Skip to main content
Log in

Glucocorticoid Regulation of Motoneuronal Parameters in Rats with Spinal Cord Injury

  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

1.Glucocorticoids exert beneficial effects after acute CNS injury in humans and experimental animals. To elucidate potential mechanisms of glucocorticoid action in the lesioned spinal cord, we have studied if treatment with dexamethasone (DEX) modulated the neurotrophin binding receptor p75 (p75NTR) and choline acetyltransferase (ChAT), a marker of neuronal functional viability.

2.Rats with a sham operation or with spinal cord transection at the thoracic level received vehicle or DEX several times postlesion and were sacrificed 48 hr after surgery. The lumbar region caudal to the lesion was processed for p75NTR and ChAT immunoreactivity (IR) using quantitative densitometric analysis.

3.We observed that p75NTR-IR was absent from ventral horn motoneurons of sham-operated rats, in contrast to strong staining of neuronal perikaryon in TRX rats. Administration of DEX to TRX rats had no effect on the number of neuronal cell bodies expressing p75NTR-IR but significantly increased the number and length of immunostained neuronal processes.

4.Furthermore, spinal cord transection reduced ChAT immunostaining of motoneurons by 50%, whereas DEX treatment reverted this pattern to cells with a strong immunoreaction intensity in perikaryon and cell processes.

5.It is hypothesized that increased expression of p75NTR in cell processes and of ChAT in motoneurons may be part of a mechanism by which glucocorticoids afford neuroprotection, in addition to their known antiinflammatory effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  • Aloe, L. (1989). Adrenalectomy decreases nerve growth factor in young adult rat hippocampus. Proc. Natl. Acad. Sci. USA. 86:5636–5640.

    Google Scholar 

  • Barbany, G., and Persson, H. (1993). Adrenalectomy attenuates kainic acid-elicited increases of messenger RNA for neurotrophins and their receptors in the rat brain. Neuroscience 54:909–922.

    Google Scholar 

  • Barber, R. P., Phelps, P. E., Houser, C. R., Crawford, G. D., Salvaterra, P. M., and Vaughn, J. E. (1984). The morphology and distribution of neurons contaiing choline acetyltransferase in the adult spinal cord: An immunocytochemical study. J. Comp. Neurol. 229:329–346.

    Google Scholar 

  • Bartholdi, D., and Schwab, M. E. (1995). Methylprednisolone inhibits early inflammatory processes but not ischemic cell death after experimental spinal cord lesion in the rat. Brain Res. 672:177–186.

    Google Scholar 

  • Bau, D., and Vernadakis, A. (1982). Effects of corticosterone on brain cholinergic enzymes in chick embryos. Neurochem. Res. 7:821–829.

    Google Scholar 

  • Berse, B., and Blusztajn, J. K. (1997). Modulation of cholinergic locus expression by glucocorticoids and retinoic acid is cell-type specific. FEBS Lett. 410:175–179.

    Google Scholar 

  • Bracken, M. B., Shepard, M. J., Collins, W. F., et al. (1990). A randomized, controlled trial of methylprednisolone or naloxone in the treatment of acute spinal cord injury. N. Eng. J. Med. 322:1405–1411.

    Google Scholar 

  • Braughler, J. M., and Hall, E. D. (1981). Acute enhancement of spinal cord synaptosomal (Na + K)ATPase activity in cats following intravenous methylprednisolone. Brain Res. 219:464–469.

    Google Scholar 

  • Carter, B., Kaltschmidt, C., Kaltschmidt, B., Offenhauser, N., Bohm-Mattaei, R., Baeurle, P. A., and Barde, Y.-A. (1996). Selective activation of NK-κB by nerve growth factor through the neurotrophin receptor p75. Science 272:542–545.

    Google Scholar 

  • Chao, M. V., and Hempstead, B. L. (1995). p75 and Trk: A two-receptor system. Trends Neurosci. 18:321–326.

    Google Scholar 

  • Chao, H. M., and McEwen, B. S. (1994). Glucocorticoids and the expression of mRNAs for neurotrophins, their receptors and GAP-43 in the rat hippocampus. Mol. Brain Res. 26:271–276.

    Google Scholar 

  • De Nicola, A. F. (1993). Steroid hormones and neuronal regeneration. Adv. Neurol. 59:199–206.

