Skip to main content
Log in

Characterization of Endogenous Amino Acid Efflux from Hippocampal Slices during Chemically-Induced Ischemia

Neurochemical Research Aims and scope Submit manuscript

Abstract

Using sodium (NaN3)-induced anoxia plus aglycaemia as a model of chemically-induced ischemia, we have characterized the endogenous release of excitatory and inhibitory amino acids from superfused hippocampal slices. Chemical ischemia produced an azide (1–30 mM) dose-dependent increase in the efflux of glutamate, aspartate and GABA. These increases were attenuated to varying degrees by removal of Ca2+, or the addition of the voltage dependent Na+-channel blocker tetrodotoxin (TTX), the selective Ca2+ channel blockers conotoxin MVIIA, MVIIC, and nifedipine, the NMDA antagonist MK801, the AMPA antagonist GYKI-52466. Similarly, addition of the GLT-1 glutamate transport inhibitor dihydrokainate (DHK) and the anti-estrogen/anion channel blocker tamoxifen also attenuated the efflux of glutamate and GABA. It would therefore appear that the increases in amino acid efflux induced by chemical ischemia originates from both the neuronal pool, via conventional exocytotic release, and glial sources via reversal of the GLT-1 transporter and anion channel regulated cell swelling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. Kanai, Y. and Hediger, M. A. 1996. High affinity glutamate transporters: physiological and pathological relevance in the central nervous system. Pages 102–131. In (D. W. Bran and V. B. Mahesh eds.), Excitatory Amino Acids, Their role in Neuroendocrine Function, CRC Press, New York.

    Google Scholar 

  2. Robinson, M. B. and Dowd, L. A. 1997. Heterogeneity and functional properties of subtypes of sodium-dependent glutamate transporters in the mammalian CNS. Adv. Pharmacol. 37:69–115.

    Google Scholar 

  3. Olney, J. W. 1986. Inciting excitotoxic cytocide among central neurones. Adv. Exp. Med. Biol. 203:631–645.

    Google Scholar 

  4. Rothman, S. M. and Olney, J. W. 1986. Glutamate and the pathophysiology of hypoxic/ischemic brain damage. Ann. Neurol. 19:105–111.

    Google Scholar 

  5. Rothman, S. M. and Olney, J. W. 1987. Excitotoxicity and the NMDA receptor. Trends Neurosci. 10:299–302.

    Google Scholar 

  6. Benveniste, H., Drejer, J., Schousboe, A., and Diemer, N. H. 1984. Elevation of the extracellular concentrations of glutamate and aspartate in rat hippocampus during transient cerebral ischemia monitored by intracerebral microdialysis. J. Neurochem. 43:1369–1374.

    Google Scholar 

  7. Christensen, T., Bruhn, T., Diemer, N. H., and Schousboe, A. 1991. Effect of phenylsuccinate on potassium and ischemiainduced release of glutamate in rat hippocampus monitored by microdialysis. Neurosci. Lett. 134:71–74.

    Google Scholar 

  8. Drejer, J., Benveniste, H., Diemer, N. H., and Schousboe, A. 1985. Cellular origin of ischemia-induced glutamate release from brain tissue in vivo and in vitro. J. Neurochem. 45:145–151.

    Google Scholar 

  9. Meldrum, B. S., Swan, J. H., Leach, M. J., Millan, M. H., Gwinn, R., Kadota, K., Graham, S. H., Chen J., and Simon, R. P. 1992. Reduction of glutamate release and protection against ischemic brain damage by BW 1003C87. Brain Res. 593:1–6.

    Google Scholar 

  10. Mitani, A., Imon, H., Iga, K., Kubo, H., and Kataoka, K. 1990. Gerbil hippocampal extracellular glutamate and neuronal activity after transient ischemia. Brain Res. Bull. 25:319–324.

    Google Scholar 

  11. Benveniste, H., Jorgensen, J., Diemer, N. H., and Hansen, A. J. 1988. Calcium accumulation by glutamate receptor activation is involved in hippocampal cell damage after ischemia. Acta. Neurol. Scand. 78:529–536.

    Google Scholar 

  12. Choi, D. W. 1988. Glutamate neurotoxicity and diseases of the nervous system. Neuron. 1:623–634.

    Google Scholar 

  13. Choi, D. W. and Rothman, S. M. 1990. The role of glutamate neurotoxicity in hypoxyischemic neuronal death. Ann. Rev. Neurosci. 13:177–182.

