Skip to main content
Log in

Dissecting the dark-adapted electroretinogram

  • Published:
Documenta Ophthalmologica Aims and scope Submit manuscript

Abstract

Although gross recordings of the ganzfeld flash-evoked electroretinogram (ERG) can potentially provide information about the activity of many, if not all, retinal cell types, it is necessary to dissect the ERG into its components to realize this potential fully. Here we describe various procedures that have been used in intact mammalian eyes to identify and characterize the contributions to the dark-adapted ERG of different cells in the retinal rod pathway. These include (1) examination of the very early part of the response to a flash (believed to reflect directly the photocurrent of rods), (2) application of high-energy probe flashes to provide information about the underlying rod photoreceptor response even when this component is obscured by the responses of other cells, (3) pharmacological suppression of responses of amacrine and ganglion cells to identify the contribution of these cells and to reveal the weaker responses of bipolar cells, (4) use of pharmacological agents that block transmission of signals from rods to more proximal neurons to separate responses of rods from those of later neurons, (5) examination of the ERG changes produced by ganglion-cell degeneration or pharmacological block of nerve-spike generation to identify the contribution of spiking neurons, (6) modeling measured amplitude-energy functions and timecourse of flash responses and (7) using steady backgrounds to obtain differential reductions in sensitivity of different cell types. While some of these procedures can be applied to humans, the results described here have all been obtained in studies of the ERG of anaesthetized cats, or macaque monkeys whose retinas are very similar to those of humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Smith RG, Freed MA, Sterling P. Microcircuitry of the dark-adapted cat retina: functional architecture of the rod-cone network. J Neurosci 1986; 6: 3505–17.

    PubMed  CAS  Google Scholar 

  2. Sterling PE, Cohen E, Freed MA, Smith RG. Microcircuitry of the on-beta ganglion cell in daylight, twilight and star light. Neurosci Res 1987; 6; s269–s285.

    CAS  Google Scholar 

  3. Freed MA, Smith RG, Sterling P. Rod bipolar array in the cat retina: pattern of input from rods and GABA-accumulating amacrine cells. J Comp Neurol 1987; 266: 445–55.

    Article  PubMed  CAS  Google Scholar 

  4. Grünert U, Martin PR. Rod bipolar cells in the macaque monkey retina: immunoreactivity and connectivity. J Neurosci 1991; 11: 2742–58.

    PubMed  Google Scholar 

  5. Kolb, H, Linberg KA, Fisher SK. Neurons of the human retina: A Golgi study. J Comp Neurol 1992; 318: 147–87.

    Article  PubMed  CAS  Google Scholar 

  6. Wässle H, Grünert U, Chun MH, Boycott BB. The rod pathway of the macaque monkey retina: identification of AII-amacrine cells with antibodies against calretinin. J Comp Neurol 1995; 361: 537–51.

    Article  PubMed  Google Scholar 

  7. Frishman LJ, Reddy MG, Robson JG. Effects of background light on the human dark-adapted electroretinogram and psychological threshold. J Opt Soc. Soc Am A 1996; 13: 601–12.

    CAS  Google Scholar 

  8. Sieving PA, Frishman LJ, Steinberg RH. Scotopic threshold response of proximal retina in cat. J. Neurophysiol 1986; 56: 1049–61.

    PubMed  CAS  Google Scholar 

  9. Steinberg RH, Frishman LJ, Sieving PA. (1991) Negative components of the electroretinogram from proximal retina and photoreceptor. In: NN Osborne and GJ Chader, eds. Progress in Retinal Research. Oxford, UK: Pergamon Press 1990; 10: 121–60.

    Google Scholar 

  10. Newman EA. Current source-density analysis of the b-wave of frog retina. J Neurophysiol 1980; 43: 1355–66.

    PubMed  CAS  Google Scholar 

  11. Newman EA, Odette LL. Model of electroretinogram b-wave generation: a test of the K C hypothesis. J Neurophysiol 1984; 51: 164–82.

    PubMed  CAS  Google Scholar 

  12. Stockton RA, Slaughter MM. b-Wave of the electroretinogram: a reflection of ON bipolar cell activity. J Gen Physiol 1989; 93: 101–22.

    Article  PubMed  CAS  Google Scholar 

  13. Gurevich L, Slaughter MM. Comparison of the waveforms of the ON bipolar neuron and the b-wave of the electroretinogram. Vision Res 1993; 33: 2431–35.

