Elsevier

Vision Research

Volume 41, Issue 19, September 2001, Pages 2457-2473
Vision Research

Are corresponding points fixed?

https://doi.org/10.1016/S0042-6989(01)00137-7Get rights and content
Under an Elsevier user license
open archive

Abstract

Several investigators have claimed that the retinal coordinates of corresponding points shift with vergence eye movements. Two kinds of shifts have been reported. First, global shifts that increase with retinal eccentricity; such shifts would cause a flattening of the horopter at all viewing distances and would facilitate fusion of flat surfaces. Second, local shifts that are centered on the fovea; such shifts would cause a dimple in the horopter near fixation and would facilitate fusion of points fixated at extreme viewing distances. Nearly all of the empirical evidence supporting shifts of corresponding points comes from horopter measurements and from comparisons of subjective and objective fixation disparity. In both cases, the experimenter must infer the retinal coordinates of corresponding points from external measurements. We describe four factors that could affect this inference: (1) changes in the projection from object to image points that accompany eye rotation and accommodation, (2) fixation errors during the experimental measurements, (3) non-uniform retinal stretching, and (4) changes in the perceived direction of a monocular point when presented adjacent to a binocular point. We conducted two experiments that eliminated or compensated for these potential errors. In the first experiment, observers aligned dichoptic test lines using an apparatus and procedure that eliminated all but the third error. In the second experiment, observers judged the alignment of dichoptic afterimages, and this technique eliminates all the errors. The results from both experiments show that the retinal coordinates of corresponding points do not change with vergence eye movements. We conclude that corresponding points are in fixed retinal positions for observers with normal retinal correspondence.

Keywords

Binocular vision
Correspondence
Horopter
Fixation disparity

Cited by (0)