):2783–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Kayser AS, Mitchell JM, Weinstein D, Frank MJ. Dopamine, locus of control, and the exploration-exploitation tradeoff. Neuropsychopharmacology. 2015;40(2):454–62.

    Article  CAS  PubMed  Google Scholar 

  90. Coker AR, Weinstein D, Vega T, Miller C, Kayser AS, Mitchell JM. The effects of the COMT inhibitor tolcapone and sex on alcohol consumption in individuals with alcohol use disorder (AUD). Program No. 418.02. Neuroscience Meeting Planner. San Diego, CA: Society for Neuroscience, 2018.

  91. Arnsten AF, Girgis RR, Gray DL, Mailman RB. Novel dopamine therapeutics for cognitive deficits in schizophrenia. Biol Psychiatry. 2017;81(1):67–77.

    Article  CAS  PubMed  Google Scholar 

  92. Gillan CM, Kosinski M, Whelan R, Phelps EA, Daw ND. Characterizing a psychiatric symptom dimension related to deficits in goal-directed control. eLife. 2016;5. https://doi.org/10.7554/eLife.11305.

  93. Deserno L, Huys QJ, Boehme R, Buchert R, Heinze HJ, Grace AA, et al. Ventral striatal dopamine reflects behavioral and neural signatures of model-based control during sequential decision making. Proc Natl Acad Sci U S A. 2015;112(5):1595–600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Kroemer NB, Lee Y, Pooseh S, Eppinger B, Goschke T. Smolka MN. Neuroimage: L-DOPA reduces model-free control of behavior by attenuating the transfer of value to action; 2018.

    Google Scholar 

  95. Wunderlich K, Smittenaar P, Dolan RJ. Dopamine enhances model-based over model-free choice behavior. Neuron. 2012;75(3):418–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Thanks go to Howard Fields and Jan Peters for reading through an earlier version of this manuscript, and to the colleagues and research subjects who contributed to our studies included in this review. Of course, any errors belong to the author alone.

Funding

This work was supported by NIH grants AA026587 and MH112775.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Kayser.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Gambling

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kayser, A. Dopamine and Gambling Disorder: Prospects for Personalized Treatment. Curr Addict Rep 6, 65–74 (2019). https://doi.org/10.1007/s40429-019-00240-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40429-019-00240-8

Keywords

Navigation