Skip to main content
Log in

Self-Organizing Task Modules and Explicit Coordinate Systems in a Neural Network Model for 3-D Saccades

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

The goal of this study was to train an artificial neural network to generate accurate saccades in Listing's plane and then determine how the hidden units performed the visuomotor transformation. A three-layer neural network was successfully trained, using back-prop, to take in oculocentric retinal error vectors and three-dimensional eye orientation and to generate the correct head-centric motor error vector within Listing's plane. Analysis of the hidden layer of trained networks showed that explicit representations of desired target direction and eye orientation were not employed. Instead, the hidden-layer units consistently divided themselves into four parallel modules: a dominant “vector-propagation” class (∼50% of units) with similar visual and motor tuning but negligible position sensitivity and three classes with specific spatial relations between position, visual, and motor tuning. Surprisingly, the vector-propagation units, and only these, formed a highly precise and consistent orthogonal coordinate system aligned with Listing's plane. Selective “lesions” confirmed that the vector-propagation module provided the main drive for saccade magnitude and direction, whereas a balance between activity in the other modules was required for the correct eye-position modulation. Thus, contrary to popular expectation, error-driven learning in itself was sufficient to produce a “neural” algorithm with discrete functional modules and explicit coordinate systems, much like those observed in the real saccade generator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Batista AP, Buneo CA, Snyder LH, Andersen RA (1999) Reach plans in eye-centered coordinates. Science 285:257-260.

    Google Scholar 

  • Bell AJ, Sejnowski TJ (1997) The "independent components" of natural scenes are edge filters. Vision Res. 37:3327-3338.

    Google Scholar 

  • Bon L, Lucchetti C (1992) The dorsomedial frontal cortex of the macaca monkey: Fixation and saccade-related activity. Exp. Brain Res. 89:571-580.

    Google Scholar 

  • Bozis A, Moschovakis AK (1998) Neural network simulations of the primate oculomotor system. III. A one-dimensional, one-directional model of the superior colliculus. Biol. Cybern. 79: 215-230.

    Google Scholar 

  • Colby CL, Duhamel JR, Goldberg ME (1995) Oculocentric spatial representation in parietal cortex. Cereb. Cortex. 5:470-481.

    Google Scholar 

  • Colby CL, Goldberg ME (1999) Space and attention in parietal cortex. Ann. Rev. Neurosci. 22:319-349.

    Google Scholar 

  • Crawford JD (1994) The oculomotor neural integrator uses a behavior-related coordinate system. J. Neurosci. 69:11-23.

    Google Scholar 

  • Crawford JD, Ceylan MZ, Klier EM, Guitton D (1999) Three-dimensional eye-head coordination during gaze saccades in the primate. J. Neurophysiol. 81:1760-1782.

    Google Scholar 

  • Crawford JD, Guitton D (1997) Visual motor transformations required for accurate and kinematically correct saccades. J. Neurophysiol. 78:1447-1467.

    Google Scholar 

  • Crawford JD, Henriques DYP, Vilis T (2000). Curvature of visual space under vertical eye rotation: Implications for spatial vision and visuomotor control. J. Neurosci. 20:2360-2368.

    Google Scholar 

  • Crawford JD, Vilis T (1991) Axes of eye rotation and Listing's law during rotations of the head. J. Neurophysiol. 65: 407-423.

    Google Scholar 

  • Crawford JD, Vilis T (1992) Symmetry of oculomotor burst neuron coordinates about Listing's plane. J. Neurophysiol. 68:432-448.

    Google Scholar 

  • Crawford JD, Vilis T (1993) Modularity and parallel processing in the oculomotor integrator. Exp. Brain. Res. 96:443-456.

    Google Scholar 

  • Demer JL, Miller JM, Poukens V, Vinters HV, Glasgow BJ (1995) Evidence for fibromuscular pulleys of the recti extraocular muscles. Invest. Ophthalmol. Vis. Sci. 36:1125-1136.

    Google Scholar 

  • Draye JP, Cheron G, Libert G, Godaux E (1997) Emergence of clusters in the hidden layer of a dynamic recurrent neural network. Biol. Cybern. 76:365-374.