    Google Scholar 

  14. Bazan, N. G., Rodriguez de Turco, E. B., and Allan, G. 1995. Mediators of injury in neurotrauma: intracellular signal transduction and gene expression. J. Neurotrauma. 12:791–814.

    Google Scholar 

  15. Juurlink, B. H. and Sweeney, M. I. 1997. Mechanisms that result in damage during and following cerebral ischemia. Neurosci. Behaviour Rev. 21:121–128.

    Google Scholar 

  16. Meldrum, B. S. 1990. Protection against ischemic neuronal damage by drugs acting on excitatory neurotransmission. Cerebrovasc. Brain Metab. 2:27–57.

    Google Scholar 

  17. Lobner, D. and Lipton, P. 1990. Sigma-ligands and non-competitive NMDA antagonists inhibit glutamate release during cerebral ischemia. Neurosci. Lett. 117:169–174.

    Google Scholar 

  18. Xie, Y., Dengler, K., Zacharias, E., Wilffert, B., and Tegtmeier, F. 1994. Effects of the sodium channel blocker tetrodotoxin on cellular ion homeostasis in rat brain subjected to complete ischemia. Brain Res. 652:216–224.

    Google Scholar 

  19. Graham, S. H., Chen, J., Sharp, F. R., and Simon, R. P. 1993. Limiting ischemic injury by inhibition of excitatory amino acid release. J. Cereb. Blood Flow Metab. 13:88–97.

    Google Scholar 

  20. Ikeda, M., Nakazawa, T., Abe, K., Kaneko, T., and Yamatsu, K. 1989. Extracellular accumulation of glutamate in the hippocampus induced by ischemia is not calcium dependent-in vitro and in vivo evidence. Neurosci. Lett. 96:202–206.

    Google Scholar 

  21. Katayama, Y., Tamura, T., Becker, D. P., and Tsubokawa, T. 1991. Calcium-dependent component of massive increase in extracellular potassium during cerebral ischemia as demonstrated by microdialysis in vivo. Brain Res. 567:57–63.

    Google Scholar 

  22. Wahl, F., Obrenovitch, T. P., Hardy, A., Plotkine, M., Boulu, R., and Symon, N. 1997. Altered glutamatergic transmission in neurological disorders: from high extracellular glutamate to excessive synaptic efficacy. Prog. Neurobiol. 51:39–87.

    Google Scholar 

  23. Gemba, T., Oshima, T., and Ninomiya, M. 1994. Glutamate efflux via the reversal of the sodium-dependent glutamate transporter caused by glycolytic inhibition in rat cultured astrocytes. Neuroscience 63:789–795.

    Google Scholar 

  24. Pocock, J. M. and Nicholls, D. G. 1998. Exocytotic and nonexocytotic modes of glutamate release from cultured cerebellar granule cells during chemical ischemia. J. Neurochem. 70:806–813.

    Google Scholar 

  25. Roettger, V. and Lipton, P. 1996. Mechanism of glutamate release from rat hippocampal slices during in vitro ischemia. Neuroscience 75:677–685.

    Google Scholar 

  26. Szatkowski, M. and Attwell, D. 1994. Triggering and execution of neuronal death in brain ischemia: two phases of glutamate release by different mechanisms. Trends Neurosci. 17:359–365.

    Google Scholar 

  27. Szatowski, M., Barbour, B., and Attwell, D. 1990. Non-vesicular release of glutamate from glial cells by reversed electrogenic glutamate uptake. Nature 348:443–446.

    Google Scholar 

  28. Kimelberg, H. K., Goderie, S. K., Higman, S., Pang, S., and Waniewski, R. A. 1990. Swelling-induced release of glutamate, aspartate and taurine from astrocytic cultures. J. Neurosci. 10:1583–1591.

    Google Scholar 

  29. Kimelberg, H. K., Rutledge, E., Goderie, S., and Charniga, C. 1995. Astrocytic swelling due to hypotonic of high K+ medium causes inhibition of glutamate and aspartate uptake and increases their release. J. Cereb. Blood Flow Metab. 15:409–416.

    Google Scholar 

  30. Phillis, J. W. and O'Regan, M. H. 1996. Mechanism of glutamate and aspartate release in the ischemic rat cerebral cortex. Brain Res. 730:150–164.

