Skip to main content
Log in

Optimizing Gene Expression Analysis in Archival Brain Tissue

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Analysis of gene expression in the brain is a valuable tool to study the function of the brain under normal and pathological conditions. Although there are many techniques used to measure gene expression the validity of any such experiment is directly related to the quality of the RNA in the samples. The most readily available source of human brain tissue is post-mortem and while frozen tissue is sometimes available, most archived tissue is fixed and paraffin-embedded. The use of fixed tissue for expression analysis introduces variables, which must be considered in the experimental design. In addition, factors associated with clinical variability of the patient and with tissue procurement can affect RNA transcript levels. In order to illustrate the effects of two common tissue fixatives, formalin and ethanol, on the quality of RNA for expression analysis we compare RNA extracted from these fixed tissues to the gold standard, flash-frozen tissue. We describe RNA extraction from fixed tissue and ways to assess the quality or intactness of the RNA using reverse transcription combined with polymerase chain reaction amplification. An advantage of using archived tissue is the ease with which single cells or subpopulations of cells can be obtained by laser microdissection. The successful isolation of RNA from microdissected cells is also presented. From our results and a review of the literature we conclude that RNA from fixed tissues is a viable source of RNA for expression analysis which should enable new experimental approaches and discoveries as long as attention is given to variables that can affect RNA at all levels of analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. Luo, Z. and Geschwind, D. H. 2001. Microarray applications in neuroscience. Neurobiol. Dis. 8:183-193.

    Google Scholar 

  2. Venter, J. C., Adams, M. D., and Myers, E. W., et al. 2001. The sequence of the human genome. Science 291:1304-1351.

    Google Scholar 

  3. Lander, E. S., Linton L. M., Birren, B., and Nusbaum, C., et al. 2001. Initial sequencing and analysis of the human genome. Nature 409:860-921.

    Google Scholar 

  4. Velculescu, V. E., Zhang, L., Vogelstein, B., and Kinzler, K. W. 1995. Serial analysis of gene expression. Science 270:484-487.

    Google Scholar 

  5. Dworkin, M. B. and Dawid, I. B. 1980. Use of a cloned library for the study of abundant poly(A)1RNA during Xenopus laevis development. Dev. Biol. 76:449-464.

    Google Scholar 

  6. Liang, P. and Pardee, A. B. 1992. Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science 257:967-971.

    Google Scholar 

  7. Bustin, S. A. 2000. Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays. J. Mol. Endocrinol. 25:169-193.

    Google Scholar 

  8. Maudru, T. and Peden, K. W. 1998. Adaptation of the fluorogenic 59-nuclease chemistry to a PCR-based reverse transcriptase assay. Biotechniques 25:972-975.

    Google Scholar 

  9. Gibson, U. E., Heid, C. A., and Williams, P. M. 1996. A novel method for real time quantitative RT-PCR. Genome Res. 6:995-1001.

    Google Scholar 

  10. Stanta, G. and Schneider, C. 1991. RNA extracted from paraffin-embedded human tissues is amenable to analysis by PCR amplification. Biotechniques 11:304,306,308.

    Google Scholar 

  11. Greer, C. E., Lund, J. K., and Manos, M. M. 1991. PCR amplification from paraffin-embedded tissues: recommendations on fixatives for long-term storage and prospective studies. PCR Methods Appl. 1:46-50.

    Google Scholar 

  12. Rupp, G. M. and Locker, J. 1988. Purification and analysis of RNA from paraffin-embedded tissues. Biotechniques 6:56-60.

    Google Scholar 

  13. Kraff, A. E., Duncan, B. W., Bijwaard, K. E., and Taubenberger, J. K., et al., 1997. Optimization of the isolation and amplification of RNA from formalin-fixed, paraffin-embedded tissue: The Armed Forces Institute of Pathology experience and literature review. Mol. Diagn. 2:217-230.