    Google Scholar 

  • Duhamel J, Bremmer F, BenHamed S, Graf W (1997) Spatial invariance of visual receptive fields in parietal cortex neurons. Nature 389:845-848.

    Google Scholar 

  • Duhamel JR, Colby CL, Goldberg ME (1992) The updating of the representation of visual space in parietal cortex by intended eye movements. Science 255:90-92.

    Google Scholar 

  • Ernst U, Pawelzik K, Tsodyks M, Sejnowski TJ (1999) Relation between retinotopic and orientation maps in visual cortex. Neural Comput. 11:375-379.

    Google Scholar 

  • Flanders M, Daghestani L, Berthoz A (1999) Reaching beyond reach. Exp. Brain Res. 126:19-30.

    Google Scholar 

  • Freedman EG, Sparks DL (1997) Activity of cells in the deeper layers of the superior colliculus of Rhesus monkey: Evidence for a gaze displacement command. J. Neurophysiol. 78:1669-1690.

    Google Scholar 

  • Freedman EG, Standford TR, Sparks DL (1996) Combined eye-head gaze shifts produced by electrical stimulation of the superior colliculus in rhesus monkeys. J. Neurophysiol. 76:927-951.

    Google Scholar 

  • Freedman JA, Skapura DM (1991) Neural Networks: Algorithms, Applications, and Programming Techniques. Addison Wesley, Toronto.

    Google Scholar 

  • Fuchs AF, Kaneko CRS, Scudder CA (1985) Brainstem control of saccadic eye movements. Ann. Rev. Neurosci. 8:307-337.

    Google Scholar 

  • Georgopulos AP, Kalaska JF, Camaniti R, Massey JT (1982) On the relations between the direction of two-dimensional arm movements and cell discharge in primate motor cortex. J. Neurosci. 2:1527-1537.

    Google Scholar 

  • Goldberg ME, Bruce CJ (1990) Primate frontal eye fields. III. Maintenance of a spatially accurate saccade signal. J. Neurophysiol. 64:489-508.

    Google Scholar 

  • Grossberg S, Kuperstein M (1986) Neural Dynamics of Adaptive Sensory Motor Control, Ballistic Eye Movements. Elsevier North-Holland, North-Holland.

    Google Scholar 

  • Helmchen C, Rambold H, Buttner U (1996) Saccade-related burst neurons with torsional and vertical on-directions in the interstitial nucleus of Cajal in the alert monkey. Exp. Brain. Res. 112:63-78.

    Google Scholar 

  • Henn V, Hepp K, Vilis T (1989) Rapid eye movement generation in the primate: Physiology, pathophysiology and clinical implication. Revue Neurologique (Paris) 145:540-545.

    Google Scholar 

  • Henriques DYP, Klier EM, Smith MA, Lowy D, Crawford JD (1998) Gaze-centered remapping of remembered visual space in an open loop-pointing task. J. Neurosci. 18:1583-1594.

    Google Scholar 

  • Hepp K, Cabungcal JH, Duersteler M, Hess BJM, Scherberer H, Straumann D, Suzuki Y, Van Opstal AJ, Henn, V (1999) 3D structure of the reticular saccade generator in the monkey (Abstract). 29th Annual Meeting of the Society for Neuroscience, Abstract #661.6 (book 2).

  • Hepp K, Van Opstal AJ, Straumann D, Hess BJ, Henn V (1993) Monkey superior colliculus represents rapid eye movements in a two-dimensional motor map. J. Neurophysiol. 69:965-979.

    Google Scholar 

  • Howard IP (1982) Human Visual Orientation. Wiley, New York.

    Google Scholar 

  • Jürgens R, Becker W, Kornhuber HH (1981) Natural and drug induced variations of velocity and duration of human saccadic eye movements: Evidence for a control of the neural pulse generator by local feedback. Bio. Cybern. 39:87-96.

    Google Scholar 

  • Klier EM, Crawford JD (1998) Human oculomotor system accounts for 3-D eye orientation in the visual-motor transformation for saccades. J. Neurophysiol. 80:2274-2294.

