Skip to main content
Log in

Receptor-Mediated Interaction Between the Sympathetic Nervous System and Immune System in Inflammation

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The sympathetic nervous system plays a central role in establishing communication between the central nervous system and the immune system during inflammation. Inflammation activates the sympathetic nervous system, which causes release of the transmitters of the sympathetic nerv-ous system in the periphery. The transmitters of the sympathetic nervous system are the cate-cholamines noradrenaline and adrenaline and the purines ATP, adenosine, and inosine. Once these transmitters are released, they stimulate both presynaptic receptors on nerve terminals and post-synaptic receptors on immune cells. The receptors that are sensitive to catecholamines are termed adrenoceptors, whereas the receptors that bind purines are called purinoceptors. Stimulation of the presynaptic receptors exerts an autoregulatory effect on the release of transmitters. Ligation of the postsynaptic receptors on inflammatory cells modulates the inflammatory ac-tivities of these cells. The present review summarizes some of the most important aspects of the current state of knowledge about the interactions between the sympathetic nervous system and the immune system during inflammation with a special emphasis on the role of adreno and purinoceptors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. Besedovsky, H. O. and del Rey, A. 1996. Immune-neuroendocrine interactions: Facts and hypotheses. Endocr. Rev. 17:64–102.

    Google Scholar 

  2. Chrousos, G. P. 1995. The hypothalamic-pituitary-adrenal axis and immune-mediated inflammation. N. Engl. J. Med. 332:1351–1362.

    Google Scholar 

  3. Wilder, R. L. 1995. Neuroendocrine-immune system interactions and autoimmunity. Annu. Rev. Immunol. 13:307–338.

    Google Scholar 

  4. Haskó, G. and Szabó, C. 1998. Regulation of cytokine and chemokine production by transmitters and co-transmitters of the autonomic nervous system. Biochem. Pharmacol. 56:1079–1087.

    Google Scholar 

  5. Straub, R. H., Westermann, J., Scholmerich, J., and Falk, W. 1998. Dialogue between the CNS and the immune system in lymphoid organs. Immunol. Today 19:409–413.

    Google Scholar 

  6. Elenkov, I. J. and Vizi, E. S. 1991. Presynaptic modulation of release of noradrenaline from the sympathetic nerve terminals in the rat spleen. Neuropharmacol. 30:1319–1324.

    Google Scholar 

  7. Vizi, E. S., Orsó, E., Osipenko, O. N., Haskó, G., and Elenkov, I. J. 1995. Neurochemical, electrophysiological and immunocytochemical evidence for a noradrenergic link between the sympathetic nervous system and thymocytes. Neuroscience 68:1263–1276.

    Google Scholar 

  8. Haskó, G., Elenkov, I. J., and Vizi, E. S. 1995. Presynaptic receptors involved in the modulation of release of noradrenaline from the sympathetic nerve terminals of the rat thymus. Immunol. Lett. 47:133–137.

    Google Scholar 

  9. White, T. D. 1988. Role of adenine compounds in autonomic neurotransmission. Pharmacol. Ther. 38:129–168.

    Google Scholar 

  10. Dubyak, G. R. and El-Moatassim, C. 1993. Signal transduction via P2-purinergic receptors for extracellular ATP and other nucleotides. Am. J. Physiol. 265:C577–C606.

    Google Scholar 

  11. Miller, L. E., Justen, H. P., Scholmerich, J., and Straub, R. H. 2000. The loss of sympathetic nerve fibers in the synovial tissue of patients with rheumatoid arthritis is accompanied by increased norepinephrine release from synovial macrophages. FASEB J. 14:2097–2107.

    Google Scholar 

  12. Sperlágh, B. Dóda, M. Baranyi, M., and Haskó, G. 2000. Characterization of ischemia-induced release of norepinephrine and purines from the spleen. J. Neuroimmunol. 111:45–54.

    Google Scholar 

  13. Cronstein, B. N. 1994. Adenosine, an endogenous anti-inflammatory agent. J. Appl. Physiol. 76:5–13.

    Google Scholar 

  14. Felten, S. Y., Felten, D. L., Bellinger, D. L., Carlson, S. L., Ackerman, K. D., Madden, K. S., Olschowka, J. A., and Livnat S. 1988. Noradrenergic sympathetic innervation of lymphoid organs. Prog. Allergy 43:14–36.

