Skip to main content
Log in

Early and Late Gene Changes in MPTP Mice Model of Parkinson's Disease Employing cDNA Microarray

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Recently, we reported specific brain gene expression changes in the chronic MPTP model in the late stage of degeneration, employing cDNA expression array, which indicate a “domino” cascade of events involved in neuronal cell death. In an attempt to elucidate early gene expression profile in the region of the substantia nigra (SN) and the striatum of acute MPTP-treated mice (3–24 h), we elected a restricted number of genes affected by the long-term MPTP treatment, and their expression was examined. Specifically, we detected alterations in the expression of genes implicated in oxidative-stress, inflammatory processes, signal transduction and glutamate toxicity. These pro-toxic genes appear to be compensated by the elevated expression in trophic factors and antioxidant defenses, which are also activated by short exposure to MPTP. The time course of these gene expression changes indicates the importance of investigating the early gene cascade of events occurring prior to late nigrostriatal dopamine neuronal cell death.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bernheimer, H., Birkmayer, W., Hornykiewicz, O., Jellinger, K., and Seitelberger, F. 1973. Brain dopamine and the syndromes of Parkinson and Huntington. Clinical, morphological and neurochemical correlations. J. Neurol. Sci. 20:415-455.

    Google Scholar 

  2. Riederer, P., Sofic, E., Rausch, W. D., Schmidt, B., Reynolds, G. P., Jellinger, K., and Youdim, M. B. H. 1989. Transition metals, ferritin, glutathione, and ascorbic acid in parkinsonian brains. J. Neurochem. 52:515-520.

    Google Scholar 

  3. Perry, T. L., Yong, V. W., Jones, K., and Wright, J. M. 1986. Manipulation of glutathione contents fails to alter dopaminergic nigrostriatal neurotoxicity of N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in the mouse. Neurosci. Lett. 70:261-265.

    Google Scholar 

  4. Hirsch, E. C. 2000. Glial cells and Parkinson's disease. J. Neurol. 247 (Suppl 2): II58-II62.

    Google Scholar 

  5. Chase, T. N. and Oh, J. D. 2000. Striatal dopamine-and glutamate-mediated dysregulation in experimental parkinsonism. Trends Neurosci. 23:S86-S91.

    Google Scholar 

  6. Uversky, V. N., Li, J., and Fink, A. L. 2001. Evidence for a partially folded intermediate in alpha-synuclein fibril formation. J. Biol. Chem. 276:10737-10744.

    Google Scholar 

  7. Hunot, S., Brugg, B., Ricard, D., Michel, P. P., Muriel, M. P., Ruberg, M., Faucheux, B. A., Agid, Y., and Hirsch, E. C. 1997. Nuclear translocation of NF-kappaB is increased in dopaminergic neurons of patients with parkinson disease. Proc. Natl. Acad. Sci. USA 94:7531-7536.

    Google Scholar 

  8. Loopuijt, L. D. and Schmidt, W. J. 1998. The role of NMDA receptors in the slow neuronal degeneration of Parkinson's disease. Amino Acids 14:17-23.

    Google Scholar 

  9. Iacopino, A. M. and Christakos, S. 1990. Specific reduction of calcium-binding protein (28-kilodalton calbindin-D) gene expression in aging and neurodegenerative diseases. Proc. Natl. Acad. Sci. USA 87:4078-4082.

    Google Scholar 

  10. Nagai, Y., Ueno, S., Saeki, Y., Soga, F., Hirano, M., and Yanagihara, T. 1996. Decrease of the D3 dopamine receptor mRNA expression in lymphocytes from patients with Parkinson's disease. Neurology 46:791-795.

    Google Scholar 

  11. Ben-Shachar, D., Eshel, G., Finberg, J. P., and Youdim, M. B. 1991. The iron chelator desferrioxamine (Desferal) retards 6-hydroxydopamine-induced degeneration of nigrostriatal dopamine neurons. J. Neurochem. 56:1441-1444.

    Google Scholar 

  12. Olanow, C. W. 1996. Neurodegeneration and neuroprotection in Parkinson's disease. New York, Academic Press.

    Google Scholar 

  13. Grunblatt, E., Mandel, S., Berkuzki, T., and Youdim, M. B. H. 1999. Apomorphine protects against MPTP-induced neurotoxicity in mice. Mov. Disord. 14:612-618.