    Google Scholar 

  • Klier EM, Wang H, Crawford JD (2000) Stimulation of the interstitial nucleus of Cajal produces torsional and vertical head rotations (Abstract). Society for Neurosci. Abstracts 25:660.18.

    Google Scholar 

  • Krommenhoek KP, Van Opstal AJ, Gielen CC, Van Gisbergen JA (1993) Remapping of neural activity in the motor colliculus: A neural network study. Vision Res. 33:1287-1298.

    Google Scholar 

  • Krommenhoek KP, Wiegerinck WA (1998) A neural network study of precollicular saccadic averaging. Biol. Cybern. 78:465-477.

    Google Scholar 

  • Liu L, Sun H, Guo A (1997) Transformation of sensory signals into commands for saccadic eye movements: A neural network study. J. Theor. Biol. 189:121-131.

    Google Scholar 

  • Moschovakis AK, Highstein SM (1994) The anatomy and physiology of primate neurons that control rapid eye movements. Ann. Rev. Neurosci. 17:465-488.

    Google Scholar 

  • Munoz DP, Wurtz RH (1995) Saccade-related activity in monkey superior colliculus II. Spread of activity during saccades. J. Neurophysiol. 73:2234-2348.

    Google Scholar 

  • Mushiake H, Tanatsugu Y, Tanji J (1997) Neuronal activity in the ventral part of premotor cortex during target-reach movement is modulated by direction of gaze. J. Neurophysiol. 78:567-567.

    Google Scholar 

  • Optican LM, Miles FA (1985) Visually induced adaptive changes in primate saccadic oculomotor signals. J. Neurophysiol. 54: 940-958.

    Google Scholar 

  • Parodi P, Jimbo Y, Kawana A, Macri D, Torre V (1998) Segmentation of the response of a neuronal network into clusters with similar activity. BioSystems. 48:171-178.

    Google Scholar 

  • Quaia C, Aizawa H, Optican LM, Wurtz RH (1998) Reversible inactivation of monkey superior colliculus. II. Maps of saccadic deficits. J. Neurophysiol. 79:2097-2110.

    Google Scholar 

  • Quaia C, Lefevre P, Optican LM (1999) Model of the control of saccades by superior colliculus and cerebellum. J. Neurophysiol. 82:999-1018.

    Google Scholar 

  • Quaia C, Optican LM (1997) Model with distributed vectorial premotor bursters accounts for the component stretching of oblique saccades. J. Neurophysiol. 78:1120-1134.

    Google Scholar 

  • Quaia C, Optican LM (1998) Commutative saccadic generator is sufficient to control a 3-D ocular plant with pulleys. J. Neurophysiol. 6:3197-3215.

    Google Scholar 

  • Raphan T (1998) Modelling control of eye orientation in three dimensions. I. Role of muscle pulleys in determining saccadic trajectory. J. Neurophysiol. 79:2653-2667.

    Google Scholar 

  • Robinson DA (1981) Control of eye movements. In: Brooks VB, ed. Handbook of Physiology: The Nervous System. Visual motor control. Bethesda, MD. Am. Physiol. Soc. 2:1275-1320.

    Google Scholar 

  • Robinson DA (1992) Implications of neural networks for how we think about brain function. Behav. and Brain Sci. 15:644-655.

    Google Scholar 

  • Rumelhart DE, Hinton GE, Williams RJ (1986) Learning internal representations by error propagation. In: Rumelhart DE, McClelland JL, eds. Parallel Distributed Processing. MIT Press, Cambridge, Mass. vol. 1, pp. 318-362.

    Google Scholar 

  • Russo GS, Bruce CJ (1993) Effect of eye position within the orbit on electrically elicited saccadic eye movements: A comparison of the Macaque monkey's frontal and supplementary eye fields. J. Neurophysiol. 69:800-818.

    Google Scholar 

  • Schall JD (1991) Neuronal activity related to visually guided saccadic eye movements in the supplementary motor area of rhesus monkeys. J. Neurophysiol. 66:530-558.

    Google Scholar 

  • Scherberger H, Cabungeal JH, Heep K, Suzuki Y, Straumann D, Henn V (1998) Pre-saccadic reticular burst neuron on-directions rotate with ocular counterroll in monkeys. Society for Neuroscience Abstracts 24:60-65.