    Google Scholar 

  15. van der Poll, T., Jansen, J., Endert, E., Sauerwein, H. P., and van Deventer, S. J. H. 1994. Noradrenaline inhibits lipopolysaccharide-induced tumor necrosis factor and interleukin 6 production in human whole blood. Infect. Immun. 62:2046–2050.

    Google Scholar 

  16. Elenkov, I. J., Haskó, G., Kovács, K. J., and Vizi, E. S. 1995. Modulation of lipopolysaccharide-induced tumor necrosis factor-α production by selective α-and β-adrenergic drugs in mice. J. Neuroimmunol. 61:123–131.

    Google Scholar 

  17. Spengler, R. N., Allen, R. M., Remick, D. G., Strieter, R. M., and Kunkel, S. L. 1990. Stimulation of α-adrenergic receptor augments the production of macrophage-derived tumor necrosis factor. J. Immunol. 145:1430–1434.

    Google Scholar 

  18. Haskó, G., Elenkov, I. J., Kvetan, V., and Vizi, E. S. 1995. Differential effect of selective block of α2-adrenoceptors on plasma levels of tumour necrosis factor-α, interleukin-6 and corticosterone induced by bacterial lipopolysaccharide in mice. J. Endocrinol. 144:457–462.

    Google Scholar 

  19. Fessler, H. E., Otterbein, L., Chung, H. S., and Choi, A. M. K. 1996. Alpha-2 adrenoceptor blockade protects rats against lipopolysaccharide. Am. J. Respir. Crit. Care Med. 154:1689–1693.

    Google Scholar 

  20. Goldmuntz, E. A., Brosnan, C. F., and Norton, W. T. 1986. Prazosin treatment suppresses increased vascular permeability in both acute and passively transferred experimental autoimmune encephalomyelitis in the Lewis rat. J. Immunol. 137: 3444–3450.

    Google Scholar 

  21. Stephens, C. G. and Snydermann, R. 1982. Cyclic nucleotides regulate the morphologic alterations required for chemotaxis in monocytes. J. Immunol. 128:1192–1197.

    Google Scholar 

  22. Abrass, C. K., O'Connor, S. W., Scarpace, P. J., and Abrass, I. B. 1985. Characterization of the β-adrenergic receptor of the rat peritoneal macrophage. J. Immunol. 135:1338–1341.

    Google Scholar 

  23. Ignarro, L. J., Paddock, R. J., and George, W. J. 1974. Hormonal control of neutrophil lysosomal enzyme release: Effect of epinephrine on adenosine 3′,5′-monophosphate. Science 183:855–857.

    Google Scholar 

  24. Hu, X., Goldmuntz, E. A., and Brosnan, C. F. 1991. The effect of norepinephrine on endotoxin-mediated macrophage activation. J. Neuroimmunol. 31:35–42.

    Google Scholar 

  25. Szabó, C., Haskó, G., Zingarelli, B., Németh, Z. H., Salzman, A. L., Kvetan, V., Pastores, S. M., and Vizi, E. S. 1997. Isoproterenol regulates TNF, IL-10, IL-6 and nitric oxide production and protects against the development of vascular hyporeactivity in endotoxemia. Immunology 90:95–100.

    Google Scholar 

  26. Haskó, G., Németh, Z. H., Szabó, C., Zsilla, G., Salzman, A. L., and Vizi, E. S. 1998. Isoproterenol inhibits IL-10, TNF-α, and nitric oxide production in RAW 264.7 macrophages. Brain Res. Bull. 45:183–187.

    Google Scholar 

  27. Elenkov, I. J., Papanicolau, D. A., Wilder, R. L., and Chrousos, G. P. 1996. Modulatory effects of glucocorticoids and catecholamines on human interleukin-12 and interleukin-10 production: Clinical implications. Proc. Assoc. Am. Physicians 108:1–8.

    Google Scholar 

  28. Panina-Bordignon, P., Mazzeo, D., Di Lucia, P., D'Ambrosio, D., Lang, R., Fabbri, L., Self, C., and Sinigaglia, F. 1997. β2-agonists prevent TH1 development by selective inhibition of interleukin 12. J. Clin. Invest. 100:1513–1519.

