Bioenergetics of secretory vesicles

This article is dedicated to the memory of Dr. Robert P. Casey, an energetic friend and colleague, who was among the first to recognize the significance of proton gradients in secretory vesicles.
https://doi.org/10.1016/0304-4173(87)90003-6Get rights and content

First page preview

First page preview
Click to open first page preview

References (250)

  • C.L. Bashford et al.

    Neuroscience

    (1976)
  • D. Njus et al.

    Biochim. Biophys. Acta

    (1978)
  • D. Njus et al.
  • R.D. Burgoyne

    Biochim. Biophys. Acta

    (1984)
  • H. Winkler et al.

    Neuroscience

    (1986)
  • B.I. Kanner

    Biochim. Biophys. Acta

    (1983)
  • P. Arvan et al.

    J. Biol. Chem.

    (1985)
  • S. Cidon et al.

    J. Biol. Chem.

    (1983)
  • M.F. Manolson et al.

    J. Biol. Chem.

    (1985)
  • S. Mandala et al.

    J. Biol. Chem.

    (1986)
  • C.J. Pazoles et al.

    J. Biol. Chem.

    (1980)
  • R.G. Johnson et al.

    J. Biol. Chem.

    (1976)
  • C.L. Bashford et al.

    FEBS Lett.

    (1975)
  • J.T. Russell et al.

    J. Biol. Chem.

    (1981)
  • J.T. Russell

    J. Biol. Chem.

    (1984)
  • Y.P. Loh et al.

    J. Biol. Chem.

    (1984)
  • S.E. Carty et al.

    J. Biol. Chem.

    (1982)
  • I. Angel et al.

    Life Sciences

    (1981)
  • S.E. Carty et al.

    J. Biol. Chem.

    (1981)
  • H. Fishkes et al.

    J. Biol. Chem.

    (1982)
  • D.L. Schneider

    J. Biol. Chem.

    (1981)
  • D.L. Schneider

    J. Biol. Chem.

    (1983)
  • P. Harikumar et al.

    J. Biol. Chem.

    (1983)
  • D.K. Stone et al.

    J. Biol. Chem.

    (1984)
  • X.S. Xie et al.

    J. Biol. Chem.

    (1983)
  • X.S. Xie et al.

    J. Biol. Chem.

    (1986)
  • M. Forgac et al.

    J. Biol. Chem.

    (1984)
  • F. Zhang et al.

    Biochem. Biophys. Res. Commun.

    (1983)
  • L.A. Okorokov et al.

    FEBS Lett.

    (1983)
  • L.P. Lichko et al.

    FEBS Lett.

    (1984)
  • D.K. Apps et al.

    Neuroscience

    (1983)
  • S. Cidon et al.

    J. Biol. Chem.

    (1986)
  • T. Flatmark et al.

    FEBS Lett.

    (1982)
  • T. Flatmark et al.

    FEBS Lett.

    (1977)
  • R.G. Johnson et al.

    J. Biol. Chem.

    (1982)
  • R. Maron et al.

    FEBS Lett.

    (1979)
  • G. Rudnick et al.

    J. Biol. Chem.

    (1980)
  • B.I. Kanner et al.

    Biochim. Biophys. Acta

    (1985)
  • R.G. Johnson et al.

    J. Biol. Chem.

    (1981)
  • R.G. Johnson et al.

    J. Biol. Chem.

    (1978)
  • O.C. Ingebretsen et al.

    J. Biol. Chem.

    (1979)
  • D. Scherman et al.

    Biochem. Pharmacol.

    (1980)
  • R.G. Johnson et al.

    Biochem. Pharmacol.

    (1982)
  • N. Kirshner

    J. Biol. Chem.

    (1962)
  • C.L. Bashford et al.

    Biochem. J.

    (1975)
  • G. Rudnick

    Annu. Rev. Physiol.

    (1986)
  • D.E. Knight et al.

    Q. J. Exp. Physiol.

    (1983)
  • C.E. Creutz et al.
  • H. Winkler et al.
  • V.P. Whittaker

    Biochem. Soc. Trans.

    (1984)
  • Cited by (197)

    • Regulation of Extracellular Dopamine: Release and Uptake

      2016, Handbook of Behavioral Neuroscience
    • The purinergic neurotransmitter revisited: A single substance or multiple players?

      2014, Pharmacology and Therapeutics
      Citation Excerpt :

      Therefore, conclusions about intracellular sources of nucleotides in chromaffin cells appear to depend on the detection methodologies. It is believed that PC12 cells have high concentrations of ATP (up to 125 mM) in dense core vesicles (Njus et al., 1986). Others have proposed that P2X1 receptor-mediated currents in PC12 cells correspond to vesicular ATP release (Hollins & Ikeda, 1997), although release of ATP was not measured directly.

    • The vesicular monoamine transporter-2: An important pharmacological target for the discovery of novel therapeutics to treat methamphetamine abuse

      2014, Advances in Pharmacology
      Citation Excerpt :

      The discovery of secretory vesicles (Hillarp, 1958) led to the subsequent discovery of the vesicular monoamine transporter (VMAT) and the characterization of the structure and function of this protein. Early research revealed several distinguishing features of this class of transporters, including a preference to transport monoamines (e.g., serotonin, DA, and norepinephrine), the dependence of substrate transport on an electrochemical gradient across the vesicular lipid bilayer membrane, and the inhibition of substrate transport by both reserpine and tetrabenazine (TBZ) (Fig. 2.1; Henry, Gasnier, Roisin, Isamber, & Scherman, 1987; Johnson, 1988; Kanner & Schuldiner, 1987; Njus, Kelley, & Harnadek, 1986). The molecular structure of VMAT was first elucidated using Chinese hamster ovary (CHO) cells via expression cloning from rat pheochromocytoma PC12 cells (Liu, Peter, et al., 1992).

    • Divalent cation transport by vesicular nucleotide transporter

      2011, Journal of Biological Chemistry
      Citation Excerpt :

      It is well known that secretory granules accumulate relatively high concentrations of Mg2+ and Ca2+. For instance, chromaffin granules contain 20–40 mm Ca2+ and ∼6 mm Mg2+ (9, 10). Such secretory granules are recognized as one of the sources of internal stores of Ca2+ and Mg2+.

    View all citing articles on Scopus
    View full text