Trends in Neurosciences
Volume 16, Issue 9, September 1993, Pages 359-365
Journal home page for Trends in Neurosciences

Review
The TINS/TiPS Lecture the molecular biology of mammalian glutamate receptor channels

https://doi.org/10.1016/0166-2236(93)90093-2Get rights and content

Abstract

In native brain membranes the principal excitatory neurotransmitter l-glutamate activates cation-conducting channels with distinct biophysical and pharmacological properties. Molecular cloning has revealed the existence of 16 channel subunits that can assemble in homomeric or heteromeric configurations in vitro to form receptor channels with disparate functional properties. This review describes the different channel types obtained by recombinant means and the genetic mechanisms controlling the expression of functionally important channel structures.

References (75)

  • M.L. Mayer et al.

    Prog. Neurobiol.

    (1987)
  • J. Watkins et al.

    Trends Pharmacol. Sci.

    (1990)
  • S.D. Donevan et al.

    Neuron

    (1993)
  • D.K. Patneau et al.

    Neuron

    (1991)
  • J.E. Huettner

    Neuron

    (1990)
  • D.W. Choi

    Neuron

    (1988)
  • B. Sommer et al.

    Trends Pharmacol. Sci.

    (1992)
  • W. Wisden et al.

    Curr. Opin. Neurobiol.

    (1993)
  • M. Yamazaki et al.

    Biochem. Biophys. Res. Commun.

    (1992)
  • H. Lomeli

    FEBS Lett.

    (1993)
  • N. Nakanishi et al.

    Neuron

    (1990)
  • H. Monyer et al.

    Neuron

    (1991)
  • N. Burnashev et al.

    Neuron

    (1992)
  • B. Sommer et al.

    Cell

    (1991)
  • B. Bettler

    Neuron

    (1990)
  • B. Bettler

    Neuron

    (1992)
  • H. Lomeli

    FEBS Lett.

    (1992)
  • A. Herb

    Neuron

    (1992)
  • K. Sakimura et al.

    Neuron

    (1992)
  • M. Köhler et al.

    Neuron

    (1993)
  • B. Lambolez et al.

    Neuron

    (1992)
  • K. Ikeda

    FEBS Lett.

    (1992)
  • T. Ishii

    J. Biol. Chem.

    (1993)
  • H. Sugihara et al.

    Biochem. Biophys. Res. Commun.

    (1992)
  • M. Hollmann

    Neuron

    (1993)
  • N. Unwin

    J. Mol. Biol.

    (1993)
  • K. Sakurada et al.

    J. Biol. Chem.

    (1993)
  • L.J. Martin et al.

    Neuron

    (1992)
  • C. Franke et al.

    Neurosci. Lett.

    (1987)
  • R.A. Nicoll et al.

    Physiol. Rev.

    (1990)
  • G.L. Collingridge et al.

    Pharmacol. Rev.

    (1989)
  • P. Stern et al.

    J. Physiol.

    (1992)
  • L.O. Trussel et al.

    Neuron

    (1989)
  • P. Jonas et al.

    J. Physiol.

    (1992)
  • D. Colquhoun et al.

    J. Physiol.

    (1992)
  • M. Iino et al.

    J. Physiol.

    (1990)
  • R.A. Lester et al.

    Nature

    (1990)
  • Cited by (837)

    • Structural biology of kainate receptors

      2021, Neuropharmacology
      Citation Excerpt :

      However, the activation of native AMPA receptors in hippocampal neurons by both kainate and domoate, as well as by quisqualate, AMPA and glutamate, as demonstrated by kinetic analysis, revealed that kainate and domoate were not selective kainate receptor agonists (Patneau and Mayer, 1991). The subsequent cloning of glutamate receptor cDNAs revealed two subtypes of kainate receptor subunits, GluK1, GluK2 and GluK3, which form functional homomeric receptors in heterologous expression systems, and a second family, GluK4 and GluK5, originally named KA1 and KA2, that coassemble with GluK1-GluK3 to form heteromeric receptors with novel functional properties, but which do not form functional ion channels when expressed in isolation (Hollmann and Heinemann, 1994; Seeburg, 1993). The two subtypes are often labelled low- and high-affinity subunits, respectively, based on their on their agonist binding affinities.

    View all citing articles on Scopus
    View full text