    Google Scholar 

  31. Vigers, G. A. and Zeigler, F. D. 1968. Azide inhibition of mitochondrial ATPase. Biochem. Biophys. Res. Commun. 30:83–88.

    Google Scholar 

  32. Pines, G. and Kanner, B. I. 1990. Counterflow of L-glutamate in plasma membrane vesicles and reconstituted preparations from rat brain. Biochemistry 29:11209–11214.

    Google Scholar 

  33. Ehring, G. R., Osipchuk, Y. V., and Calalan, M. D. 1994. Swelling-activated chloride channels in multidrug-sensitive and resistant cells. J. Gen. Physiol., 104:1129–1161.

    Google Scholar 

  34. Zhang, J. J., Jacob, T. J., Valverde, M. A., Hardy, S. P., Mintenig, G. M., Sepulveda, F. V., Gill, D. R., Hyde, S. C., Trezise, A. E., and Higgins, C. F. 1994. Tamoxifen blocks chloride channels: a possible mechansism for cataract formation. J. Clin. Invest. 94:1690–1697.

    Google Scholar 

  35. Dawson, L. A., Stow, J. M., and Palmer, A. M. 1997. Improved method for the measurement of glutamate and aspartate using capillary electrophoresis with laser induced fluorescence detection and its application to brain microdialysis. J. Chromatog. 694:455–460.

    Google Scholar 

  36. Varming, T., Drejer, J., Frandsen, A., and Schousboe, A. 1996. Characterisation of a chemical anoxia model in cerebellar granule neurones using sodium azide: protection by nifedipine and MK-801. J. Neurosci. Res. 44:40–46.

    Google Scholar 

  37. Uchiyama, Y., Araki, H., Yae, T., and Otomo, S. 1994. Changes in the extracellular concentrations of amino acids in the rat striatum during transient focal cerebral ischemia. J. Neurochem. 62:1074–1078.

    Google Scholar 

  38. Huang, F. P., Zhou, L. F., and Yang, G. Y. 1998. Effects of mild hypothermia on the release of regional glutamate and glycine during extended transient focal cerebral ischemia in rats. Neurochem. Res. 23:993–996.

    Google Scholar 

  39. Dawson, L. A., Djali, S., Gonzales, C., Vinegra, M. A., and Zaleska, M. M. 2001. Characterization of transient focal ischemia-induced increases in extracellular glutamate and aspartate in spontaneously hypertensive rats. Brain Res. Bull. (in press).

  40. Lysko, P. G., Webb, C. L., Yu, T-L., Gu, J-L., and Feuerstein, G. 1994. Neuroprotective effects of tetrodotoxin as a Na+ channel modulator and glutamate release inhibitor in cultured rat cerebellar neurones and gerbil global ischemia. Stroke 25:2476–2482.

    Google Scholar 

  41. Newcomb, R. and Palma, A. 1994. Effects of diverse w-conopeptides on the in vivo release of glutamic and g-aminobutyric acids. Brain Res. 638:95–102.

    Google Scholar 

  42. Kimura, M., Yamanishi, Y., Hanada, T., Kagaya, T., Kuwada, M., Watanabe, T., Katamaya, K., and Nishizawa, Y. 1995. Involvement of P-type calcium channels in high potassium-elicited release of neurotransmitters from rat brain slices. Neurosci. 66:609–615.

    Google Scholar 

  43. Nedergaard, M. and Astrup, J. 1986. Infarction: effect of hyperglycemia on direct current potential and 14C 2-deoxyglucose phosphorylation. J. Cereb. Blood Flow Metab. 6:607–615.

    Google Scholar 

  44. Gill, R., Foster, A. C., and Woodruff, G. N. 1987. Systemic administration of MK-801 protects against ishcemia-induced hippocampal neurodegeneration in the gerbil. J. Neurosci. 7:6–11.

    Google Scholar 

  45. Bullock, R., Graham, D. I., Swanson, S., and McCulloch, J. 1994. Neuroprotective effects of AMPA receptor antagonists LY-293558 in focal cerebral ischemia in the cat. J. Cereb. Blood Metab. 14:466–471.

    Google Scholar 

  46. Sheardown, M. J., Nielsen, E. O., Hansen, A. J., Jacobsen, P., and Honore, T. 1990. 2,3-Dihydroxy-6-nitro-7-sulfamoyl-benzo(F) quinoxaline: a neuroprotectant for cerebral ischemia. Science 247:571–574.

