Elsevier

Brain Research

Volume 789, Issue 2, 13 April 1998, Pages 201-212
Brain Research

Research report
A splice variant of trkB and brain-derived neurotrophic factor are co-expressed in retinal pigmented epithelial cells and promote differentiated characteristics

https://doi.org/10.1016/S0006-8993(97)01440-6Get rights and content
Under a Creative Commons license
open archive

Abstract

There is evidence suggesting reciprocal trophic interactions between photoreceptors and the retinal pigmented epithelium (RPE), but the factors involved have not been identified. In this study, we investigated the hypothesis that one or more known neurotrophic factors act upon the RPE. Cultured human and freshly isolated bovine RPE cells demonstrated saturable specific binding for [125I]labeled BDNF, NT-4/5 and NT-3 with little specific binding for CNTF and none for NGF. Cross-competition experiments showed that BDNF is the preferred ligand and cross-linking of [125I]BDNF resulted in a doublet at 160 kd that was increased in RPE cells incubated in all-trans retinoic acid. There was basal phosphorylation of a 145 kd protein recognized by an anti-trk antibody that was increased in RPE cells pulsed with BDNF. RT-PCR with primers spanning the transmembrane domain demonstrated that RPE cells express trkB mRNA lacking a region homologous to exon 9 of chicken trkB, a splice variant that has been demonstrated to preferentially interact with BDNF. Northern blots demonstrated that cultured RPE cells also express mRNA for BDNF. BDNF did not stimulate proliferation or increase survival of RPE cells in serum-free medium, but promoted a differentiated morphology and increased the expression of cellular retinaldehyde binding protein, a marker of the differentiated state in RPE cells. An RPE cell line that spontaneously shows differentiated features showed a high level of BDNF mRNA. These data demonstrate that RPE cells express a short splice variant of trkB whose activation correlates with expression of differentiated characteristics and the cells themselves are capable of producing a ligand for the receptors. Signaling through trkB could play a role in differentiation of RPE cells during development and maintenance of the differentiated state in adult RPE.

Keywords

Retinal pigmented epithelium
Photoreceptors
trkB
BDNF
Trophic factors
Differentiation

Cited by (0)