Skip to main content
Log in

Activation of LA-N-2 Cell Phospholipase D by Amyloid Beta Protein (25–35)

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Amyloid β protein is the major protein component of neuritic plaques found in the brain of Alzheimer's disease. The activation of phospholipase D by amyloid beta protein (25–35), quisqualate and phorbol 12, 13-dibutyrate was investigated in LA-N-2 cells by measuring phosphatidylethanol formation. The activation of phospholipase D by quisqualate and AβP (25–35) was calcium-independent. The AβP (25–35) and quisqualate activation of phospholipase D appeared to be mediated through a pertussis toxin-sensitive GTP-binding protein. Phospholipase D activation by AβP (25–35), quisqualate and phorbol dibutyrate was not blunted by the protein kinase C inhibitors, staurosporine, H-7 and RO-31-8220. However, it was abolished by overnight exposure to phorbol dibutyrate. This activation of phospholipase D was prevented by the tyrosine kinase inhibitor, genistein but not by tyrophostin A. Several excitatory amino acid antagonists were tested for their ability to prevent the phospholipase D activation by quisqualate and AβP (25–35). Only NBQX was effective with an IC50 of 75 μM for AβP (25–35) and quisqualate. Activation of phospholipase D by AβP or quisqualate was absent in LA-N-2 cells previously desensitized by quisqualate or AβP (25–35), but the activation by phorbol dibutyrate was unaltered. The responsiveness to AβP and quisqualate in previously desensitized cells reappeared subsequent to a period of resensitization. The observations with the antagonist NBQX, and the desensitization and resensitization experiments, are consistent with a receptor occupancy mediated activation of phospholipase D by quisqualate and by AβP (25–35).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. Khachaturian, Z.S. 1985. Diagnosis of Alzheimer's Disease. Arch. Neurol. 42:1097-1105.

    PubMed  Google Scholar 

  2. Selkoe, D. 1994. Cell biology of the amyloid beta-protein precursor and the mechanism of Alzheimer's Disease. Annu. Rev. Cell Biol. 10:373-403.

    PubMed  Google Scholar 

  3. Iversen, L.L., Mortshire-Smith, R.J., Pollack, S.J., and Shearman, M.S. 1995. The toxicity in vitro of beta-amyloid protein. Biochem. J. 311:1-16.

    PubMed  Google Scholar 

  4. Pike, C.J., Walencewicz-Wasserman, A.J., Kosmoski, J., Cribbs, D.H., Globe, C.C., and Cotman, C.W. 1995. Structure activity analyses of beta-amyloid peptides: contributions of the beta 25–35 region to aggregation and neurotoxicity. J. Neurochem. 64:253-265.

    PubMed  Google Scholar 

  5. Roses, A.D. 1996. Apolipoprotein E in neurology. Curr. Opin. Neurol. 9:265-270.

    PubMed  Google Scholar 

  6. Tanzi, R.E., Kovacs, D.M., Kim. T-W., Moir, R.D., Guenette, S.Y., and Wasco, W. 1996. The gene defects responsible for familial Alzheimer's disease. Neurobiol. Dis. 3:159-168.

    PubMed  Google Scholar 

  7. Singh, I.N., McCartney, D.G., and Kanfer, J.N. 1995. Amyloid beta protein (25–35) stimulation of phospholipases A, C and D activities of LA-N-2 cells. FEBS Letts. 365:125-128.

    Google Scholar 

  8. Singh, I.N., Sato, K., Takashima, A., and Kanfer, J.N. 1997. Activation of LA-N-2 cell phospholipases by single alanine substitution analogs of amyloid β peptide (25–35). FEBS Lett. 405:65-67.

    PubMed  Google Scholar 

  9. Singh, I.N., Sorrentino, G., and Kanfer, J.N. 1996. Amyloid β protein (25–35) activation of phospholipase A2 in LA-N-2 cells. Alzheimer's Res. 2:121-128.

    Google Scholar 

  10. Singh, I.N., Sorrentino, G., and Kanfer, J.N. 1997. Amyloid β protein (25–35) stimulation of phospholipase C in LA-N-2 cells. J. Neurochem. 69:252-258.

    PubMed  Google Scholar 

  11. Singh, I.N., Sorrentino, G., McCartney, D.G., Massarrelli, R., and Kanfer, J.N. 1990. Enzymatic activities during differentiation of the human neuroblastoma cells, LA-N-1 and LA-N-2. J. Neurosci. Res. 25:476-485.