    Google Scholar 

  47. Swan, J. H. and Meldrum, BS. 1990. Protection by NMDA antagonists against selective cell loss following transient ischaemia. J. Cereb. Blood Metab. 10:343–51.

    Google Scholar 

  48. Phillis, J. W., Smith-Barbour, M., Perkins, L. M., and O'Regan, M. H. 1993. GYKI-52466 and ischemia-evoked neurotransmitter amino acid release from rat cerebral cortex. NeuroReport 4:109–111.

    Google Scholar 

  49. Phillis, J. W., Smith-Barbour, M., Perkins, L. M., and O'Regan, M. H. 1994. Characterization of glutamate, aspartate and GABA release from ischemic rat cerebral cortex. Brain Res. Bull. 34:457–466.

    Google Scholar 

  50. Seki, Y., Feustel, P. J., Keller, R. W., Tranmer, B. I., and Kimelberg, H. K. 1999. Inhibition of ischemia-induced glutamate release in rat striatum by dihydrokainate and an anion channel blocker. Stroke 30:433–440.

    Google Scholar 

  51. Phillis, J. W., Song, D., and O'Regan, M. H. 1997. Inhibition of anion channel blockers of ischemia-evoked release of excitotoxic and other amino acids from rat cerebral cortex. Brain Res. 758:9–16.

    Google Scholar 

  52. Phillis, J. W., Song, D., and O'Regan, M. H. 1998. Tamoxifen, a chloride channel blocker, reduces glutamate and aspartate release from the ischemic cerebral cortex. Brain Res. 780:352–355.

    Google Scholar 

  53. Arriza, J. L., Fairman, W. A., Wadiche, J. I., Murdoch, G. H., Kavanaugh, M. P., and Amara, S. G. 1994. Functional comparisons of three glutamate transporter subtypes cloned from human motor cortex. J. Neurosci. 14:5559–569.

    Google Scholar 

  54. Barbour, B., Brew, H., and Attwell, D. 1991. Electrogenic uptake of glutamate and aspartate into glial cells isolated from the salamander (Ambystoma) retina. J. Physiol. 436:169–193.

    Google Scholar 

  55. Pocock, J. M., Murphie, H. M., and Nicholls, D. G. 1988. Kainic acid inhibits the synaptosomal plasma membrane glutamate carrier and allows glutamate leakage from the cytoplasm but does not affect glutamate exocytosis. J. Neurochem. 50:745–751.

    Google Scholar 

  56. Pines, G., Danbolt, N. C., Bjoras, M., Zhang, Y., Bendahan, A., Eide, L., Koepsell, H., Storm-Mathisen, J., Seeberg, J., and Kanner, B. I. 1992. Cloning and expression of a rat glutamate transporter. Nature 360:464–467.

    Google Scholar 

  57. Zarbiv, R., Grunewald, M., Kavanaugh, M. P., and Kanner, B. I. 1999. Cysteine scanning of the surroundings of an alkali-ion binding site of the glutamate transporter GLT-1 reveals a conformationally sensitive residue. J. Biol. Chem. 273:14231–14243.

    Google Scholar 

  58. Ellinor, P. T., Zhang, J. F., Randall, A. D., Zhou, M., Schwarz, T. L., Tsien, R. W., and Horne, W. A. 1993. Functional expression of a rapidly inactivating neuronal calcium channel. Nature 363:455–458.

    Google Scholar 

  59. Adams, M. E., Myers, R. A., Imperial, J. S., and Olivera, B. M. 1993. Toxityping rat brain calcium channels with omega-toxins from spider and cone snail venoms. Biochemistry 32:12566–12570.

    Google Scholar 

  60. Obrenovitch, T. P. and Richards, D. A. 1995. Extracellular neurotransmitter changes in cerebral ischemia. Cerebrovasc. Brain Metab. Rev. 7:1–54.

    Google Scholar 

  61. Obrenovitch, T. P. 1996. Origins of glutamate release in ischaemia. Acta Neurochirurgica-Supplementum 66:50–55.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Djali, S., Dawson, L.A. Characterization of Endogenous Amino Acid Efflux from Hippocampal Slices during Chemically-Induced Ischemia. Neurochem Res 26, 135–143 (2001). https://doi.org/10.1023/A:1011094728469

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011094728469

Navigation