    Google Scholar 

  14. Levites, Y., Weinreb, O., Maor, G., Youdim, M. B. H., and Mandel, S. 2001. Green tea polyphenol (-)-Epigallocatechin-3-gallate prevents N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced dopaminergic neurodegeneration. J. Neurochem. 78:1073-1082.

    Google Scholar 

  15. Youdim, M. B. H., Gassen, M., Gross, A., Mandel, S., and Grunblatt, E. 2000. Iron chelating, antioxidant and cytoprotective properties of dopamine receptor agonist; apomorphine. J. Neural. Transm. Suppl:83-96.

    Google Scholar 

  16. Wu, D. C., Jackson-Lewis, V., Vila, M., Tieu, K., Teismann, P., Vadseth, C., Choi, D. K., Ischiropoulos, H., and Przedborski, S. 2002. Blockade of microglial activation is neuroprotective in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson disease. J. Neurosci. 22:1763-1771.

    Google Scholar 

  17. Klivenyi, P., Andreassen, O. A., Ferrante, R. J., Lancelot, E., Reif, D., and Beal, M. F. 2000. Inhibition of neuronal nitric oxide synthase protects against MPTP toxicity. Neuroreport 11:1265-1268.

    Google Scholar 

  18. Guo, X., Dawson, V. L., and Dawson, T. M. 2001. Neuroimmunophilin ligands exert neuroregeneration and neuroprotection in midbrain dopaminergic neurons. Eur. J. Neurosci. 13:1683-1693.

    Google Scholar 

  19. Maimone, D., Dominici, R., and Grimaldi, L. M. 2001. Pharmacogenomics of neurodegenerative diseases. Eur. J. Pharmacol. 413:11-29.

    Google Scholar 

  20. Deleted in proof.

  21. Mandel, S., Grunblatt, E., and Youdim, M. B. H. 2000. cDNA microarray to study gene expression of dopaminergic neurodegeneration and neuroprotection in MPTP and 6-hydroxydopamine models: Implications for idiopathic Parkinson's disease. J. Neural. Transm. Suppl. 60:117-124.

    Google Scholar 

  22. Grunblatt, E., Mandel, S., Maor, G., and Youdim, M. B. H. 2001. Gene expression analysis in MPTP mice model of Parkinson's disease using cDNA microarray. J. Neurochem. 78:1-12.

    Google Scholar 

  23. Cochiolo, J. A., Ehsanian, R., and Bruck, D. K. 2000. Acute ultrastructural effects of MPTP on the nigrostriatal pathway of the C57BL/6 adult mouse: Evidence of compensatory plasticity in nigrostriatal neurons. J. Neurosci. Res. 59:126-135.

    Google Scholar 

  24. Chan, P., Langston, J. W., and Di Monte, D. A. 1993. MK-801 temporarily prevents MPTP-induced acute dopamine depletion and MPP1 elimination in the mouse striatum. J. Pharmacol. Exp. Ther. 267:1515-1520.

    Google Scholar 

  25. Studer, A., Sundstrom, E., Jonsson, G., and Schultz, W. 1988. Acute electrophysiological and neurochemical effects of administration of MPTP in mice. Neuropharmacology 27:923-931.

    Google Scholar 

  26. Mori, S., Fujitake, J., Kuno, S., and Sano, Y. 1988. Immunohistochemical evaluation of the neurotoxic effects of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) on dopaminergic nigrostriatal neurons of young adult mice using dopamine and tyrosine hydroxylase antibodies. Neurosci. Lett. 90:57-62.

    Google Scholar 

  27. Garthwaite, J., Garthwaite, G., Palmer, R. M., and Moncada, S. 1989. NMDA receptor activation induces nitric oxide synthesis from arginine in rat brain slices. Eur. J. Pharmacol. 172:413-416.

    Google Scholar 

  28. Sequeira, S. M., Ambrosio, A. F., Malva, J. O., Carvalho, A. P., and Carvalho, C. M. 1997. Modulation of glutamate release from rat hippocampal synaptosomes by nitric oxide. Nitric Oxide 1:315-329.

