Skip to main content
Log in

In-Vitro and In-Vivo Action of Cannabinoids

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The discovery of endocannabinoids such as anandamide and the wide spread localization of cannabinoid receptors in the brain and peripheral tissues, suggests that the cannabinoid system represents a previously unrecognized ubiquitous net work in the nervous system, whose physiology and function is unfolding. In this study, we tested the hypothesis that some of the actions of anandamide are independent of a cannabinoid receptor mechanism. This was accomplished by the use of cannabinoid agonist and antagonist interaction in an in-vitro and in-vivo test systems. In-vitro, we used Xenopus laevis oocytes expression system and two-voltage clamp technique in combination with differential display polymerase chain reaction to determine whether the differential display of genes following treatment with anandamide may be linked to AMPA glutamate receptor. The differential expression of genes in vivo after the sub-acute administration of anandamide could not be directly linked with the AMPA glutamate receptor. In the voltage clamp studies we investigated the effects of anandamide on recombinant AMPA GluR3 sub-unit currents generated by kainic acid in oocytes expressing the AMPA glutamate receptor. In the in-vitro studies, we present evidence that anandamide inhibited the kainate activated currents in oocytes expressing AMPA glutamate receptor involves cAMP transduction via a cannabinoid receptor independent mechanism. In the in-vivo studies, SR141716A, the CB1 antagonist, induced anxiolysis, that was dependent on the mouse strain used in the anxiety model and blocked the anxiogenic effects of anandamide or methanandamide whereas SR141716A had no effect on the anandamide inhibition of kainate activated currents in-vitro.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Miles, M. F. 1995. Alcohol's effects on gene expression. Alcohol health and research world. 19:237–243.

    Google Scholar 

  2. Valenzuela, C. F. 1997. Alcohol and neurotransmitter interactions. Alcohol health and research world. 21:144–148.

    Google Scholar 

  3. Chakrabarti, A., Onaivi, E. S., Sulser, F., and Akinshola, B. E. 1997. Interaction of cannabinoids with NMDA and non-NMDA glutamate receptors. Soc. Neurosc. Absts., 23:376.11.

    Google Scholar 

  4. Hampson, A. J., Bornheim, L. M., Scanziani, M., Yost C. S., Gray, A. T., Hansen, B. M., Leonoudakis, D. J., and Bickler, P. E. 1998. Dual effects of anandamide on NMDA receptor-mediated responses and neurotransmission. J. Neurochem., 70:671–676.

    Google Scholar 

  5. Mailleux, P., and Vanderhaeghen J-J. 1994. Glutamatergic regulation of cannabinoid receptor gene expression in the caudateputamen. European J. Pharmacol., 266:193–196.

    Google Scholar 

  6. Tabuchi, S., Kume, K., Aihara, M., Ishii, S., Mishina, M., and Shimizu., T. (1997) Lipid mediators modulate NMDA receptor currents in a Xenopus oocyte expression system. Neuroscience letters, 237:13–16.

    Google Scholar 

  7. Bliss, T. V., and Collingridge, G. L. 1993. A synaptic model of memory: long-term potentiation in the hippocampus. Nature, 361:31–39.

    Google Scholar 

  8. Di, Marzo, V., Fontana, A., Cadas, H., Schinelli, S., Cimino, G., Schwartz, J. C., and Piomelli, D. 1994. Formation and inactivation of endogenous cannabinoid anandamide in central neuron. Nature, 372:686–691.

    Google Scholar 

  9. Devane, W. A., Hanus, L., Breuer, A., Pertwee, R. G., Stevenson, L. A., Griffin, G., Gibson, D., Mandelbaum, A., Etinger, A., and Mechoulam, R. 1993. Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science, 258:1946–1949.

    Google Scholar 

  10. Axelrod, J., and Felder, C. C. 1998. Cannabinoid receptors and their endogenous agonist, anandamide. Neurochemical Research, 23:575–581.

    Google Scholar 

  11. Onaivi, E. S., Chakrabarti, A., and Chaudhuri, G. 1996. Cannabinoid receptor genes. Prog. Neurobiol., 48:275–305.

    Google Scholar 

  12. Pertwee, R. G. 1997. Pharmacology of cannabinoid CB1 and CB2 receptors. Pharmacol. Ther., 74:129–180.

    Google Scholar 

  13. Chakrabarti, A., Ekuta, J. E., and Onaivi, E. S. 1998. Neurobehavioral effects anandamide and cannabinoid receptor gene expression in mice. Brain Res. Bull., 45:67–74.

