Elsevier

Brain Research

Volume 574, Issues 1–2, 6 March 1992, Pages 105-119
Brain Research

Ultrastructural concomitants of anoxic injury and early post-anoxic recovery in rat optic nerve

https://doi.org/10.1016/0006-8993(92)90806-KGet rights and content
Under a Creative Commons license
open archive

Abstract

To study the effects of anoxia on CNS white matter, we examined the ultrastructure of axons and glial cells in a white matter tract, the rat optic nerve, that was subjected to a standardized anoxic insult in vitro. Previous electrophysiological studies showed that in this model, action potential conduction is rapidly abolished by anoxia, and conduction is restored after reoxygenation in about 30% of axons following a 60-min anoxic period. The present study examined the ultrastructural correlates of anoxic injury and early post-anoxic recovery in this model. Optic nerves examined immediately following 60 min of anoxia displayed numerous large, apparently empty zones located within myelin sheaths adjacent to the axon. The myelin remained compact and retained its periodicity. In some regions, the extracellular space was enlarged. There was mitochondrial swelling with loss of normal cristae. There was also loss of microtubules and, to a smaller degree, of neurofilaments in large-diameter axons. Some nodes of Ranvier in anoxic optic nerves displayed detachment of terminal oligodendroglial loops or retraction of the myelin from the node; the presence of tongue-like processes, extending from nearby cells under the detached myelin loops, suggested a possible role of cell-mediated damage to the paranodal myelin. Bundles of dense astrocyte processes were present, and there was vesicular degeneration of perinodal astrocyte processes. In optic nerves that had been permitted to recover for 60 min in oxygenated Ringers following the anoxic period, empty zones were only rarely observed within myelin sheaths and, when present, were smaller than in optic nerves immediately following 60 min of anoxia. The axoplasm of large fibers continued to show loss of microtubules and neurofilaments, as well as mitochondrial swelling. Myelin appeared normal, and only rare paranodal oligodendroglial processes remained unattached from the axon membrane. These results provide support for the idea that, during anoxia, myelinated axons are damaged with significant injury to cytoskeletal elements, probably due to an influx of calcium. The ultrastructural results, together with our earlier observations on the physiological correlates of anoxia and re-oxygenation, suggest that the development of intramyelinic spaces or damage to paranodes lead to conduction block in the anoxic optic nerve. These results also suggest that repair of these structural abnormalities may provide a morphological basis for the early recovery of conduction that occurs after re-oxygenation.

Keywords

Anoxia
Astrocyte
Axon
Myelin
Oligodendrocyte
Stroke

Cited by (0)