    Google Scholar 

  29. Haskó, G. and C. Szabó, C. 1999. IL-12 as a therapeutic target for pharmacological modulation in immune-mediated and inflammatory diseases: Regulation of T helper 1/T helper 2 responses. Br. J. Pharmacol. 127:1295–1304.

    Google Scholar 

  30. Feinstein, D. L., Galea, E., and Reis, D. J. 1993. Norepinephrine suppresses inducible nitric oxide synthase activity in rat astroglial cultures. J. Neurochem. 60:1945–1948.

    Google Scholar 

  31. Gornikiewicz, A., Sautner, T., Brostjan, C., Schmierer, B., Fugger, R., Roth, E., Muhlbacher, F., and Bergmann. M. 2000. Catecholamines up-regulate lipopolysaccharide-induced IL-6 production in human microvascular endothelial cells. FASEB J. 14:1093–1100.

    Google Scholar 

  32. Siegmund, B., Eigler, A., Hartmann, G., Hacker, U., and Endres, S. 1998. Adrenaline enhances LPS-induced IL-10 synthesis: Evidence for protein kinase A-mediated pathway. Int. J. Immunopharmacol. 20:57–69.

    Google Scholar 

  33. Haskó, G., Szabó, C., Németh, Z. H., Salzman, A. L., and Vizi. E. S. 1998. Suppression of interleukin-12 production by phosphodiesterase inhibition in murine endotoxemia is interleukin-10 independent. Eur. J. Immunol. 28:468–472.

    Google Scholar 

  34. Wiegmann, K., Muthyala, S., Kim, D. H., Arnason, B. G. W., and Chelmicka-Schorr, E. 1995. β-Adrenergic agonists suppress chronic/relapsing experimental allergic encephalomyelitis (CREAE) in Lewis rats. J. Neuroimmunol. 56:201–206.

    Google Scholar 

  35. Kim, D. H., Muthyala, S., Soliven, B., Wiegmann, K., Wollmann, R., and Chelmicka-Schorr, E. 1994. The β2-adrenergic agonist terbutaline suppresses experimental allergic neuritis in Lewis rats. J. Neuroimmunol. 51:177–183.

    Google Scholar 

  36. Chelmicka-Schorr, E., Wollmann, R. L., Kwasniewski, M. N., Kim, D. H., and Dupont, B. L. 1993. The β2-adrenergic agonist terbutaline suppresses acute passive transfer of experimental autoimmune myasthenia gravis (EAMG). Int. J. Immunopharmacol. 15:19–24.

    Google Scholar 

  37. Pastores, S. M., Haskó, G., Vizi, E. S., and Kvetan, V. 1996. Cytokine production and its manipulation by vasoactive drugs. New Horiz. 4:252–264.

    Google Scholar 

  38. Sekut, L., Champion, B. R., Page, K., Menius, J. A., and Conolly, K. M. 1995. Anti-inflammatory activity of salmeterol: Down-regulation of cytokine production. Clin. Exp. Immunol. 99:461–466.

    Google Scholar 

  39. Di Virgilio, F., Ferrari, D., Chiozzi, P., Falzoni, S., Sanz, J. M., dal Susino, M., Mutini, C., Hanau, S., and Baricordi, O. R. 1996. Purinoreceptor function in immune system. Drug Dev. Res. 39:319–329.

    Google Scholar 

  40. Lammas, D. A., Stober, C., Harvey, C. J., Kendrick, N., Panchalingam, S., and Kumararatne, D. S. 1997. ATP-induced killing of mycobacteria by human macrophages is mediated by purinergic P2Z(P2X7) receptors. Immunity 7:433–444.

    Google Scholar 

  41. Sperlagh, B., Haskó, G., Németh, Z., and Vizi, E. S. 1998. ATP released by LPS increases nitric oxide production in raw 264.7 macrophage cell line via P2Z/P2X7 receptors. Neurochem. Int. 33:209–215.

    Google Scholar 

  42. Proctor, R. A., Denlinger, L. C., Leventhal, P. S., Daugherty, S. K., van de Loo, J.-W., Tanke, T., Firestein, G. S., and Bertics, P. J. 1994. Protection of mice from endotoxic death by 2-by 2-methylthio-ATP. Proc. Natl. Acad. Sci. USA 91:6017–20.