    PubMed  Google Scholar 

  12. Singh, I.N., Massarrelli, R., and Kanfer, J.N. 1993. Activation of phospholipases D and A by amphiphilic cations of cultured LA-N-2 cells is G-protein and protein kinase C-independent. J. Lipid. Mediat. 7:85-96.

    PubMed  Google Scholar 

  13. Wilkinson, L. 1990. Systat: The system for statistics, Systat. Inc., Evanston, IL.

    Google Scholar 

  14. English, D., Taylor, G., and Garcia, J.G. 1991. Diacylglycerol generation in fluoride-treated neutrophils: involvement of phospholipase D. Blood 77:2746-275.

    PubMed  Google Scholar 

  15. Liscovitch, M., and Eli, Y. 1991. Ca2+ inhibits guanine nucleotide-activated phospholipase D in neural derived NG 108-15 cells. Cell Regul. 2:1011-1019.

    PubMed  Google Scholar 

  16. Natarajan, V., Jayaram, H.M., Scribner, W.M., and Garcia, J.G. 1994. Activation of endothelial cell phospholipase D by sphingosine and spingosine 1-phosphate. Am. J. Respir. Cell. Mol. Biol. 11:221-229.

    PubMed  Google Scholar 

  17. Zoukhri, D., and Dartt, A. 1995. Cholinergic activation of phospholipase D in lacrimal gland acinic is independent of protein kinase C and calcium. Amer. J. Physiol. 268:C713-C720.

    PubMed  Google Scholar 

  18. Desogher, S., Cordier, J., Glowinski, J., and Tence, M. 1997. Endothelin stimulate phospholipase D in striatal astrocytes. J. Neurochem. 68:78-87.

    PubMed  Google Scholar 

  19. MacNulty, E.E., McClure, S.J., Carr, I.C., Jess, T., Wakelman, M.J., and Milligan, G. 1992. Alpha 2-C10-adrenergic receptors expressed in rat 1 fibroblasts can regulate both adenylcylase and phospholipase D—mediated hydrolysis of phosphatidylcholine by interacting with pertussis-sensitive guanine nucleotide binding proteins. J. Biol. Chem. 267:2149-2156.

    PubMed  Google Scholar 

  20. Mullmann, T.J., Cheewatrakoolpong, B., Anthes, J.C., Seigel, M.I., Egan, R.W., and Billah, M.M. 1993. Phospholipase C and phospholipase D are activated independently of each other in chemotactic peptide—stimulated human neutrophils. J. Leukoc. Biol. 53:630-635.

    PubMed  Google Scholar 

  21. Martinson, E.A., Scheible, S., Greenacher, A., and Presek, P. 1995. Platelet phospholipase D is activated by PKC via an integrin alpha II beta 3-independent mechanism. Biochem. J. 310:623-628.

    PubMed  Google Scholar 

  22. Pyne, S., and Pyne, N.J. 1995. Bradykinin-stimulated phosphatidylcholine hydrolysis in airway smooth muscle: role of Ca+2 and PKC. Biochem. J. 311:637-642.

    PubMed  Google Scholar 

  23. Seymour, L.W., Shoaibi, M.A., Martin, A., Ahmed, A., Elven, P., Kerr, D.J., and Wakelman, M.J. 1996. Vascular EGF stimulates protein kinase C-dependent phospholipase D activity in endothelial cells. Lab. Invest. 75:424-437.

    Google Scholar 

  24. Shinoda, J., Suzuki, A., Osio, Y., and Kozawa, O. 1995. Thromboxane A-2 stimulated phospholipase D in osteoclast-like cells and possible involvement of PKC. Am. J. Physiol. 269:E524-E525.

    PubMed  Google Scholar 

  25. Matsushima, H., Shimohana, S., Chachin, M., Taniguchi, T., and Kimura, J. 1996. Ca+2-dependent and Ca+2-independent protein kinase C changes in the brains of patients with Alzheimer's disease. J. Neurochem. 67:317-323.

    PubMed  Google Scholar 

  26. Nishizuka, Y. 1992. Intracellular signalling by hydrolysis of phospholipids and activation of protein kinase C. Science 258:607-611.

    PubMed  Google Scholar 

  27. Pascale, A., Fortino, I., Govani, S., Trabucchi, M., Wetsel, W.C., and Battaini, F. 1996. Differential isoform-specific regulation of calium-independent protein kinase C in rat cerebral cortex. Neurosci. Letts. 214:99-102.

