Elsevier

Vision Research

Volume 6, Issues 11–12, December 1966, Pages 645-656
Vision Research

The functional relation of visual evoked response and reaction time to stimulus intensity

https://doi.org/10.1016/0042-6989(66)90076-9Get rights and content

Abstract

Latency of the average visual evoked response (VER) and motor reaction time (RT) were studied as a function of stimulus intensity for brief photic stimuli subtending 4° and 1.5 of visual angle in two subjects. Both VER latency and RT showed an accelerating increase for each tenfold diminution in intensity down to the region of foveal threshold. Below foveal threshold no responses were obtained for the 1.5° stimuli; there was an inflexion in the VER latency and RT curve of responses to the 4° stimuli. Over the photopic range of intensities, VER latency and RT were closely described by power functions varying in exponent from −0.29 to −0.44. The values for VER were −0.36 for the 4° stimuli and −0.40 for the 1.5° stimuli, which were significantly different ( p < 0.01). Although latency of VER was the same for both subjects for each stimulus condition, RT showed a consistent difference between subjects of about 25 msec. RT is considered to be determined by at least two independent mechanisms. The first, retinal in location, follows a power function of intensity; the second is related to variability in efferent processes.

Résumé

Onétudie la latence moyenne de la réponse visuelleévoquée (VER) et du temps de réaction motrice (RT) en fonction de l'intensitédu stimulus pour de brefs stimuli lumineux sous-tendant 4° et 1,5° d'angle visuel sur deux sujets. La latence de VER et RT montrent tous deux un accroissement accélérépour chaque diminution d'intensitéde 10 fois jusqu'àla région du seuil fovéal. En dessous du seuil fovéal on n'obtient pas de réponse pour les stimuli de 1,5°; il y a une inflexion dans les courbes de latence de VER et de RT pour les stimuli de 4°. Dans le domaine photopique d'intensité, la latence de VER et RT sont décrits avec précision par des fonctions de puissances dont l'exposant varie de −0,29à−0,44. Les valeurs pour VER sont −0,36 pour les stimuli de 4° et −0,40 pour ceux de 1,5°, ce qui diffère d'une façon significative ( p < 0,01). Quoique la latence de VER soit la meˆme pour les deux sujets dans chaque condition de stimulus, RT donne une différence entre les sujets de 25 msec environ. On pense que RT est déterminépar deux mécanismes indépendants au moins. Le premier, situédans la rétine, suit une fonction de puissance de l'intensité; le second est reliéàla variabilitédes processus efférents.

Zusammenfassung

Die Latenzzeit der durchschnittlichen visuell erzeugten Antwort (VER) und die motorische Reaktionszeit (RT) wurden als eine Funktion der Reizintensität bei zwei Versuchspersonen für kurze Lichtreize mit 4° und 1,5° Sehwinkel gemessen. Sowohl die VER-Latenzzeit als auch die RT nahmen bei einer jeweils zehnfachen Verringerung der Intensität bis in die Gegend der fovealen Schwelle immer schneller zu. Unterhalb der fovealen Schwelle wurde für den 1,5°-Reiz keine Antwort erhalten. Bei den VER-Latenzzeiten und RT-Kurven der Antworten auf einen 4°-Reiz zeigte sich eine Biegung. Im photopischen Bereich werden die VER-Latenzzeit und RT gut durch Potenzfunktionen mit einem Exponenten zwischen −0,29 und −0,44 beschrieben. Die Werte für die VER waren mit −0,36 für den 4°-Reiz und −0,40 für den 1,5°-Reizsignifikant verschieden ( p < 0,01). Obwohl die Latenz der VER für beide Personen bei allen Reizanordnungen gleich war, zeigte die RT beständig einen Unterschied von etwa 25 msec zwischen den beiden Versuchspersonen. Es wird angenommen, dass die RT durch mindestens zwei unabhängige Faktoren bestimmt wird. Der erste, retinalen Ursprungs, lässt sich als Funktion der Intensität durch eine Potenzfunktion beschreiben, der zweite hängt mit der Variabilität der efferenten Prozesse zusammen.

Pезюме

Лaтeтный пepиoд ypeднeннoй зpитeльнoй BызBaннoй peaкции (VER) и Bpeмeи дBигaтeльнoй peaкции (RT) изyхaлиь B их зaBиимoти oт интeниBнoти кpaтких BeтoBых тимyлoB, Bидимых пoд yглoм 4° и 1,5° yглoBых гpaдyoB, qna дByх ипытyeмых. Лaтeнтныe пepиoды oбoих этих пoкaзaтeлeй (VER и RT) oбнapyжиaют yкopяющeeя yBeлихeниe для кaждoгo дeятикpaтнoгo yмeньшeния интeqnиBнoти дo пpeдeлoB фoBeaльнoгo пopoгa. eли интeниBнoть oпyкaлaь нижe пopoгa фoBeaльнoй oблaти, тo для тимyлoB 1,5° peaкции нe были пoлyхeы; для тимyлoB B 4° здeь oтмeхaля пepeгиб кpиBых для лaтeнтных пepиoдoь VER и RT. Для oблaти фoтoпихeких интeниBнoтeй лaтeнтньe пepиoды VER и RT тoхнo мoгли быть oпиaны пoмoщью тeпeннoй фyнкции пoкaзaтeлями Bapииpyющми oт −0,29 дo −0,44. Beлихинa VER былa −0,36° для тимyлa 4° и −0,40 для тимyлa 1,5°, пpи этoм paзлихия их дoтoBepны ( p < 0,01). Хoтя лaтeнтныe пepиoды VER были oдинaкoBы для oбoих ипытyeмых, RT oбнapyжиBaeт yщeтBeннoe paзлихиe для кaждoгo из ипытyeмых, пpнблизитeльнo paBнoe 25 мeк. apeдпoлaгaeтя, ъмo RT oпpeдeляeтя пo кpaйнeй мepe дByмя нeзaBиимыми мeхaнизмaми. ПepBый—лoкaлизaция нa eтхaткeлeдyeт зa тeпeннoй фyнкциeй интeниBнoти; Bтopoй—oтнoитя к Bapиaбeльнoти зффepeнтых пpoцeoB.

