Elsevier

Life Sciences

Volume 64, Issue 1, 27 November 1998, Pages 1-15
Life Sciences

Minireview
The generation of nitric oxide by G protein-coupled receptors

https://doi.org/10.1016/S0024-3205(98)00348-8Get rights and content

Abstract

The highly reactive free radical gas, nitric oxide, serves a variety of biomodulatory functions and has been implicated in a growing array of physiological and pathophysiological states. The striking differences between this labile substance and other, more conventional, signaling moleculés highlight the tight degree of nitric oxide regulation that is required in order to maintain appropriate cellular homeostasis. The generation of nitric oxide represents a common component of the signal transduction pathways of a number of chemical signaling molecules that act via binding to G protein-coupled receptors. This review focuses on the relationship between this receptor superfamily, the generation of nitric oxide via the actions of the nitric oxide synthases and some of the inter- and intracellular roles of nitric oxide.

References (104)

  • S.H. Snyder et al.

    Trends Pharmacol. Sci.

    (1991)
  • D.S. Bredt et al.

    Neuron

    (1992)
  • T. Deguchi et al.

    J. Biol. Chem.

    (1982)
  • H. Kimura et al.

    J. Biol. Chem.

    (1975)
  • J. Garthwaite et al.

    Eur. J. Pharmacol.

    (1989)
  • L. Busconi et al.

    J. Biol. Chem.

    (1993)
  • J.E. Brenman et al.

    Cell

    (1996)
  • C.M. Arroyo et al.

    Biochem. Biophys. Res. Comm.

    (1990)
  • K. Yamada et al.

    Neurosci. Res.

    (1997)
  • M. McKinney et al.

    Eur. J. Pharmacol.

    (1990)
  • G.B. Stefano et al.

    Brain Res.

    (1997)
  • M.P. Caulfield

    Pharmac. Ther.

    (1993)
  • G. Pilar et al.

    Life Sci.

    (1996)
  • H. Karaki et al.

    Eur. J. Pharmacol.

    (1988)
  • G.C. Ormandy et al.

    Neurosci. Lett.

    (1989)
  • D.S. McGehee et al.

    Neuron

    (1992)
  • A. Miyamoto et al.

    J. Biol. Chem.

    (1997)
  • P.F. Méry et al.

    J. Biol. Chem.

    (1993)
  • I.D.G. Duarte et al.

    Eur. J. Pharmacol.

    (1990)
  • I.D.G. Duarte et al.

    Eur. J. Pharmacol.

    (1992)
  • H.M. Lander et al.

    J. Biol. Chem.

    (1995)
  • H.M. Lander et al.

    J. Biol. Chem.

    (1996)
  • Z. Ni et al.

    Kidney International

    (1997)
  • S. Ceccatelli

    Brain Res. Bull.

    (1997)
  • G. Bagetta et al.

    Eur. J. Pharmacol.

    (1992)
  • G. Bagetta et al.

    Biochem. Biophys. Res. Comm.

    (1993)
  • H.G. Dohlman et al.

    Annu. Rev. Pharmacol.

    (1991)
  • T.M. Dawson et al.

    J. Neurosci.

    (1994)
  • J. Garthwaite et al.

    Annu. Rev. Physiol.

    (1995)
  • R.F. Furchgott et al.

    Nature

    (1980)
  • D.R. Wotta et al.

    Drug Develop. Res.

    (1997)
  • S.H. Snyder et al.

    Sci. Amer.

    (1992)
  • L.C. Green et al.

    Science

    (1981)
  • R. Iyegnar et al.
  • J.B. Hibbs et al.

    J. Immunol.

    (1987)
  • J.B. Hibbs et al.
  • L.J. Ignarro et al.

    J. Pharmacol. Exp. Ther.

    (1981)
  • R.M.J. Palmer et al.

    Nature

    (1987)
  • L.J. Ignarro et al.

    Circ. Res.

    (1987)
  • S. Moncada et al.

    Pharmacol. Rev.

    (1991)
  • M.J. Rand

    Clin. Exp. Pharmacol. Physiol.

    (1992)
  • H. Kimura et al.

    Nature

    (1975)
  • W.P. Arnold et al.
  • J. Garthwaite et al.

    Nature

    (1988)
  • D.S. Bredt et al.
  • R.G. Knowles et al.
  • S. Moncada et al.

    Pharmacol. Rev.

    (1997)
  • D.S. Bredt et al.
  • J.L. Dinerman et al.
  • J.H.M. Cabral et al.

    Nature

    (1996)
  • Cited by (45)

    • Regulator of G protein signaling 2 deficiency causes endothelial dysfunction and impaired endothelium-derived hyperpolarizing factor-mediated relaxation by dysregulating G <inf>i/o</inf> signaling

      2012, Journal of Biological Chemistry
      Citation Excerpt :

      Endothelial GPCRs such as M3 muscarinic and B2 bradykinin receptors couple to the Gq/11 class of heterotrimeric G proteins to activate phospholipase Cβ, which hydrolyzes phosphatidylinositol 4,5-bisphosphate to form diacylglycerol, which activates protein kinase C, and inositol 1,4,5-trisphosphate, which releases Ca2+ from intracellular stores. Increased intracellular Ca2+ levels activate endothelial nitric-oxide synthase (eNOS) to produce NO (2), phospholipase activity to produce arachidonic acid and its metabolites (7), and calcium-activated small (SKCa) and intermediate (IKCa) conductance potassium channels to hyperpolarize endothelium and vascular smooth muscle (1, 3). Indeed, mice lacking eNOS or IKCa and SKCa activity exhibit endothelial dysfunction and hypertension (8).

    View all citing articles on Scopus
    View full text