    Google Scholar 

  • Distefano, P. S., Friedman, B., Radziejewski, C., Alexander, C., Boland, P., Schick, C., Lindsay, R. M., and Wiegand, S. J. (1992). The neurotrophins BDNF, NT-3 and NGF display distinct patterns of retrograde axonal transport in the peripheral and central neurons. Neuron 8:983–993.

    Google Scholar 

  • Dobrowsky, R. T., Werner, M. H., Castellino, A. M., Chao, M. V., and Hannun, Y. A. (1994). Activation of the sphingomyelin cycle through the low-affinity neurotrophin receptor. Science 265:1596–1599.

    Google Scholar 

  • Duncan, G. E., and Stumpf, W. E. (1984). Target neurons for (3H)-corticosterone in the rat spinal cord. Brain Res. 307:321–326.

    Google Scholar 

  • Dusart, I., and Schwab, M. E. (1994). Secondary cell death and the inflammatory reaction after dorsal hemisection of the rat spinal cord. Eur. J. Neurosci. 6:712–724.

    Google Scholar 

  • Enfors, P. A., Henschen, P. F., Olson, L., and Persson, H. (1989). Expression of nerve growth factor receptor mRNA is developmentally regulated and increased after axotomy in rats spinal cord motoneurons. Neuron 2:1605–1613.

    Google Scholar 

  • Ferrini, M., Gonzalez, S., Antakly, T., and De Nicola, A. F. (1993). Immunocytochemical localization of glucocorticoid receptors in the spinal cord: Effects of adrenalectomy, glucocorticoid treatment, and spinal cord transection. Cell. Mol. Neurobiol. 13:387–397.

    Google Scholar 

  • Ferrini, M., Lima, A., and De Nicola, A. F. (1995). Estradiol abolishes autologous down-regulation of glucocorticoid receptors in brain. Life Sci. 57:2403–2412.

    Google Scholar 

  • Foreman, P. J., Tagliatella, G., Angelucci, L., Turner, C. P., and Perez-Polo, J. R. (1993). Nerve growth factor and p75ngfr factor receptor mRNA change in rodent CNS following stress activation of the hypothalamic-pituitary-adrenocortical axis. J. Neurosci. Res. 36:10–18.

    Google Scholar 

  • Fuxe, K., Harfstrand, A., Agnati, L. F., Yu, Z.-Y., Cintra, A., Wikstrom, A. C., Okret, S., Cantoni, E., and Gustafsson, J.-A. (1985). Immunocytochemical studies on the localization of glucocorticoid receptor immunoreactive cells in the lower brain stem and spinal cord of the male rat using a monoclonal antibody against rat liver glucocorticoid receptor. Neurosci. Lett. 60:1–6.

    Google Scholar 

  • Gonzalez, S., Moses, D. F., and De Nicola, A. F. (1990). Glucocorticoid receptors and enzyme induction in the spinal cord of rats: Effects of acute transection. J. Neurochem. 54:834–840.

    Google Scholar 

  • Gonzalez, S., Ferrini, M., Coirini, H., Gonzalez Deniselle, M. C., and De Nicola, A. F. (1992). Regulation of flunitrazepam binding in the dorsal horn of the spinal cord by adrenalectomy and corticosteroids. Brain Res. 589:97–101.

    Google Scholar 

  • Gonzalez, S., Grillo, C., De Nicola, A. G., Piroli, G., Angulo, J., McEwen, B. S., and De Nicola, A. F. (1994). Dexamethasone increases adrenalectomy-depressed Na+, K+-ATPase mRNA and ouabain binding in spinal cord ventral horn. J. Neurochem. 63:1962–1970.

    Google Scholar 

  • Gonzalez, S., Coirini, H., Gonzalez Deniselle, M. C., Gonzalez, S., Calandra, R., and De Nicola, A. F. (1995). Time-dependent effects of dexamethasone on glutamate binding, ornithine decarboxylase activity and polyamine levels in the transected spinal cord. J. Steroid Biochem. Mol. Biol. 55:85–92.

    Google Scholar 

  • Gonzalez, S., Grillo, C., Gonzalez Deniselle, M. C., Lima, A., McEwen, B. S., and De Nicola, A. F. (1996). Dexamethasone up-regulates mRNA for Na+, K+-ATPase in some spinal cord neurons after cord transection. Neuroreport 7:1041–1044.