    Google Scholar 

  14. Coombs, N. J., Gough, A. C., and Primrose, J. N. 1999. Optimisation of DNA and RNA extraction from archival formalinfixed tissue. Nucleic Acids Res. 27:e12.

    Google Scholar 

  15. Jiang, Y. H., Davidson, L. A., Lupton, J. R., and Chapkin, R. S. 1995. A rapid RT-PCR method for detection of intact RNA in formalin-fixed paraffin-embedded tissues. Nucleic Acids Res. 23:3071-3072.

    Google Scholar 

  16. Greer, C. E., Peterson, S. L., Kiviat, N. B., and Manos, M. M. 1991. PCR amplification from paraffin-embedded tissues. Effects of fixative and fixation time. Am. J. Clin. Pathol. 95:117-124.

    Google Scholar 

  17. Godfrey, T. E., Kim, S. H., Chavira, M., and Ruff, D. W., et al. 2000. Quantitative mRNA expression analysis from formalinfixed, paraffin-embedded tissues using 59 nuclease quantitative reverse transcription-polymerase chain reaction. J. Mol. Diagn. 2:84-91.

    Google Scholar 

  18. von Weizsacker, F., Labeit, S., Koch, H. K., and Oehlert, W., et al. 1991. A simple and rapid method for the detection of RNA in formalin-fixed, paraffin-embedded tissues by PCR amplification. Biochem. Biophys. Res. Commun. 174:176-180.

    Google Scholar 

  19. Ben-Ezra, J., Johnson, D. A., Rossi, J., and Cook, N., et al. 1991. Effect of fixation on the amplification of nucleic acids from paraffin-embedded material by the polymerase chain reaction. J. Histochem. Cytochem. 39:351-354.

    Google Scholar 

  20. Foss, R. D., Guha-Thakurta, N., Conran, R. M., and Gutman, P. 1994. Effects of fixative and fixation time on the extraction and polymerase chain reaction amplification of RNA from paraffin-embedded tissue. Comparison of two housekeeping gene mRNA controls. Diagn. Mol. Pathol. 3:148-155.

    Google Scholar 

  21. Koopmans, M., Monroe, S. S., Coffield, L. M., and Zaki, S. R. 1993. Optimization of extraction and PCR amplification of RNA extracts from paraffin-embedded tissue in different fixatives. J. Virol. Methods 43:189-204.

    Google Scholar 

  22. Lewis, F., Maughan, N. J., Smith, V., and Hillan, K., et al. 2001. Unlocking the archive-gene expression in paraffin-embedded tissue. J. Pathol. 195:66-71.

    Google Scholar 

  23. Mizuno, T., Nagamura, H., Iwamoto, K. S., and Ito, T., et al. 1998. RNA from decades-old archival tissue blocks for retrospective studies. Diagn. Mol. Pathol. 7:202-208.

    Google Scholar 

  24. Bonner, R. F., Emmert-Buck, M., Cole, K., and Pohida, T., et al. 1997. Laser capture microdissection: molecular analysis of tissue. Science 278:1481, 1483.

    Google Scholar 

  25. Simone, N. L., Bonner, R. F., Gillespie, J. W., and Emmert-Buck, M. R., et al. 1998. Laser-capture microdissection: opening the microscopic frontier to molecular analysis. Trends Genet. 14: 272-276.

    Google Scholar 

  26. Fink, L., Kohlhoff, S., Stein, M. M., and Hanze, J., et al. 2002. cDNA array hybridization after laser-assisted microdissection from nonneoplastic tissue. Am. J. Pathol. 160:81-90.

    Google Scholar 

  27. Fink, L., Seeger, W., Ermert, L., and Hanze, J., et al. 1998. Realtime quantitative RT-PCR after laser-assisted cell picking. Nat. Med. 4:1329-1333.

