Laminar analysis of spindles and of spikes of the spike and wave discharge of feline generalized penicillin epilepsyAnalyse laminaire des fuseaux et des pointes des décharges de pointe-ondes dans l'épilepsie généralisée à la pénicilline chez le chat

https://doi.org/10.1016/0013-4694(82)90101-8Get rights and content

Abstract

Intracortical laminar profiles of spindles and spikes of spike and wave complexes in feline generalized penicillin epilepsy were studied using two methods: (i) sequential microelectrode recordings at various cortical depths, and (ii) simultaneous recordings at multiple cortical depths using a fine multicontact electrode. Raw EEG data and EEG epochs averaged with respect to peaks of surface EEG waves were analyzed. Spindles and the spikes of the spike and wave complexes showed similar laminar profiles. This supports the hypothesis that the two are basically the same cortical electrophysiological phenomenon, the spike being a spindle wave enhanced and slightly altered because of the penicillin-induced increased cortical excitability. The latter causes the weight of the thalamic input to shift from superficial to more deep lying synapses. Both surface negative and surface positive phases of spindles and of spikes of spike and wave complexes show similar laminar profiles, those of the former suggesting activation of excitatory synapses in the superficial cortical layers, those of the latter suggesting activation of more deeply located excitatory synapses. The profiles generally conform to the dipole hypothesis of cortical electrogenesis and suggest that spindles and spikes of spike and wave complexes are generated by the same pyramidal neurons, probably through activation of the same sets of synapses. Some inconstant and relatively minor deviations of the laminar profiles from the pattern predicted by the dipole theory of cortical electrogenesis were encountered and are tentatively explained in the light of some of the complexities of the microanatomical organization of mammalian neocortex.

Résumé

Les auteurs étudient les profils intra-corticaux laminaires des fuseaux et des pointes des complexes pointe-ondes dans l'épilepsie généralisée à la pénicilline chez le chat à l'aide de deux méthodes: (i) enrigistrement séquentiel par micro-électrodes à différentes profondeurs du cortex, et (ii) enregistrement simultané à de multiples profondeurs corticales au moyen d'une électrode fine à contacts multiples. Les données EEG brutes et les époques EEG moyennes sont analysées par rapport aux pics des ondes EEG de surface. Les fuseaux et les pointes des complexes pointe-ondes montrent des profils laminaires semblables. Ceci est en faveur de l'hypothèse suivant laquelle ces deux phénomènes constituent fondamentalement un même phénomène électro-physiologique cortical, la pointe étant une onde l'un fuseau agrandie et légèrement déformée du fait de l'accroissement de l'excitabilité corticale induite par la pénicilline. Ceci fait que le poids de l'afférence thalamique varie des synapses superficielles aux synapses plus profondes. Les phases surface négatives et surface positives des fuseaux et des pointes des complexes pointe-ondes montrent des profils laminaires semblables, celles des phases négatives soulevant l'hypothèse d'une activation des synapses excitatrices dans les couches corticales superficielles, celles des phases positives soulevant l'hypothèse d'une activation des synapses excitatrices localisées plus profondément. Ces profils sont dans l'ensemble conformes à l'hypothèse d'un dipole à l'origine de l'électrogénèse corticale et suggèrent que les fuseaux et les pointes des complexes pointe-ondes prennent leur origine dans les mêmes neurones pyramidaux, probablement au travers d'une activation des mêmes réseaux de synapses. Quelques déviations inconstantes et relativement mineures par rapport aux profils laminaires du pattern prédit par la théorie du dipole de l'électrogénèse corticale se rencontrent et sont provisoirement expliquées à la lumière de certaines des complexités de l'organisation microanatomique de néo-cortex des mammifères.

References (27)

Cited by (31)

  • A network approach to investigate the bi-hemispheric synchrony in absence epilepsy

    2019, Clinical Neurophysiology
    Citation Excerpt :

    Absence seizures associated with bilaterally synchronized 3 Hz spike-and-wave discharges (SWDs) are prevalent in a form of genetic generalized epilepsy (Berg et al., 2010), referred to as childhood absence epilepsy (CAE). Early studies questioned based on the feline generalized penicillin epilepsy animal model whether SWDs are focal at onset or generalized and whether their origin is cortical or thalamic (e.g. Avoli and Gloor, 1982; Kostopoulos et al., 1982). Later studies in genetic rat models of CAE, provided experimental evidence that implicated a cortical onset zone in the deep layers of the somatosensory cortex followed by cortico-thalamo-cortical network interactions to maintain the SWDs (Meeren et al., 2002; Polack et al., 2007; Lüttjohann and van Luijtelaar, 2015).

  • Properties of afterdischarges from electrical stimulation in patients with epilepsy

    2017, Epilepsy Research
    Citation Excerpt :

    As the exhausted excitatory pyramidal neurons and inhibitory interneurons recover gradually, the net effect is from the subtraction of two opposite activities: ADs are sustained and evolved or ADs are terminated. Both polyspikes and spike-waves have an intermittent slow wave component, which represents the long phase of membrane repolarization followed by hyperpolarization (Kandel and Spencer, 1961; Kostopoulos et al., 1982; Sugaya et al., 1964). Thus, ADs will be more likely to terminate automatically in polyspikes and spike-waves.

  • Pharmacologically Induced Animal Models of Absence Seizures

    2017, Models of Seizures and Epilepsy: Second Edition
  • Benign rolandic and occipital epilepsies of childhood

    2012, Sleep Medicine Clinics
    Citation Excerpt :

    An increase of the age-related, area-specific cortical excitability has been hypothesized to be at the basis of the origin of BECTS.31,47,48 This increased excitability of the cortex is able to transform the thalamic volley that normally induces sleep spindles in a mechanism inducing epileptic discharges, as shown in animals49,50 and in humans.51 Due to the age-related regional hyperexcitability, the cortex could react with spikes to the thalamocortical volleys that generate spindles, even in physiologic conditions in predisposed children.

  • Reduced NREM sleep instability in benign childhood epilepsy with centro-temporal spikes

    2010, Clinical Neurophysiology
    Citation Excerpt :

    An increase of the age-related, area-specific cortical excitability has been hypothesized to be at the basis of the origin of BERS (Ferri et al., 2000; Guerrini et al., 1997; Tassinari et al., 1988). This increased excitability of the cortex is able to transform the thalamic volley that normally induces sleep spindles in a mechanism inducing epileptiform discharges, as shown in animals (Kostopoulos et al., 1982; Steriade and Amzica, 1994) and in humans (Kellaway et al., 1980; Kellaway, 1985). Due to the age-related regional hyperexcitability, the cortex could react with spikes to the thalamocortical volleys that generate spindles in physiological conditions in predisposed children.

View all citing articles on Scopus

This work was supported by Grant MT-3140 awarded by the Medical Research Council of Canada to Dr. P. Gloor.

2

Dr. G. Kostopoulos is an MRC Scholar.

We thank to Mrs. Schiller and Mr. E. Puodziunas for technical assistance, Miss G. Robillard and Mrs. K. Douglas for secretarial assistance and Dr. R. Dykes for his helpful comments in preparing this paper.

3

Dr. M. Avoli was a NATO Fellow.

4

Dr. Andrea Pellegrini's present address is: Clinica Neurologica dell'Università, via Giustiani 1, 35100 Padova, Italy.

View full text