    Google Scholar 

  • Schlag J, Schlag-Rey M (1987) Evidence for a supplementary eye field. J. Neurophysiol. 57:179-200.

    Google Scholar 

  • Snyder LH, Batista AP, Andersen RA (1998) Change in motor plan, without a change in the spatial locus of attention, modulates activity in the posterior parietal cortex. J. Neurophysiol. 79:2814-2819.

    Google Scholar 

  • Soechting JF, Flanders M (1989) Sensorimotor representations for pointing to targets in three-dimensional space. J. Neurophysiol. 62:582-594.

    Google Scholar 

  • Soechting JF, Flanders M (1992) Moving in three-dimensional space: Frames of reference, vectors, and coordinate systems. Ann. Rev. Neurosci. 15:167-191.

    Google Scholar 

  • Sparks DL (1989) The neural encoding of the location of targets for saccadic eye movements. J. Exp. Biol. 146:195-207.

    Google Scholar 

  • Stein JF (1992) The representation of egocentric space in the posterior parietal cortex. Behav. and Brain. Sci. 15:691-700.

    Google Scholar 

  • Tweed D, Haslwanter T, Fetter M (1998) Optimizing gaze control in three dimensions. Science 281:1363-1366.

    Google Scholar 

  • Tweed DB, Vilis T (1990a) Geometric relations of eye position and velocity vectors during saccades. Vision Res. 30:111-127.

    Google Scholar 

  • Tweed DB, Vilis T (1990b) The superior colliculus and spatiotemporal translation in the saccadic system. Neural Networks 3:75-86.

    Google Scholar 

  • Van Gisbergen JA, Robinson DA, Gielen S (1981) A quantitative analysis of generation of saccadic eye movements by burst neurons. J. Neurophysiol. 3:417-442.

    Google Scholar 

  • Van Opstal AJ, Hepp, K (1995) A novel interpretation for the collicular role in saccade generation. Biol. Cybern. 73:431-445.

    Google Scholar 

  • Van Opstal AJ, Hepp K, Hess BJ, Straumann D, Henn V (1991) Two rather than three-dimensional representation of saccades in monkey superior colliculus. Science 252:1313-1315.

    Google Scholar 

  • Van Opstal AJ, Hepp K, Suzuki Y, Henn V (1995). Influence of eye position on activity in monkey superior colliculus. J. Neurophysiol. 74:1593-1610.

    Google Scholar 

  • Vilis T, Hore J (1981) Characteristics of saccadic dysmetria in monkeys during reversible lesions of medial cerebellar nuclei. J. Neurophysiol. 46:828-838.

    Google Scholar 

  • Von Helmholtz H (1925) Treaties on Physiological Optics (vol. 3). Translated by J.P.C. Southall. Optical Society of America, Rochester, NY.

    Google Scholar 

  • Waitzman DM, Ma TP, Optican LM, Wurtz RH (1991) Superior colliculus neurons mediate the dynamic characteristics of saccades. J. Neurophysiol. 66:1716-1737.

    Google Scholar 

  • Woodwoth RS (1899) The accuracy of voluntary movement. Psychol. Rev. Monogr. Suppl. 3.

  • Xing J, Gerstein GL (1996) Networks with lateral connectivity. II. Development of neuronal grouping and corresponding receptive field changes. J. Neurophysiol. 75:200-216.

    Google Scholar 

  • Zee DS, Optican LM, Cook JD, Robinson DA, Engel WK (1976) Slow saccades in spinocerebellar degeneration. Arch. Neurol. 33:243-251.

    Google Scholar 

  • Zipser D, Andersen RA (1988) A back-propagation programmed network that simulates response properties of a subset of posterior parietal neurons. Nature 331:679-684.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smith, M.A., Crawford, J.D. Self-Organizing Task Modules and Explicit Coordinate Systems in a Neural Network Model for 3-D Saccades. J Comput Neurosci 10, 127–150 (2001). https://doi.org/10.1023/A:1011264913465

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011264913465

Navigation