    Google Scholar 

  28. Cohen, C. D., Grone, H. J., Grone, E. F., and Nelson, P. J., et al. 2002. Laser microdissection and gene expression analysis on formaldehyde-fixed archival tissue. Kidney Int. 61:125-132.

    Google Scholar 

  29. Goldsworthy, S. M., Stockton, P. S., Trempus, C. S., and Foley, J. F., et al. 1999. Effects of fixation on RNA extraction and amplification from laser capture microdissected tissue. Mol. Carcinog. 25:86-91.

    Google Scholar 

  30. Specht, K., Richter, T., Muller, U., and Walch, A., et al. 2000. Quantitative gene expression analysis in microdissected archival tissue by real-time RT-PCR. J. Mol. Med. 78:B27.

    Google Scholar 

  31. Specht, K., Richter, T., Muller, U., and Walch, A., et al. 2001. Quantitative gene expression analysis in microdissected archival formalin-fixed and paraffin-embedded tumor tissue. Am. J. Pathol. 158:419-429.

    Google Scholar 

  32. Cummings, T. J., Strum, J. C., Yoon, L. W., and Szymanski, M. H., et al. 2001. Recovery and expression of messenger RNA from postmortem human brain tissue. Mod. Pathol. 14:1157-1161.

    Google Scholar 

  33. Fitzpatrick, R., Casey, O. M., Morris, D., and Smith, T., et al. 2002. Postmortem stability of RNA isolated from bovine reproductive tissues. Biochim. Biophys. Acta 1574:10-14.

    Google Scholar 

  34. Johnson, S. A., Morgan, D. G., and Finch, C. E. 1986. Extensive postmortem stability of RNA from rat and human brain. J. Neurosci. Res. 16:267-280.

    Google Scholar 

  35. Leonard, S., Logel, J., Luthman, D., and Casanova, M., et al. 1993. Biological stability of mRNA isolated from human postmortem brain collections. Biol. Psychiatry 33:456-466.

    Google Scholar 

  36. Perrett, C. W., Marchbanks, R. M., and Whatley, S. A. 1988. Characterisation of messenger RNA extracted post-mortem from the brains of schizophrenic, depressed and control subjects. J. Neurol. Neurosurg. Psychiatry 51:325-331.

    Google Scholar 

  37. Florell, S. R., Coffin, C. M., Holden, J. A., and Zimmermann, J. W., et al. 2001. Preservation of RNA for functional genomic studies: a multidisciplinary tumor bank protocol. Mod. Pathol. 14: 116-128.

    Google Scholar 

  38. Masuda, N., Ohnishi, T., Kawamoto, S., and Monden, M., et al. 1999. Analysis of chemical modification of RNA from formalin-fixed samples and optimization of molecular biology applications for such samples. Nucleic Acids Res. 27:4436-4443.

    Google Scholar 

  39. Karsten, S. L., Van Deerlin, V. M., Sabatti, C., and Gill, L. H., et al. 2002. An evaluation of tyramide signal amplification and archived fixed and frozen tissue in microarray gene expression analysis. Nucleic Acids Res. 30:E4.

    Google Scholar 

  40. Barton, A. J., Pearson, R. C., Najlerahim, A., and Harrison, P. J. 1993. Pre-and postmortem influences on brain RNA. J. Neurochem. 61:1-11.

    Google Scholar 

  41. Castensson, A., Emilsson, L., Preece, P., and Jazin, E. E. 2000. High-resolution quantification of specific mRNA levels in human brain autopsies and biopsies. Genome Res. 10:1219-1229.

    Google Scholar 

  42. Alfonso, J., Pollevick, G. D., Castensson, A., and Jazin, E., et al. 2002. Analysis of gene expression in the rat hippocampus using real time PCR reveals high inter-individual variation in mRNA expression levels. J Neurosci Res, 67(2):225-234.