    Google Scholar 

  28. Brouard, A., Pelaprat, D., Vial, M., Thiaubet, A.M., and Rostene, W. 1994. Effects of ion channel blockers and phorbol ester treatments on [3H] dopamine release and neurotensin facilitation of [3H] dopamine release from rat mesencephalic cells in primary culture. J. Neurochem. 62:1416-1425.

    PubMed  Google Scholar 

  29. Hofmann, J. 1997. The potential for isoenzyme-selective modulation of protein kinase C. FASEB J. 11:649-669.

    PubMed  Google Scholar 

  30. Ison, A.J., MacEwan, D.J., Johnson, M.S., Clegg, R.A., Connor, K., and Mitchell, R. 1993. Evidence for a distinct H7-resistant form of protein kinase C in rat anterior pituitary gland. FEBS Letts. 329:199-204.

    Google Scholar 

  31. Lee, C.G., and O'Brien, W.E. 1995. A unique form of thymidine kinase family that is induced during macrophage activation. J. Immunol. 154:6094-6102.

    PubMed  Google Scholar 

  32. Stevens, M.F., McCall, C.J., Lelieveld, P., Alexander, P., Richter, A., and Davies, D.E. 1994. Structural studies on bioactive compounds. 23 Synthesis of polyhydroxylated 2-phenylthiazoles with a comparison of their cytotoxic and pharmacological properties with genistein and quercetin. J. Med. Chem. 37:1689-1695.

    PubMed  Google Scholar 

  33. Markovits, J., Larsen, A.K., Segal-Bendirdjian, E., Fosse, P., Saucier, J.M., Gozet, A., Levitzki, A., Umezawa, K., and Jacquemin-Sablon, A. 1994. Inhibition of DNA topoisomerases I and II and induction of apoptosis by erbstatin and tyrophostin derivatives. Biochem. Pharm. 48:549-560.

    PubMed  Google Scholar 

  34. Boss, V., and Conn, P.J. 1992. Metabotropic excitatory amino acid receptor activation stimulates phospholipase D in hippocampal slices. J. Neurochem. 59:2340-2343.

    PubMed  Google Scholar 

  35. Pellegrini-Giampietro, D.E., Torregrossa, S.A., and Moroni, F. 1996. Pharmacological characterization of the metabotropic glutamate receptors coupled to phospholipase D in the rat hippocampus. Br. J. Pharmacol. 118:1035-1043.

    PubMed  Google Scholar 

  36. Sorrentino, G., Singh, I.N., Massarelli, R., and Kanfer, J.N. 1996. Stimulation of phospholipase C activity by norepinephrine, t-ACP D and bombesin in LA-N-2 cells. Eur. J. Pharmacol. 308:81-86.

    PubMed  Google Scholar 

  37. Kelly, J.F., Furukawa, K., Barger, S.W., Rengen, M.R., Mark, R.J., Blanc, E.M., Roth, G.S., and Mattson, M.R. 1996. Amyloid beta peptide disrupts carbachol-induced muscarinic cholinergic signal transduction in cortical neurons. Proc. Natl. Acad. Sci. 93:6753-6758.

    PubMed  Google Scholar 

  38. Boland, K., Behrens, M., Choi, D., Manias, K., and Perlmutter, D.H. 1996. The serpin-enzyme complex receptor recognizes soluble, nontoxic amyloid-beta-peptide but not aggregated, cytotoxic amyloid beta peptide. J. Biol. Chem. 271:18032-18044.

    PubMed  Google Scholar 

  39. Paresce, D.M., Ghosh, R.N., and Maxfield, F.R. 1996. Microglia cells internalize aggregates of the Alzheimer's disease amyloid beta-protein via a scavenger receptor. Neuron. 17:553-565.

    PubMed  Google Scholar 

  40. Shearman, M.S. 1996. Cellular MTT reduction distinguishes the mechanisms of action of beta amyloid from that of tachykinin receptor peptides. Neuropeptides 30:125-132.

    PubMed  Google Scholar 

  41. Shimohigashi, Y., Matsumoto, H., Takano, Y., Saito, R., Iwata, T., Kamiya, H., and Ohno, M. 1993. Receptor-mediated specific biological activity of a beta-amyloid protein fragment for NK-1 substance P receptor. Biochem. Biophys. Res. Commun. 193:624-630.

