Skip to main content
Log in

Cued In: Advances and Opportunities in Freshwater Chemical Ecology

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

We focus this mini-review on how naturally occurring chemical cues mediate ecological interactions, especially interspecific competition and predation in freshwater communities. Although freshwater chemical ecology lags behind terrestrial and marine chemical ecology, we identify recent progress toward: (1) identifying the chemical composition of cues important in food web interactions, e.g., specific glucosinolates, benzyl succinoates, and lignoids as deterrents to herbivory on freshwater macrophytes; (2) employing a nonreductionist approach that tests for emergent responses to suites of multiple chemical cues, e.g., trade-offs in snail refuge-seeking behavior in the presence of chemical cues from both fish and crayfish; (3) investigating how abiotic forces, such as hydrodynamics, impact chemical communication across a broad spatial and temporal scale, e.g., drift responses of mayfly nymphs to whole-stream additions of trout cue; and (4) quantifying the importance of genetic variability, e.g., how chemical cues change selective pressures of local environments. The questions of interest in freshwater chemical ecology cross taxonomic boundaries; traverse broad spatial and temporal scales; demonstrate nonlinear, unpredictable results; and necessitate a multidisciplinary approach for adequate understanding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  • ÅbjÖrnsson, K., Wagner, B. M. A., Axelsson, A., Bjerselius, R., and OlsÉn, K. H. 1997. Responses of Acilius sulcatus (Coleoptera: Dytiscidae) to chemical cues from perch (Perca fluvialitis). Oecologia 111:166–171.

    Google Scholar 

  • Berendonk, T. U. 1999. Influence of fish kairomones on the ovipositing behavior of Chaoborus imagines. Limnol. Oceanogr. 44:454–458.

    Google Scholar 

  • Boersma, M., De Meester, L., and Spaak, P. 1999. Environmental stress and local adaptation in Daphnia magna. Limnol. Oceanogr. 44:393–402.

    Google Scholar 

  • Bolser, R. C., Hay, M., Lindquist, N., Fenical, W., and Wilson, D. 1998. Chemical defense of freshwater macrophytes against crayfish herbivory. J. Chem. Ecol. 24: 1639–1658.

    Google Scholar 

  • Boriss, H., Boersma, M., and Wiltshire, K. H. 1999. Trimethylamine induces migration of water fleas. Nature 198:382–383.

    Google Scholar 

  • Brewer, M. C., Dawidocwicz, P., and Dodson, S. I. 1999. Interactive effects of fish kairomone and light on Daphnia escape behavior. J. Plankton Res. 21:1317–1335.

    Google Scholar 

  • BrÖnmark, C. and Hansson, L.-A. 2000. Chemical communication in aquatic systems: an introduction. Oikos 88:103–109.

    Google Scholar 

  • Brown, G. E., Chivers, D. P., and Smith, R. J. F. 1997. Differential learning rates of chemical versus visual cues of a northern pike by fathead minnows in a natural habitat. Environ. Biol. Fishes 49:89–96.

    Google Scholar 

  • Burks, R. L., Jeppesen, E., and Lodge, D.M. 2000. Macrophyte and fish chemical suppress Daphnia growth and alter life history traits. Oikos 88:139–147.

    Google Scholar 

  • Burks, R. L., Jeppesen, E., and Lodge, D. M. 2001. Littoral zone structures as Daphnia refugia against fish predators. Limnol. Oceanogr. 46:230–237.

    Google Scholar 

  • Chivers, D. P. and Smith, R. J. F. 1998. Chemical alarm signaling in aquatic predator-prey systems: a review and prospectus. Ecoscience 5:338–352.

    Google Scholar 

  • Chivers, D. P., Wisenden, B. D., and Smith, R. J. F. 1996. Damselfly larvae learn to recognize predators from chemical cues in the predator's diet. Anim. Behav. 52: 315–330.

    Google Scholar 

  • Covich, A. P., Crowl, T. A., Alexander, J. E., Jr., and Vaughn, C. C. 1994. Predator-avoidance responses in freshwater decapod-gastropod interactions mediated by chemical stimuli. J. North Am. Benthol. Soc. 13:283–290.

    Google Scholar 

  • Cronin, G. 1998. Influence of macrophyte structure, nutritive value, and chemistry on the feeding choices of a generalist crayfish, pp. 307–317, in E. Jeppesen, Ma. Søndergaard, Mo. Søndergaard, and K. Christoffersen (eds.). The Structuring Role of Submerged Macrophytes in Lakes. Springer-Verlag, New York.