    Google Scholar 

  29. Carvalho, A. P., Sequeira, S. M., Duarte, C. B., and Carvalho, A. P. 2000. Pages 157-176, in Free radicals in brain pathophysiology (Giuseppe, P., Enrique, C., and Lester, P., eds), Marcel Dekker Inc., New York.

    Google Scholar 

  30. Ilic, T. V., Jovanovic, M., Jovicic, A., and Tomovic, M. 1999. Oxidative stress indicators are elevated in de novo Parkinson's disease patients. Funct. Neurol. 14:141-147.

    Google Scholar 

  31. Barker, J. E., Heales, S. J., Cassidy, A., Bolanos, J. P., Land, J. M., and Clark, J. B. 1996. Depletion of brain glutathione results in a decrease of glutathione reductase activity; an enzyme susceptible to oxidative damage. Brain Res. 716:118-122.

    Google Scholar 

  32. Cassarino, D. S., Fall, C. P., Swerdlow, R. H., Smith, T. S., Halvorsen, E. M., Miller, S. W., Parks, J. P., Parker, W. D., Jr., and Bennett, J. P., Jr. 1997. Elevated reactive oxygen species and antioxidant enzyme activities in animal and cellular models of Parkinson's disease. Biochim. Biophys. Acta 1362:77-86.

    Google Scholar 

  33. Kim-Han, J. S. and Sun, A. Y. 1998. Protection of PC12 cells glutathione peroxidase in L-DOPA induced cytotoxicity. Free Radic. Biol. Med. 25:512-518.

    Google Scholar 

  34. Bensadoun, J. C., Mirochnitchenko, O., Inouye, M., Aebischer, P., and Zurn, A. D. 1998. Attenuation of 6-OHDA-induced neurotoxicity in glutathione peroxidase transgenic mice. Eur. J. Neurosci. 10:3231-3236.

    Google Scholar 

  35. Mogi, M., Harada, M., Narabayashi, H., Inagaki, H., Minami, M., and Nagatsu, T. 1996. Interleukin (IL)-1 beta, IL-2, IL-4, IL-6 and transforming growth factor-alpha levels are elevated in ventricular cerebrospinal fluid in juvenile parkinsonism and Parkinson's disease. Neurosci. Lett. 211:13-16.

    Google Scholar 

  36. Mogi, M., Togari, A., Ogawa, M., Ikeguchi, K., Shizuma, N., Fan, D., Nakano, I., and Nagatsu, T. 1998. Effects of repeated systemic administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) to mice on interleukin-1 beta and nerve growth factor in the striatum. Neurosci. Lett. 250:25-28.

    Google Scholar 

  37. Bessler, H., Djaldetti, R., Salman, H., Bergman, M., and Djaldetti, M. 1999. IL-1 beta, IL-2, IL-6 and TNF-alpha production by peripheral blood mononuclear cells from patients with Parkinson's disease. Biomed. Pharmacother. 53:141-145.

    Google Scholar 

  38. Lavrovsky, Y., Chatterjee, B., Clark, R. A., and Roy, A. K. 2000. Role of redox-regulated transcription factors in inflammation, aging and age-related diseases. Exp. Gerontol. 35:521-532.

    Google Scholar 

  39. Jellinger, K., Paulus, W., Grundke-Iqbal, I., Riederer, P., and Youdim, M. B. H. 1990. Brain iron and ferritin in Parkinson's and Alzheimer's diseases. J. Neural. Transm. Park. Dis. Dement. Sect. 2:327-340.

    Google Scholar 

  40. Schreck, R., Rieber, P., and Baeuerle, P. A. 1991. Reactive oxygen intermediates as apparently widely used messengers in the activation of the NF-kappa B transcription factor and HIV-1. EMBO J. 10:2247-2258.

    Google Scholar 

  41. Crisi, G. M., Santambrogio, L., Hochwald, G. M., Smith, S. R., Carlino, J. A., and Thorbecke, G. J. 1995. Staphylococcal enterotoxin B and tumor-necrosis factor-alpha-induced relapses of experimental allergic encephalomyelitis: Protection by transforming growth factor-beta and interleukin-10. Eur. J. Immunol. 25:3035-3040.