Reference (29)

  • AibaT.S. et al.

    Relation of brightness to duration and luminance under light- and dark-adaptation

    Vision Res.

    (1964)
  • HughesJ.R.

    Responses from the visual cortex of unanesthetized monkeys

    Int. Rev. Neurobiol.

    (1964)
  • TepasD.I. et al.

    Properties of evoked visual potentials

    Vision Res.

    (1962)
  • AdrianE.D. et al.

    The action of light on the eye. Part 1. The discharge of impulses in the optic nerve and its relation to the electric changes in the retina

    J. Physiol.

    (1927)
  • BartlettN.R. et al.

    Effect of flash and field luminance upon human reaction time

    J. opt. Soc. Am.

    (1954)
  • BernhardC.G.

    Contributions to the neurophysiology of the optic pathway

    Acta physiol. scand.

    (1940)
  • CattellJ.McK.

    The influence of the intensity of the stimulus on the length of the reaction time

    Brain

    (1985)
  • CostaL.D. et al.

    Comparison of electromyographic and microswitch measures of auditory reaction time

    Percept. Mot. Skills Res. Exch.

    (1965)
  • CruikshankR.M.

    Human occipital brain potentials as effected by intensity-duration variables of visual stimulation

    J. exp. Psychol.

    (1937)
  • DiamondS.P.

    Input-output relations

    Am. N.Y. Acad. Sci.

    (1964)
  • DurupG. et al.

    L'électrencéphalogramme de l'homme. Observations psychophysioloques relativesàl'action des stimuli visuels et auditifs

    Année psychol.

    (1936)
  • EkmanG. et al.

    Brightness scales for monochromatic light

    Scand. J. Psychol.

    (1960)
  • HanesR.M.

    The construction of subjective brightness scales from fractionation data: a validation

    J. exp. Psychol.

    (1949)
  • HartlineH.K.

    Intensity and duration in the excitation of single photoreceptor units

    J. cell. comp. Physiol.

    (1934)
  • Cited by (190)

    • Speed of processing in the primary motor cortex: A continuous theta burst stimulation study

      2014, Behavioural Brain Research
      Citation Excerpt :

      Specifically, a reduction in the required threshold for activation or an increase in the rate of rise excitability in the motor cortex in temporally urgent situations may assist in reducing reaction time based on the demands of the stimulation. Stimulus intensity has long been demonstrated to have a profound effect on reaction time [16–20], although the direct contribution of central nervous system (CNS) areas that may be involved in this intensity-based modulation has not been fully understood. Previous work utilizing electroencephalography (EEG) demonstrated that event related potentials (ERP) relative to a high intensity, non-noxious electrical stimulation evoked a large negativity centralized over pre-motor areas approximately 75 ms prior to the onset of muscle activity in a simple reaction time task [21].

    • Does temporal preparation increase the rate of sensory information accumulation?

      2011, Acta Psychologica
      Citation Excerpt :

      Hence, in this regard, both accounts lead to the same conclusion, that is that temporal preparation does not affect the rate of sensory accumulation. However, given that stages are carried out strictly serially – as assumed in serial stage models – and stimulus intensity affects perceptual processing even at the retinal level (e.g., Mansfield & Daugman, 1978; Vaughan, Costa, & Gilden, 1966; see, however, Ulrich & Stapf, 1984), temporal preparation may affect a stage after sensory information accumulation, that is late perceptual or even post-perceptual stages (cf. Hackley, 2009; Los & Schut, 2008). Based on the present results, one cannot rule out such a post-accumulation account.

    • A generalized method to estimate waveforms common across trials from EEGs

      2010, NeuroImage
      Citation Excerpt :

      We assumed that the delays of waveform-1s slightly fluctuate after the stimulus onsets and the delays of waveform-2s in the Go trials slightly fluctuate around the response onsets. Therefore, based on reports that examined the variable latencies of visual evoked potentials (Mihaylova et al., 1999; Vassilev et al., 2002; Vaughan et al., 1966), we searched for the delays of waveform-1s from 0 to 50 ms after the stimulus onsets and the delays of waveform-2s in the Go trials from - 25 to 25 ms after the response onsets. We searched for the delays of the other waveforms setting the initial delays to Gaussian random numbers [mean = 180 (ms), SD = 50 (ms)].

    • Temporal decomposition of EEG during a simple reaction time task into stimulus- and response-locked components

      2008, NeuroImage
      Citation Excerpt :

      Then, we adopt the assumption of this study, which is that the stimulus- and response-locked components are overlapping and the delay of the response-locked component is somehow responsible for the variability of the RTs. However, it is not appropriate additionally to assume that the waveforms of the stimulus- and response-locked components are constant or independent of each other, because, in some cases, peak amplitudes or latencies in the components may vary more or less with RTs (Mihaylova et al., 1999; Vassilev et al., 2002; Vaughan et al., 1966). Note that s(t) and r(t) in Eq. (1) represent the average waveforms of the stimulus- and response-locked components, and that trial-to-trial variability of these components is included in the noise term of Eq. (1).

    View all citing articles on Scopus

    Read in part at the 72nd Annual Meeting of the American Psychological Association, September 1964.

    2

    Also at Department of Psychology, Queens College, City University of New York.

    View full text