Structure
Volume 24, Issue 8, 2 August 2016, Pages 1380-1386
Journal home page for Structure

Short Article
Phosphorylation of Cysteine String Protein Triggers a Major Conformational Switch

https://doi.org/10.1016/j.str.2016.06.009Get rights and content
Under a Creative Commons license
open access

Highlights

  • First structure of a phosphorylated DnaJ/Hsp40 protein

  • Phosphorylation destabilizes CSP's N-terminal α helix

  • Newly disordered, phosphorylated N-terminal loop binds to the J domain

  • Phosphorylation causes significant changes to CSP conformation and surface charge

Summary

Cysteine string protein (CSP) is a member of the DnaJ/Hsp40 chaperone family that localizes to neuronal synaptic vesicles. Impaired CSP function leads to neurodegeneration in humans and model organisms as a result of misfolding of client proteins involved in neurotransmission. Mammalian CSP is phosphorylated in vivo on Ser10, and this modulates its protein interactions and effects on neurotransmitter release. However, there are no data on the structural consequences of CSP phosphorylation to explain these functional effects. We show that Ser10 phosphorylation causes an order-to-disorder transition that disrupts CSP's extreme N-terminal α helix. This triggers the concomitant formation of a hairpin loop stabilized by ionic interactions between phosphoSer10 and the highly conserved J-domain residue, Lys58. These phosphorylation-induced effects result in significant changes to CSP conformation and surface charge distribution. The phospho-switch revealed here provides structural insight into how Ser10 phosphorylation modulates CSP function and also has potential implications for other DnaJ phosphoproteins.

Keywords

adult onset neuronal lipofuscinosis
chaperone
DnaJ
Hsp40
neurodegeneration

Cited by (0)

4

Present address: School of Biology, University of St Andrews, North Haugh, St Andrews KY16 9ST, UK