    Google Scholar 

  42. Balasingam, V. and Yong, V. W. 1996. Attenuation of astroglial reactivity by interleukin-10. J. Neurosci. 16:2945-2955.

    Google Scholar 

  43. Koedel, U., Bernatowicz, A., Frei, K., Fontana, A., and Pfister, H. W. 1996. Systemically (but not intrathecally) administered IL-10 attenuates pathophysiologic alterations in experimental pneumococcal meningitis. J. Immunol. 157:5185-5191.

    Google Scholar 

  44. Brewer, K. L., Bethea, J. R., and Yezierski, R. P. 1999. Neuroprotective effects of interleukin-10 following excitotoxic spinal cord injury. Exp. Neurol. 159:484-493.

    Google Scholar 

  45. Carboni, S., Melis, F., Pani, L., Hadjiconstantinou, M., and Rossetti, Z. L. 1990. The non-competitive NMDA-receptor antagonist MK-801 prevents the massive release of glutamate and aspartate from rat striatum induced by 1-methyl-4-phenylpyridinium (MPP1). Neurosci. Lett. 117:129-133.

    Google Scholar 

  46. Dawson, V. L., Dawson, T. M., London, E. D., Bredt, D. S., and Snyder, S. H. 1991. Nitric oxide mediates glutamate neurotoxicity in primary cortical cultures. Proc. Natl. Acad. Sci. USA 88:6368-6371.

    Google Scholar 

  47. Lei, S. Z., Pan, Z. H., Aggarwal, S. K., Chen, H. S., Hartman, J., Sucher, N. J., and Lipton, S. A. 1992. Effect of nitric oxide production on the redox modulatory site of the NMDA receptor-channel complex. Neuron 8:1087-1099.

    Google Scholar 

  48. Lipton, S. A., Choi, Y. B., Pan, Z. H., Lei, S. Z., Chen, H. S., Sucher, N. J., Loscalzo, J., Singel, D. J., and Stamler, J. S. 1993. A redox-based mechanism for the neuroprotective and neurodestructive effects of nitric oxide and related nitroso-compounds. Nature 364:626-632.

    Google Scholar 

  49. Fagni, L., Olivier, M., Lafon-Cazal, M., and Bockaert, J. 1995. Involvement of divalent ions in the nitric oxide-induced blockade of N-methyl-D-aspartate receptors in cerebellar granule cells. Mol. Pharmacol. 47:1239-1247.

    Google Scholar 

  50. Kroncke, K. D., Fehsel, K., and Kolb-Bachofen, V. 1997. Nitric oxide: Cytotoxicity versus cytoprotection-how, why, when, and where? Nitric Oxide 1:107-120.

    Google Scholar 

  51. McShea, A., Wahl, A. F., and Smith, M. A. 1999. Re-entry into the cell cycle: A mechanism for neurodegeneration in Alzheimer disease. Med. Hypotheses 52:525-527.

    Google Scholar 

  52. Raina, A. K., Zhu, X., Rottkamp, C. A., Monteiro, M., Takeda, A., and Smith, M. A. 2000. Cyclin' toward dementia: Cell cycle abnormalities and abortive oncogenesis in Alzheimer disease. J. Neurosci. Res. 61:128-133.

    Google Scholar 

  53. Levites, Y., Amit, T., Youdim, M. B. H., and Mandel, S. 2002. Involvement of protein kinase C activation and cell survival/cell cycle genes in green tea polyphenol (-)-epigallocatechin-3-gallate neuroprotective action. J. Biol. Chem. 277:30574-30580.

    Google Scholar 

  54. Hadjiconstantinou, M., Fitkin, J. G., Dalia, A., and Neff, N. H. 1991. Epidermal growth factor enhances striatal dopaminergic parameters in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated mouse. J. Neurochem. 57:479-482.

    Google Scholar 

  55. Lin, L. F., Doherty, D. H., Lile, J. D., Bektesh, S., and Collins, F. 1993. GDNF: A glial cell line-derived neurotrophic factor for midbrain dopaminergic neurons [see comments]. Science 260: 1130-1132.