    Google Scholar 

  • Dahl, J., Nilsson, P.-A., and Petterson, L.-B. 1998. Chemical detection of downstream predators in running waters. Proc. Natl. Acad. Sci. USA 265:1339–1344.

    Google Scholar 

  • De Meester, L. 1996a. Local genetic differentiation and adaptation in freshwater zooplankton populations: patterns and processes. Ecoscience 3:385–399.

    Google Scholar 

  • De Meester, L. 1996b. Evolutionary potential and local genetic differentiation in a phenotypically plastic trait of a cyclical parthenogen, Daphnia magna. Evolution 50: 1293–1298.

    Google Scholar 

  • De Meester, L. and Cousyn, C. 1997. The change in phototactic behaviour of a Daphnia magna clone in the presence of fish kairomones: the effect of exposure time. Hydrobiologia 360:169–175.

    Google Scholar 

  • Dicke, M. and Sabelis, M.W. 1988. Infochemical terminology: based on cost-benefit analysis rather than origin of compounds. Funct. Ecol. 2:131–139.

    Google Scholar 

  • Dodson, S. I., Crowl, T. A., Peckarsky, B. L., Kats, L. B., Covich, A. P., and Culp, J. M. 1994. Non-visual communication in freshwater benthos: An overview. J. North Am. Benthol. Soc. 13:268–282.

    Google Scholar 

  • Dorn, N., Cronin, G., and Lodge, D. M. 2001. Feeding preferences and performance of an aquatic lepidopteran on macrophytes: plant hosts as food and habitat. Oecologia 128:406–415.

    Google Scholar 

  • EklÖv, P. 2000. Chemical cues from multiple predator-prey interactions induce changes in behavior and growth of anuran larvae. Oecologia 123:192–199.

    Google Scholar 

  • Gross, E. M., Meyer, H., and Schilling, G. 1996. Release and ecological impact of algicidal hydrolysable polyphenols in Myriophyllum spicatum. Phytochemistry 41:133–138.

    Google Scholar 

  • Hanazato, T. 1991. Effects of a Chaoborus-released chemical on Daphnia ambigua: reduction in the tolerance of the Daphnia to summer water temperature. Limnol. Oceanogr. 36:165–171.

    Google Scholar 

  • Hazlett, B.A. 1999. Responses to multiple chemical cues by the crayfish Orconectes virilis. Behaviour 136:161–177.

    Google Scholar 

  • Hessen, D. O. and Van Donk, E. 1992. Morphological changes in Scenedesmus induced by substances released by Daphnia. Arch. Hydrobiol. 127:129–140.

    Google Scholar 

  • Kats, L. B. and Dill, L. M. 1998. The scent of death: chemosensory assessment of predation risk by prey animals. Ecoscience 5:361–394.

    Google Scholar 

  • Kubanek, J., Fenical, W., Hay, M. E., Brown, P. J., and Lindquist, N. 2000. Two antifeedant lignans from the freshwater macrophyte Saururus cernuus. Phytochemistry 54:281–287.

    Google Scholar 

  • Kubanek, J., Hay, M. E., Brown, P. J., Lindquist, N., and Fenical, W. 2001. Lignoid chemical defenses in the freshwater macrophyte Saururus cernuus. Chemoecology 11:1–8.

    Google Scholar 

  • Larsson, P. and Dodson, S. I. 1993. Invited review: Chemical communication in planktonic animals. Arch. Hydrobiol. 129:129–155.

    Google Scholar 

  • Lass, S., Boersma, M., Wiltshire, K. H., Spaak, P., and Boriss, H. 2001. Does trimethylamine induce life-history reactions in Daphnia? Hydrobiologia 442:199–206.

    Google Scholar 

  • Lauridsen, T. L. and Lodge, D. M. 1996. Avoidance by Daphnia magna of fish and macrophytes: Chemical cues and predator-mediated use of macrophyte habitat. Limnol. Oceanogr. 41:794–798.

    Google Scholar 

  • Lodge, D. M. 1991. Herbivory on freshwater macrophytes. Aquat. Bot. 41:195–224.