    Google Scholar 

  43. Haskó, G., Kuhel, D. G., Salzman, A. L., and Szabó, C. 2000. ATP suppression of interleukin-12 and tumour necrosis factoralpha release from macrophages. Br. J. Pharmacol. 129:909–914.

    Google Scholar 

  44. Sullivan, G. W. and Linden J. 1998. Role of A(2A) adenosine receptors in inflammation. Drug Dev. Res. 45:103–112.

    Google Scholar 

  45. Reinstein, L. J., Lichtman, S. N., Currin, R. T., Wang, J., Thurman, R. G., and Lemasters, J. J. 1994. Suppression of lipopolysaccharide-stimulated release of tumor necrosis factor by adenosine: Evidence for A2 receptors on rat Kupffer cells. Hepatology 19:1445–1452.

    Google Scholar 

  46. Sajjadi, F. G., Tabayashi, K., Foster, A. C., Domingo, R. C., and Firestein, G. S. 1996. Inhibition of TNF-α expression by adenosine. Role of A3 adenosine receptors. J. Immunol. 156:3435–3442.

    Google Scholar 

  47. Haskó, G., Szabó, C., Németh, Z. H., Kvetan, V., Pastores, S. M., and Vizi, E. S. 1996. Adenosine receptor agonists differentially regulate IL-10, TNF-α, and nitric oxide production in RAW 264.7 macrophages and in endotoxemic mice. J. Immunol. 157:4634–4640.

    Google Scholar 

  48. Haskó, G., Németh, Z. H., Vizi, E. S., Salzman, A. L., and Szabó, C. 1998. An agonist of A3 adenosine receptors decreases IL,-12, IFN-γ, and nitric oxide production and prevents lethality in endotoxemic mice. Eur. J. Pharmacol. 358:261–268.

    Google Scholar 

  49. Haskó, G., Kuhel, D. G., Chen, J.-F., Schwarzschild, M. A., Deitch, E. A., Mabley, J. G., Marton, A., and Szabó, C. 2000. Adenosine inhibits IL-12 and TNF-α production via adenosine A2a receptor-dependent and independent mechanisms. FASEB J. 14:2065–2074.

    Google Scholar 

  50. Haskó, G., Kuhel, D. G., Németh, Z. H., Mabley, J. G., Stachlewitz, R. F., Virág, L., Lohinai, Z., Southan, G. J., Salzman, A. L., and Szabó, C. 2000. Inosine inhibits inflammatory cytokine production by a post-transcriptional mechanism and projects against endotoxin-induced shock. J. Immunol. 164:1013–1019.

    Google Scholar 

  51. Parmely, M. J., Zhou, W. W., Edwards, C. K., III, Borcherding, D. R., Silverstein, R., and Morrison, D. C. 1993. Adenosine and a related carbocyclic nucleoside analogue selectively inhibit tumor necrosis factor-a production and protect mice against endotoxin challenge. J. Immunol. 151:389–396.

    Google Scholar 

  52. Green, P. G., Basbaum, A. I., Helms, C., and Levine, J. D. 1991. Purinergic regulation of bradykinin-induced plasma extravasation and adjuvant-induced arthritis in the rat. Proc. Natl. Acad. Sci. USA 88:4162–4165.

    Google Scholar 

  53. Szabó, C., Scott, G. S., Virág, L., Egnaczyk, G., Salzman, A. L., Shanley, T. P., and Haskó, G. 1998. Suppression of macrophage inflammatory protein (MIP)-1alpha production and collagen-induced arthritis by adenosine receptor agonists. Br. J. Pharmacol. 125:379–387.

    Google Scholar 

  54. Marak, G. E., Jr., de Kozak, Y., Faure, J. P., Rao N. A., Romero, J. L., Ward, P. A., and Till, G. O. 1988. Pharmacologic modulation of acute ocular inflammation. I. Adenosine. Ophtalmic Res. 20:220–226.

    Google Scholar 

  55. Cronstein, B. N. 1995. The antirheumatic agents sulphasalazine and methotrexate share an anti-inflammatory mechanism. Br. J. Rheumatol. 34:S30–32.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haskó, G. Receptor-Mediated Interaction Between the Sympathetic Nervous System and Immune System in Inflammation. Neurochem Res 26, 1039–1044 (2001). https://doi.org/10.1023/A:1012305122327

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012305122327

Navigation