    Google Scholar 

  43. Sajdel-Sulkowska, E., Coughlin, J. F., and Marotta, C. A. 1983. In vitro synthesis of polypeptides of moderately large size by poly(A)-containing messenger RNA from postmortem human brain and mouse brain. J. Neurochem. 40:670-680.

    Google Scholar 

  44. Sajdel-Sulkowska, E. M., Majocha, R. E., Salim, M., and Zain, S. B., et al. 1988. The portmortem Alzheimer brain is a source of structurally and functionally intact astrocytic messenger RNA. J. Neurosci. Methods. 23:173-179.

    Google Scholar 

  45. Burke, W. J., O'Malley, K. L., Chung, H. D., and Harmon, S. K., et al. 1991. Effect of pre-and postmortem variables on specific mRNA levels in human brain. Brain. Res. Mol. Brain Res. 11:37-41.

    Google Scholar 

  46. Mann, D. M., Barton, C. M., and Davies, J. S. 1978. Postmortem changes in human central nervous tissue and the effects on quantitation of nucleic acids and enzymes. Histochem. J. 10:127-135.

    Google Scholar 

  47. Gilbert, J. M., Brown, B. A., Strocchi, P., and Bird, E. D., et al. 1981. The preparation of biologically active messenger RNA from human postmortem brain tissue. J. Neurochem. 36:976-984.

    Google Scholar 

  48. Morrison, M. R. and Griffin, W. S. 1981. The isolation and in vitro translation of undegraded messenger RNAs from human postmortem brain. Anal. Biochem. 113:318-324.

    Google Scholar 

  49. Wood, T. L., Frantz, G. D., Menkes, J. H., and Tobin, A. J. 1986. Regional distribution of messenger RNAs in postmortem human brain. J. Neurosci. Res. 16:311-324.

    Google Scholar 

  50. Kobayashi, H., Sakimura, K., Kuwano, R., and Sato, S., et al. 1990. Stability of messenger RNA in postmortem human brains and construction of human brain cDNA libraries. J. Mol. Neurosci. 2:29-34.

    Google Scholar 

  51. Johnston, N. L., Cervenak, J., Shore, A. D., and Torrey, E. F., et al. 1997. Multivariate analysis of RNA levels from postmortem human brains as measured by three different methods of RT-PCR. Stanley Neuropathology Consortium, 77:83-92.

    Google Scholar 

  52. Kingsbury, A. E., Foster, O. J., Nisbet, A. P., and Cairns, N., et al. 1995. Tissue pH as an indicator of mRNA preservation in human post-mortem brain. Brain Res. Mol. Brain Res. 28:311-318.

    Google Scholar 

  53. Harrison, P. J., Heath, P. R., Eastwood, S. L., and Burnet, P. W., et al. 1995. The relative importance of premortem acidosis and postmortem interval for human brain gene expression studies: selective mRNA vulnerability and comparison with their encoded proteins. Neurosci. Lett. 200:151-154.

    Google Scholar 

  54. Ravid, R., Van Zwieten, E. J., and Swaab, D. F. 1992. Brain banking and the human hypothalamus-factors to match for, pitfalls and potentials. Prog. Brain Res. 93:83-95.

    Google Scholar 

  55. Alafuzoff, I. and Winblad, B. 1993. How to run a brain bank: potentials and pitfalls in the use of human post-mortem brain material in research. J. Neural. Transm. Suppl. 39:235-243.

    Google Scholar 

  56. Vonsattel, J. P., Aizawa, H., Ge, P., and DiFiglia, M., et al. 1995. An improved approach to prepare human brains for research. J. Neuropathol. Exp. Neurol. 54:42-56

    Google Scholar 

  57. Brazma, A., Hingamp, P., Quackenbush, J., and Sherlock, G., et al. 2001. Minimum information about a microarray experiment (MIAME)-toward standards for microarray data. Nat. Genet. 29:365-371.