    Google Scholar 

  • Lodge, D. M., Cronin, G., Van Donk, E., and Froelich, A. J. 1998. Influence of macrophyte structure, nutritive value, and chemistry on the feeding choices of a generalist crayfish, pp. 149–174, in E. Jeppesen, Ma. Søndergaard, Mo. Søndergaard, and K. Christoffersen (eds.). The Structuring Role of Submerged Macrophytes in Lakes. Springer-Verlag, New York.

    Google Scholar 

  • LÜrling, M. and Van Donk, E. 2000. Grazer-induced colony formation in Scenedesmus: are there costs to being colonial? Oikos 88:111–118.

    Google Scholar 

  • LÜrling, M. and Von Elert, E. 2001. Colony formation in Scenedesmus: No contribution of urea in induction by a lipophilic Daphnia exudate. Limnol. Oceanogr. 46: 1809–1813.

    Google Scholar 

  • LÜrling, M., De Lange, H. J., and Van Donk, E. 1997. Changes in food quality of the green alga Scenedesmus induced by Daphnia infochemicals: Biochemical composition and morphology. Freshwater Biol. 38:619–628.

    Google Scholar 

  • McIntosh, A. R., Peckarsky, B. P., and Taylor, B. W. 1999. Rapid size-specific changes in the drift of Baetis bicaudatus (Ephemeroptera) caused by alterations in fish odour concentration. Oecologia 118:256–264.

    Google Scholar 

  • Moore, P. A. and Grills, J. A. 1999. Chemical orientation to food by the crayfish Orconenctes rusticus: influence of hydrodynamics. Anim. Behav. 58:953–963.

    Google Scholar 

  • Moore, P. A., Grills, J. A., and Schneider, R. W. S. 2000. Habitat-specific signal structure for olfaction: an example from artificial streams. J. Chem. Ecol. 26:565–584.

    Google Scholar 

  • Newman, R. M., Kerfoot, W. C., and Hanscom, Z. 1996. Watercress allochemical defends highnitrogen foliage against consumption: effects on freshwater invertebrate herbivores. Ecology 77:2312–2323.

    Google Scholar 

  • O'Bryan, L. M. and Forrester, G. E. 1997. Effects of fish presence and simulated moonlight gradients on nighttime horizontalmovements of a predatory zooplankter, Chaoborus punctipennis. J. Plankton Res. 19:1441–1453.

    Google Scholar 

  • Oldham, N. J. and Boland, W. 1996. Chemical ecology: Multifunctional compounds and multitrophic interactions. Naturwissenschaften 83:248–254.

    Google Scholar 

  • Peckarsky, B. L., McIntosh, A. R., Taylor, B. W., and Dahl, J. 2002. Predator chemicals induce changes in mayfly life history traits: A wlole-stream manipulation. Ecology 83:612–618.

    Google Scholar 

  • Peckarsky, B. L. and McIntosh, A. R. 1998. Fitness and community consequences of avoiding multiple predators. Oecologia 113:565–576.

    Google Scholar 

  • Peckarsky, B. L., Cooper, S. D., and McIntosh, A. R. 1997. Extrapolating from individual behavior to populations and communities in streams. J. North Am. Benthol. Soc. 16:375–390.

    Google Scholar 

  • Pohnert, G. and Von Elert, E. 2000. No ecological relevance for trimethylamine in fish-Daphnia interactions. Limnol. Oceanogr. 45:1153–1156.

    Google Scholar 

  • Relyea, R. A. 2001. Morphological and behavioral plasticity of larval anurans in response to different predators. Ecology 82:523–540.

    Google Scholar 

  • Ringelberg, J. and Van Gool, E. 1998. Do bacteria, not fish, produce ‘fish kairomone’? J. Plankton Res. 20:1847–1852.

    Google Scholar 

  • SakwiŃska, O. 1998. Plasticity of Daphnia magna life history traits in response to temperature and information about a predator. Freshwater Bio. 39:681–687.

    Google Scholar 

  • SakwiŃska, O. 2000. Trimethylamine does not trigger antipredatory life history shifts in Daphnia. Limnol. Oceanogr. 45:988–990.

    Google Scholar 

  • Scheffer, M., Hosper, H., Meijer, M.-L., Moss, B., and Jeppesen, E. 1993. Alternative equilibria in shallow lakes. TREE 8:275–279.

    Google Scholar 

  • Sih, A., Englund, G., and Wooster, D. 1998. Emergent impacts of multiple predators on prey. TREE 13:350–355.

    Google Scholar 

  • Ślusarczyk, M. 1999. Predator-induced diapause in Daphnia magna may require two chemical cues. Oecologia 119:159–165.