    Article  PubMed  CAS  Google Scholar 

  14. Xu XJ, Karwoski CJ. Current source density analysis of retinal field potentials. 2. Pharmacological analysis of the b-wave and m-wave. J Neurophysiol 1994; 72: 96–105.

    PubMed  CAS  Google Scholar 

  15. Robson JG, Frishman LJ. Response linearity and dynamics of the cat retina: the bipolar cell component of the dark-adapted ERG. Vis. Neurosci 1995; 12: 837–50.

    PubMed  CAS  Google Scholar 

  16. Tian N, Slaughter MM. Correlation of dynamic responses in the ON bipolar neuron and the b-wave of the electroretinogram. Vision Res 1995; 35: 1359–64.

    Article  PubMed  CAS  Google Scholar 

  17. Frishman LJ, Shen FF, Du L, Robson JG, Harwerth RS, Smith III EL, Carter-Dawson U, Crawford MLJ. The scotopic electroretinogram of macaque after retinal ganglion cell loss from experimental glaucoma. Invest Ophthalmol Vis Sci 1996; 37: 125–41.

    PubMed  CAS  Google Scholar 

  18. Breton ME, Montzka DP. Empiric limits of rod photocurrent component underlying a-wave response in the electroretinogram. Doc Ophthalmol 1992; 79: 337–61.

    Article  PubMed  CAS  Google Scholar 

  19. Massey SC. types using glutamate as a neurotransmitter in the vertebrate retina. In: NN Osborne and GJ Chader, eds. Progress in Retinal Research. Oxford, UK: Pergamon Press 1990; 9: 399–425.

    Google Scholar 

  20. Sterling P. Retina. In: G Shepherd ed. Synaptic Organization of the Brain. Oxford, UK: Oxford Univ. Press, chapt. 6, 1990.

    Google Scholar 

  21. Wässle H, Boycott BB. Functional architecture of the mammalian retina. Physiol Rev 1991; 71: 447–80.

    PubMed  Google Scholar 

  22. Robson JG, Frishman LJ. Photoreceptor and bipolar-cell contributions to the cat elec-troretinogram: a kinetic model for the early part of the flash response. J Opt Soc Am A 1996; 13: 613–22.

    CAS  Google Scholar 

  23. Dawson WW, Trick GL, Litzkow CA. Improved electrode for electroretinography. Invest. Ophthalmol Vis Sci 1979; 18: 988–91.

    PubMed  CAS  Google Scholar 

  24. Lamb TD, McNaughton PA, Yau KW. Spatial spread of activation and background desensitization in toad rod outer segments. J Physiol (Lond) 1981; 319: 463–96.

    CAS  Google Scholar 

  25. Baylor DA, Nunn BJ, Schnapf JL. The photocurrent, noise and spectral sensitivity of rods of the monkey macaca fascicularis. J Physiol (Lond) 1984; 357: 575–607.

    CAS  Google Scholar 

  26. Tamura T, Nakatani K, Yau K-W. Light adaptation in cat retinal rods. Science 1989; 245: 755–58.

    PubMed  CAS  Google Scholar 

  27. Hood DC, Birch DG. Light adaptation of human rod receptors: the leading edge of the human a-wave and models of rod receptor activity. Vision Res 1993; 33: 1605–18.

    Article  PubMed  CAS  Google Scholar 

  28. Penn RD, Hagins WA. Kinetics of the photocurrent of retinal rods. Biophys J 1972; 12: 1073–94.

    Article  PubMed  CAS  Google Scholar 

  29. Breton ME, Schueller AW, Lamb TD, Pugh EN, Jr. Analysis of ERG a-wave amplification and kinetics in terms of the G-protein cascade of phototransduction. Invest Ophthalmol & Vis Sci 1994; 35: 295–309.

    CAS  Google Scholar 

  30. Lamb TD, Pugh EN. A quantitative account of the activation steps involved in phototransduction in amphibian photoreceptors. J. Physiol 1992; 449: 717–57.

    Google Scholar 

  31. Smith NP, Lamb TD. The a-wave of the human electroretinogram recorded with a minimally invasive technique. Vision Res 1997; 37: 2943–52.

    Article  PubMed  CAS  Google Scholar 

  32. Kraft TW, Schneeweis DM, Schnapf JL. Visual transduction in human rod photoreceptors. J Physiol (Lond) 1993; 464: 747–65.