    Google Scholar 

  58. Chow, N., Cox, C., Callahan, L. M., and Weimer, J. M., et al., 1998. Expression profiles of multiple genes in single neurons of Alzheimer's disease. Proc. Natl. Acad. Sci. USA 95:9620-9625.

    Google Scholar 

  59. Ginsberg, S. D., Hemby, S. E., Lee, V. M., and Eberwine, J. H., et al. 2000. Expression profile of transcripts in Alzheimer's disease tangle-bearing CA1 neurons. Ann. Neurol. 48:77-87.

    Google Scholar 

  60. Nigro, J. M., Takahashi, M. A., Ginzinger, D. G., and Law, M., et al. 2001. Detection of 1p and 19q loss in oligodendroglioma by quantitative microsatellite analysis, a real-time quantitative polymerase chain reaction assay. Am. J. Pathol. 158:1253-1262.

    Google Scholar 

  61. Vawter, M. P., Barrett, T., Cheadle, C., and Sokolov, B. P., et al. 2001. Application of cDNA microarrays to examine gene expression differences in schizophrenia. Brain Res. Bull. 55:641-650.

    Google Scholar 

  62. Middleton, F. A., Mirnics, K., Pierri, J. N., and Lewis, D. A., et al. 2002. Gene expression profiling reveals alterations of specific metabolic pathways in schizophrenia. J. Neurosci. 22:2718-2729.

    Google Scholar 

  63. Mimmack, M. L., Ryan, M., Baba, H., and Navarro-Ruiz, J., et al. 2002. Gene expression analysis in schizophrenia: reproducible up-regulation of several members of the apolipoprotein L family located in a high-susceptibility locus for schizophrenia on chromosome 22. Proc. Natl. Acad. Sci. 99:4680-4685.

    Google Scholar 

  64. Torre-Munoz, J., Stockton, P., Tacoronte, N., and Roberts, B., et al. 2001. Detection of HIV-1 gene sequences in hippocampal neurons isolated from postmortem AIDS brains by laser capture microdissection. J. Neuropathol. Exp. Neurol. 60:885-892.

    Google Scholar 

  65. Purcell, A. E., Jeon, O. H., Zimmerman, A. W., and Blue, M. E., et al. 2001. Postmortem brain abnormalities of the glutamate neurotransmitter system in autism. Neurology 57:1618-1628.

    Google Scholar 

  66. Dolter, K. E. and Braman, J. C. 2001. Small-sample total RNA purification: laser capture microdissection and cultured cell applications. Biotechniques 30:1358-1361.

    Google Scholar 

  67. Lehmann, U. and Kreipe, H. 2001. Real-time PCR analysis of DNA and RNA extracted from formalin-fixed and paraffin-embedded biopsies. Methods 25:409-418.

    Google Scholar 

  68. Eberwine, J. 1996. Amplification of mRNA populations using aRNA generated from immobilized oligo(dT)-T7 primed cDNA. Biotechniques 20:584-591.

    Google Scholar 

  69. Phillips, J. and Eberwine, J. H. 1996. Antisense RNA amplification: a linear amplification method for analyzing the mRNA population from single living cells. Methods 10:283-288.

    Google Scholar 

  70. Hemby, S. E., Ginsberg, S. D., Brunk, B., and Arnold, S. E., et al. 2002. Gene expression profile for schizophrenia: discrete neuron transcription patterns in the entorhinal cortex. Arch. Gen. Psychiatry 59:631-640.

    Google Scholar 

  71. Wang, E., Miller, L. D., Ohnmacht, G. A., and Liu, E. T., et al. 2000. High-fidelity mRNA amplification for gene profiling. Nat. Biotechnol. 18:457-459.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Van Deerlin, V.M.D., Gill, L.H. & Nelson, P.T. Optimizing Gene Expression Analysis in Archival Brain Tissue. Neurochem Res 27, 993–1003 (2002). https://doi.org/10.1023/A:1020996519419

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020996519419

Navigation