    Google Scholar 

  56. Hunot, S., Bernard, V., Faucheux, B., Boissiere, F., Leguern, E., Brana, C., Gautris, P. P., Guerin, J., Bloch, B., Agid, Y., and Hirsch, E. C. 1996. Glial cell line-derived neurotrophic factor (GDNF) gene expression in the human brain: A post mortem in situ hybridization study with special reference to Parkinson's disease. J. Neural. Transm. (Budapest) 103:1043-1052.

    Google Scholar 

  57. Gash, D. M., Zhang, Z., and Gerhardt, G. 1998. Neuroprotective and neurorestorative properties of GDNF. Ann. Neurol. 44:S121-S125.

    Google Scholar 

  58. Ishii, T., Yanagawa, T., Yuki, K., Kawane, T., Yoshida, H., and Bannai, S. 1997. Low micromolar levels of hydrogen peroxide and proteasome inhibitors induce the 60-kDa A170 stress protein in murine peritoneal macrophages. Biochem. Biophys. Res. Commun. 232:33-37.

    Google Scholar 

  59. Xie, T., Tong, L., Barrett, T., Yuan, J., Hatzidimitriou, G., Mc-Cann, U. D., Becker, K. G., Donovan, D. M., and Ricaurte, G. A. 2002. Changes in gene expression linked to methamphetamine-induced dopaminergic neurotoxicity. J. Neurosci. 22:274-283.

    Google Scholar 

  60. Cadet, J. L., Jayanthi, S., McCoy, M. T., Vawter, M., and Ladenheim, B. 2001. Temporal profiling of methamphetamine-induced changes in gene expression in the mouse brain: Evidence from cDNA array. Synapse 41:40-48.

    Google Scholar 

  61. Kumer, S. C. and Vrana, K. E. 1996. Intricate regulation of tyrosine hydroxylase activity and gene expression. J. Neurochem. 67:443-462.

    Google Scholar 

  62. Saporito, M. S., Thomas, B. A., and Scott, R. W. 2000. MPTP activates c-Jun NH(2)-terminal kinase (JNK) and its upstream regulatory kinase MKK4 in nigrostriatal neurons in vivo. J. Neurochem. 75:1200-1208.

    Google Scholar 

  63. Gearan, T., Castillo, O. A., and Schwarzschild, M. A. 2001. The parkinsonian neurotoxin, MPP(1) induces phosphorylated c-Jun in dopainergric neurons of mesencephalic cultures. Parkinsonism Relat. Disord. 8:19-22.

    Google Scholar 

  64. Kitada, T., Asakawa, S., Hattori, N., Matsumine, H., Yamamura, Y., Minoshima, S., Yokochi, M., Mizuno, Y., and Shimizu, N. 1998. Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism [see comments]. Nature 392:605-608.

    Google Scholar 

  65. Shimura, H., Hattori, N., Kubo, S., Yoshikawa, M., Kitada, T., Matsumine, H., Asakawa, S., Minoshima, S., Yamamura, Y., Shimizu, N., and Mizuno, Y. 1999. Immunohistochemical and subcellular localization of Parkin protein: Absence of protein in autosomal recessive juvenile parkinsonism patients. Ann. Neurol. 45:668-672.

    Google Scholar 

  66. Chen, J. Y., Hsu, P. C., Hsu, I. L., and Yeh, G. C. 2001. Sequential up-regulation of the c-fos, c-jun and bax genes in the cortex, striatum and cerebellum induced by a single injection of a low dose of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in C57BL/6 mice. Neurosci. Lett. 314:49-52.

    Google Scholar 

  67. Ara, J., Przedborski, S., Naini, A. B., Jackson-Lewis, V., Trifiletti, R. R., Horwitz, J., and Ischiropoulos, H. 1998. Inactivation of tyrosine hydroxylase by nitration following exposure to peroxynitrite and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Proc. Natl. Acad. Sci. USA 95:7659-7663.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mandel, S., Grünblatt, E., Maor, G. et al. Early and Late Gene Changes in MPTP Mice Model of Parkinson's Disease Employing cDNA Microarray. Neurochem Res 27, 1231–1243 (2002). https://doi.org/10.1023/A:1020989812576

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020989812576

Navigation