    CAS  Google Scholar 

  33. Pepperberg DR, Birch DG, Hood DC. Photoresponses of human rods in vivo. Visual Neurosci 1997; 14: 73–82..215

    CAS  Google Scholar 

  34. Frishman LJ, Sieving PA. Evidence for 2 sites of adaptation affecting the dark-adapted ERG of cats and primates. Vision Res 1995; 35: 435–42.

    Article  PubMed  CAS  Google Scholar 

  35. Hood DC, Birch DG. (1996) The b-wave of the scotopic (rod) ERG as a measure of the activity of human on-bipolar cells. J Opt Soc Am A 1996; 13: 623–33.

    CAS  Google Scholar 

  36. Vaegan, Millar TJ. Effect of kainic acid and NMDA on the pattern electroretinogram, the scotopic threshold response, the oscillatory potentials and the electroretinogram in the urethane anaesthetized cat. Vision Res 1994; 34: 1111–25.

    Article  PubMed  CAS  Google Scholar 

  37. Barlow HB, Levick WR, Yoon M. Responses to single quanta of light in retinal ganglion cells of the cat. Vision Res Suppl 1971; 3: 87–101.

    Article  Google Scholar 

  38. Mastronarde DN. Correlated firing of cat retinal ganglion cells. II. Responses of X-and Y-cells to single quantal events. J Neurophysiol 1983; 49: 325–49.

    PubMed  CAS  Google Scholar 

  39. Hood DC, Birch DG. A computational model of the amplitude and implicit time of the b-wave of the human ERG. Vis Neurosci 1992; 8: 107–26.

    Article  PubMed  CAS  Google Scholar 

  40. Shiells RA, Falk G. Glutamate receptors of rod bipolar cells are linked to a cyclic GMP cascade via a G-protein. Proc Roy Soc Lond, Series B: Bio Sci 1990; 242: 91–4.

    CAS  Google Scholar 

  41. Nawy 5, Jahr CE. Suppression by glutamate of cGMP-activated conductance in retinal bipolar cells. Nature 1990; 346: 269–71.

    Article  PubMed  CAS  Google Scholar 

  42. Ashmore JF, Falk G. The single-photon signal in rod bipolar cells of the dogfish retina. J Physiol (Lond) 1980; 300: 151–66.

    CAS  Google Scholar 

  43. Miller RF, Dowling JE. Intracellular responses of the Müller (glial) cells of mudpuppy retina: their relation to b-wave of the electroretinogram. J Neurophysiol 1970; 33: 323–41.

    PubMed  CAS  Google Scholar 

  44. Wen R, Oakley B. K+-evoked Müller cell depolarization generates b-wave of electroret-inogram in toad retina. Proc Nat Acad Sci (USA) 1990; 87: 2117–21.

    Article  CAS  Google Scholar 

  45. Wakabayashi K, Gieser J, Sieving PA. Aspartate separation of the scotopic threshold response (STR) from the photoreceptor a-wave of the cat and monkey ERG. Invest Ophthalmol Vis Sci 1988; 29: 1615–22.

    PubMed  CAS  Google Scholar 

  46. Frishman LJ, Steinberg RH. Intraretinal analysis of the threshold dark-adapted ERG of cat retina. J Neurophysiol 1989; 61: 1221–32.

    PubMed  CAS  Google Scholar 

  47. Frishman LJ, Steinberg RH. Light-evoked increases in [K C ]o in proximal portion of the dark-adapted cat retina. J Neurophyisol 1989; 61: 1233–43.

    CAS  Google Scholar 

  48. Sieving PA. Retinal ganglion cell loss does not abolish the STR of the cat and human ERG. Clin Vision Sci 1991; 6: 149–58.

    Google Scholar 

  49. Frishman LJ, Robson JG, Du L. Contributions of the positive and negative scotopic threshold responses to the scotopic cat ERG. Invest Ophthalmol Vis Sci Suppl 1993; 34: 1273.

    Google Scholar 

  50. Robson JG, Frishman LJ, Du L. Component potentials of the dark-adapted cat ERG. Soc Neurosci Abs 1993; 1413.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Robson, J.G., Frishman, L.J. Dissecting the dark-adapted electroretinogram. Doc Ophthalmol 95, 187–215 (1998). https://doi.org/10.1023/A:1001891904176

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1001891904176

Navigation