    Google Scholar 

  • Hall, E. D. (1993). Neuroprotective action of glucocorticoid and nonglucocorticoid steroids in acute neuronal injury. Cell. Mol. Neurobiol. 13:415–432 (1993).

    Google Scholar 

  • Hall, E. D., and McGinley, P. A. (1982). Effects of a single intravenous glucocorticoid dose on biogenic amine levels in cat lumbar spinal cord. J. Neurochem. 39:1787–1790.

    Google Scholar 

  • Ibañez, C. (1994). Structure-function relationships in the neurotrophin family. J. Neurobiol. 25:1349–1361.

    Google Scholar 

  • Koliatsos, V. E., Crawford, T. O., and Price, D. L. (1991). Axotomy induces nerve growth factor receptor immunoreactivity in spinal cord neurons. Brain Res. 549:297–304.

    Google Scholar 

  • Lauterborn, J., Berschauer, R., and Gall, C. (1995). Cell-specific modulation of basal and seizure-induced neurotrophin expression by adrenalectomy. Neuroscience 68:363–378.

    Google Scholar 

  • Levi-Montalcini, R., Skaper, S. D., Dal Toso, R., Petrelli, L., and Leon, A. (1996). Nerve growth factor: From neurotrophin to neurokine. Trends Neurosci. 19:514–520.

    Google Scholar 

  • Lindholm, D., Castren, E., Hengerer, B., Zafra, F., Berninger, B., and Thoenen, H. (1992). Differential regulation of nerve growth factor (NGF) synthesis in neurons and astrocytes by glucocorticoid hormones. Eur. J. Neurosci. 4:404–410.

    Google Scholar 

  • Lindsay, R. M., Wiegand, S. J., Altar, C. A., and DiStefano, P. S. (1994). Neurotrophic factors: From molecules to man. Trends Neurosci. 17:182–190.

    Google Scholar 

  • Lindvall, O., Kokaia, Z., Bengzon, J., Elmer, E., and Kokaia, M. (1994). Neurotrophins and brain insults. Trends Neurosci. 17:490–497.

    Google Scholar 

  • Marlier, L. N. J. L., Csikos, T., Rebaudengo, N., Borboni, P., Patacchioli, F. R., Angelucci, L., Privat, A., and Lauro, R. (1995). Distribution of glucocorticoid receptor mRNA in the rat spinal cord. Neuroreport 6:2245–2249.

    Google Scholar 

  • Meakin, S., and Shooter, D. (1992). The nerve growth factor family of receptors. Trends Neurosci. 15:323–331.

    Google Scholar 

  • Mocchetti, I., Spiga, G., Hayes, V. Y., Isackson, P. J., and Colangelo, A. (1996). Glucocorticoids differentially increase nerve growth factor and basic fibroblast growth factor expression in the rat brain. J. Neurosci. 15:2141–2148.

    Google Scholar 

  • Moses, D. F., Gonzalez, S., McEwen, B. S., and De Nicola, A. F. (1991). Glucocorticoid type II receptors of the spinal cord show lower affinity than hippocampal type II receptors: Binding parameters obtained with different experimental protocols. J. Steroid Biochem. Mol. Biol. 39:5–12.

    Google Scholar 

  • Nacimiento, W., Schlozer, B., Brook, G. A., Tóth, L., Topper, R., Noth, J., and Kreutzberg, G. W. (1996). Transient decrease of acetylcholinesterase in ventral horn neurons caudal to a low thoracid spinal cord hemisection in the adult rat. Brain Res. 714:177–184.

    Google Scholar 

  • Orti, E., Coirini, H., and De Nicola, A. F. (1985a). Properties and distribution of glucocorticoid binding sites in cytosol of the spinal cord. Neuroendocrinology 4:225–231.

    Google Scholar 

  • Orti, E., Tornello, S., and De Nicola, A. F. (1985b). Dynamic aspects of glucocorticoid receptors in the spinal cord of the rat. J. Neurochem. 45:1699–1707.