    PubMed  Google Scholar 

  42. Yan, S.D., Chen, X., Fu, J., Chen, M., Zhu, H., Roher, R., Slattery, T., Zhao, L., Nagashima, M., Morser, J., Migheli, A., Nawroth, P., Stern, D., and Schmidt, A.M. 1996. RAGE and amyloid beta-peptide neurotoxicity in Alzheimers disease. Nature 382:685-691.

    PubMed  Google Scholar 

  43. Fagarasan, M.O., and Efthimiopoulos, S. 1996. Mechanism of amyloid β peptide (1–42) toxicity in PC 12 cells. Mol. Psychiatry 1:398-403.

    PubMed  Google Scholar 

  44. Hartmann, H., Eckert, A., Crews, F.T., and Müller, E.W. 1996. β-amyloid amplifies PLC activity and Ca+2 signalling in fully differentiated brain cells of adult mice. Amyloid Int. J. Exp. Clin. Invest. 3:234-241.

    Google Scholar 

  45. Cribbs, D.H., Pike, C.J., Weinstein, S.L., Velazquez, P., and Cotman, C.W. 1997. All D-Enantiomers of β-amyloid exhibit similar biological properties to all L-β-amyloids. J. Biol. Chem. 272:7431-7436.

    PubMed  Google Scholar 

  46. Pillot, T., Goethals, M., Vanloo, B., Talussot, C., Brasseur, R., Vandekerckhove, J., Rosseneu, M., and Lins, L. 1996. Fusogenic properties of the C-terminal domain of the Alzheimer β-amyloid peptide. J. Biol. Chem. 271:28757-28765.

    PubMed  Google Scholar 

  47. Gottfries, C.G., Jungbjir, B., Karlsson, L., and Svenerholm, L. 1996. Reductions in membrane proteins and lipids in basal ganglia of classic Alzheimers disease patients. Alzheimer's Dis. Assoc. Disord. 10:77-81.

    Google Scholar 

  48. Nitsch, R.M., Blusztajn, J.K., Pettas, A.G., Slack, B.E., Growden, J.H., and Wurtman, R.J. 1992. Evidence for a membrane defect in Alzheimers disease brain. Proc. Natl. Acad. Sci. 89:1671-1675.

    PubMed  Google Scholar 

  49. Pettegrew, J.W., Panchalingham, K., Strychor, S., and Branthoover, G. 1990. Analysis of membrane phospholipids in Alzheimers disease brain by 31 PNMR. Soc. Neurosci. Abstr. 16:498.

    Google Scholar 

  50. Svennerholm, L., and Gottfries, C.G. 1994. Membrane lipids, selectively diminished in Alzheimers brain, suggest synapse loss a primary event in early-onset (Type I) and demyelination in late onset form (Type II). J. Neurochem. 62:1039-1044.

    PubMed  Google Scholar 

  51. Wells, K., Farooqui, A.A., Liss, L., and Horrocks, L.A. 1995. Neural membrane phospholipids in Alzheimers diseases. Neurochem. Res. 20:1329-1333.

    PubMed  Google Scholar 

  52. Blusztajn, J.K., Gonzalec-Coviella, I.L., Logue, M., Growden, J.H., and Wurtman, R.J. 1990. Levels of phospholipid catabolic intermediates, glycerophosphocholine and glycerophosphoethanolamine, are elevated in brains of Alzheimers disease but not of Down's syndrome patients. Brain Res. 536:240-244.

    PubMed  Google Scholar 

  53. Ellison, D.W., Beal, M.F., and Martin, J.B. 1987. Phosphoethanolamine and ethanolamine are decreased in Alzheimers and Huntingtons diseases. Brain Res. 417:389-392.

    PubMed  Google Scholar 

  54. Klunk, W.E., Xu, C., Panchalingam, K., McClure, R.J., and Pettegrew, J.W. 1994. Analysis of magnetic resonance spectra by mole percent: comparison to absolute units, Neurobiol. Aging 15:133-140.

    PubMed  Google Scholar 

  55. Pettegrew, J.W., Panchalingham, K., Moosy, J., Martinez, J., Rao, G., and Boller, F. 1981. Correlation of 31 P magnetic resonance spectroscopy and morphologic findings in Alzheimers disease. Arch. Neurol. 45:1093-1096.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, I.N., Sorrentino, G. & Kanfer, J.N. Activation of LA-N-2 Cell Phospholipase D by Amyloid Beta Protein (25–35). Neurochem Res 23, 1225–1232 (1998). https://doi.org/10.1023/A:1020731813973

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020731813973

Navigation