    Google Scholar 

  • Stirling, G. and Roff, D. A. 2000. Behaviour plasticity without learning: phenotypic and genetic variation of na¨ýve Daphnia in an ecological trade-off. Anim. Behav. 59:929–941.

    Google Scholar 

  • Storfer, A. and Sih, A. 1998. Gene flow and ineffective antipredator behavior in a stream-breeding salamander. Evolution 52:558–565.

    Google Scholar 

  • Tollrian, R. and Dodson, S. I. 1999. Inducible defenses in Cladocera: constraints, costs, and multipredator environments, pp. 177–202, in C. D. Harvell and R. Tollrian (eds.). Ecology and Evolution of Inducible Defenses. Princeton University Press, Princeton, New Jersey.

    Google Scholar 

  • Tollrian, R. and Harvell, C. D. 1999. The evolution of inducible defense: Current ideas, pp. 306–321, in C. D. Harvell and R. Tollrian (eds.). Ecology and Evolution of Inducible Defenses. Princeton University Press, Princeton, New Jersey.

    Google Scholar 

  • Tomba, A. M., Keller, T. A., and Moore, P.A. 2001. Foraging in complex odor landscapes: chemical orientation strategies during stimulation by conflicting chemical cues. J. North Am. Benthol. Soc. 20:211–222.

    Google Scholar 

  • Turner, A. M., Fetterolf, S. A., and Bernot, R. J. 1999. Predator identity and consumer behavior: differential effects of fish and crayfish on the habitat use of a freshwater snail. Oecologia 118:242–247.

    Google Scholar 

  • Turner, A. M., Bernot, R. J., and Boes, C.M. 2000. Chemical cues modify species interactions: the ecological consequences of predator avoidance by freshwater snails. Oikos 88:148–158.

    Google Scholar 

  • Van Donk, E., LÜrling, M., and Lampert, W. 1999. Consumer-induced changes in phytoplankton: inducibility, costs, benefits, and the impact on grazers, pp. 89–104, in C. D. Harvell and R. Tollrian (eds.). Ecology and Evolution of Inducible Defenses.Princeton University Press, Princeton, New Jersey.

    Google Scholar 

  • Von Elert, E. and Loose, C. J. 1996. Predator-induced diel vertical migration in Daphnia: enrichment and preliminary chemical characterization of a kairomone exuded by fish. J. Chem. Ecol. 22:885–895.

    Google Scholar 

  • Von Elert, E. and Franck, A. 1999. Colony formation in Scenedesmus: grazer-mediated release and chemical features of the infochemical. J. Plankton Res. 21:789–804.

    Google Scholar 

  • Von Elert, E. and Pohnert, G. 2000. Predator specificity of kairomones in diel vertical migration of Daphnia: A chemical approach. Oikos 88:119–128.

    Google Scholar 

  • Weber, A. 2001. Interactions between predator kairomone and food level complicate the ecological interpretation of Daphnia laboratory results. J. Plankton Res. 23:41–46.

    Google Scholar 

  • Wendel, T. and JÜttner, F. 1997. Excretion of heptadecene-1 into lake water by swarms of Polyphemus pediculus (Crustacea). Freshwater Bio. 38:203–207.

    Google Scholar 

  • Wilson, D. M., Fenical, W., Hay, M., Lindquist, N., and Bolser, R. 1999. Habenariol, a freshwater feeding deterrent from the aquatic orchid Habenaria repens (Orchidaceae). Phytochemistry 50:1333–1336.

    Google Scholar 

  • Wiltshire, K. H. and Lampert, W. 1999. Urea excretion by Daphnia: a colony-inducing factor in Scenedesmus? Limnol. Oceangr. 46:1809–1813.

    Google Scholar 

  • Wisenden, B. D. and Millard, M. C. 2001. Aquatic flatworms use chemical cues from injured conspecifics to assess predation risk and to associate risk with novel cues. Anim. Behav. 62:761–766.

    Google Scholar 

  • Zimmer, R. K. and Butman, C. A. 2000. Chemical signaling processes in the marine environment. Biol. Bull. 198:168–187.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Romi L. Burks.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burks, R.L., Lodge, D.M. Cued In: Advances and Opportunities in Freshwater Chemical Ecology. J Chem Ecol 28, 1901–1917 (2002). https://doi.org/10.1023/A:1020785525081

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020785525081

Navigation