    Google Scholar 

  • Orti, E., Moses, D. F., Grillo, C., and De Nicola, A. F. (1987). Glucocorticoid regulation of glycerolphosphate dehydrogenase and ornithine decarboxylase activities in the spinal cord of the rat. J. Neurochem. 48:425–431.

    Google Scholar 

  • Rabizadeh, S., Oh, J., Zhong, L. T., Yang, J., Bitler, C. M., Butcher, L. L., and Bredesen, D. E. (1993). Induction of apoptosis by the low-affinity NGF receptor. Science 261:345–348.

    Google Scholar 

  • Rende, M. C., Provenzano, T., and Tonali, P. (1993). Modulation of low-affinity nerve growth factor receptor in injured adult rat spinal cord motoneurons. J. Comp. Neurol. 338:560–574.

    Google Scholar 

  • Rende, M., Giambanco, Y., Burata, M., and Tonali, P. (1995). Axotomy induces a different modulation of both low affinity nerve growth factor receptor and choline acetyltransferase between adult rat spinal and brainstem neurons. J. Comp. Neurol. 363:249–263.

    Google Scholar 

  • Reul, J. M. H. M., and De Kloet, E. R. (1985). Two receptor systems for corticosterone in rat brain: Microdistribution and differential occupation. Endocrinology 117:2505–2512.

    Google Scholar 

  • Segal, R. A., and Greenberg, M. E. (1996). Intracellular signaling pathways activated by neurotrophic factors. Ann. Rev. Neurosci. 19:463–489.

    Google Scholar 

  • Smith, C., Farrah, H., and Goodwin, R. (1994). The TNF receptor superfamily of cellular and viral proteins: Activation, costimulation, and death. Cell 76:959–962.

    Google Scholar 

  • Sobreviela, T., Clary, D. O., Reichardt, L. F., Brandabur, M. M., Kordower, J. H., and Mufson, E. J. (1994). TrkA-immunoreactive profiles in the central nervous system: Colocalization with neurons containing p75 nerve growth factor receptor, choline acetyltransferase, and serotonin. J. Comp. Neurol. 350:587–611.

    Google Scholar 

  • Sobue, G., Yasuda, T., Mitsuma, T., Ross, A. H., and Pleasure, D. (1988). Expression of nerve growth factor receptor in human peripheral neuropathies. Ann. Neurol. 24:64–72.

    Google Scholar 

  • Sun, F.-Y., Costa, E., and Mocchetti, I. (1993). Adrenal steroids mediate the increase of hippocampal nerve growth factor biosynthesis following bicuculline treatment. Neuropharmacology 8:219–225.

    Google Scholar 

  • Sze, P. Y., Marchi, M., Towle, A. C., and Giacobini, E. (1983). Increased uptake of (3H)-choline by rat superior cerical ganglion: An effect of dexamethasone. Neuropharmacology 22:711–716.

    Google Scholar 

  • Woolf, N. J., Jacobs, R. W., and Butcher, L. L. (1989). Nerve growth factor rceptor is associated with cholinergic neurons of the basal forebrain but not the pontomesencephalon. Neuroscience 30:143–152.

    Google Scholar 

  • Yan, Q., and Johnson, E. M. (1988). An immunohistochemical study of the nerve growth factor receptor in developing rats. J. Neurosci. 8:3481–3498.

    Google Scholar 

  • Yan, Q., Matheson, C., Lopez, O. T., and Miller, J. A. (1994). The biological responses of axotomized adult motoneurons to brain-derived neurotrophic factor. J. Neurosci. 14:5281–5291.

    Google Scholar 

  • Yip, H. K., and Johnson, E. M. (1987). Nerve growth factor receptors in rat spinal cord: An autoradiographic and immunohistochemical study. Neuroscience 22:267–279.

    Google Scholar 

  • Zhou, X.-F., and Rush, R. A. (1996). Endogenous nerve growth factor is required for regulation of the low affinity neurotrophin receptor (p75) in sympathetic but not sensory ganglia. J. Comp. Neurol. 372:37–48.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gonzalez, S.L., Saravia, F., Deniselle, M.C.G. et al. Glucocorticoid Regulation of Motoneuronal Parameters in Rats with Spinal Cord Injury. Cell Mol Neurobiol 19, 597–611 (1999). https://doi.org/10.1023/A:1006980301382

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006980301382

Navigation