    Google Scholar 

  14. Matsuda, L. A. 1997. Molecular aspects of cannabinoid receptors. Critical Reviews in Neurobiology. 11:143–166.

    Google Scholar 

  15. Quick, M. W., and Lester, H. A. 1994. Methods for expression of excitability protein in Xenopus oocyte, in Methods in Neuroscience Science, Vol. 19 (Conn. P. M., ed.), P261-P279). Academic Press, San Diego.

    Google Scholar 

  16. DeLean, A., Munson, P. J., and Rodbard, D. 1978. Simultaneous analysis of families of sigmoidal curves: application to bioassay, radioligand assay, and physiological dose-response curves. Am. J. Physiol., 235:97–102.

    Google Scholar 

  17. Burstein, S., and Hunter, S. A. 1978. Prostaglandins and cannabis. VI. Release of arachidonic acid from HeLa cells by delta-1-tetrahydrocannabinol and other cannabinoids. Biochem. Pharmacol., 27:1275–1280.

    Google Scholar 

  18. Reichman, M., Nen, W., and Hokin, L. E. 1988. Delta-9-tetrahydrocannabinol increases arachidonate levels in guinea pig cerebral cortex slices. Mol. Pharmacol., 34:823–828.

    Google Scholar 

  19. Reichman, M., Nen, W., and Hokin, L. E. 1991. Delta-9-tetrahydrocannabinol inhibits arachidonic acylation of phospholipids and triacylglycerols in guinea pig cerebral cortex slices. Mol. Pharmacol., 40:547–555.

    Google Scholar 

  20. Felder, C. C., Nielsen, A., Briley, E. M., Palkovits, M., Priller, J., Axelrod, J., Nguyen, D. N., Richardson, J. M., Riggin, R. M., Koppel, G. A., Paul, S. M., and Becker, G. W. 1996. Isolation and measurement of the endogenous cannabinoid receptor agonist, anandamide, in brain and peripheral tissues of human and rat. FEBS Lett., 393:231–235.

    Google Scholar 

  21. Lake, K. D., Martin, B. R., Kunos, G., and Karoly, V. 1997. Cardiovascular effects of anandamide in anesthetized and conscious normotensive rats. Hypertension, 29:1204–1210.

    Google Scholar 

  22. Venance, L., Piomelli, D., Glowinski, J., and Giaume, C. 1995. Inhibition by anandamide of gap junctions and intercellular calcium signalling in striatal astrocytes. Nature, 376:590–597.

    Google Scholar 

  23. Rhee, M-H., Bayewitch, M., Avidor-Reiss, T., Levy, R., and Vogel, Z. 1998. Cannabinoid receptor activation differentially regulates the various adenylyl cyclase isozymes. J. Neurochemistry, 71:1525–1534.

    Google Scholar 

  24. Keller, B. U., Hollmann, M., Heinmann, S., and Konnerth, A. 1992. Calcium influx through subunits GluR1/GluR3 of kainate/AMPA receptor channels is regulated by cAMP dependent protein kinase. EMBO J., 11:891–896.

    Google Scholar 

  25. Onaivi, E. S., Green, M. R., and Martin, B. R. 1990. Pharmacological characterization of cannabinoids in the elevated plus maze. J. Pharmacol. Exp. Ther., 253:1002–1009.

    Google Scholar 

  26. Onaivi, E. S., and Akinshola, B. E. 1999. In-vitro and in-vivo actions of cannabinoids. Faseb J., 13(5):823.2.

    Google Scholar 

  27. Onaivi, E. S., and Martin, B. R. 1989. A neuropharmacological and physiological validation of a computer-controlled two compartment black and white box for the assessment of anxiety. Prog. Neuro-Psychopharmacol. & Biol. Psychiatry, 13:963–976.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. S. Onaivi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akinshola, B.E., Chakrabarti, A. & Onaivi, E.S. In-Vitro and In-Vivo Action of Cannabinoids. Neurochem Res 24, 1233–1240 (1999). https://doi.org/10.1023/A:1020968922151

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020968922151

Navigation