Skip to main content
Log in

Factors Governing Activity-Dependent Structural Plasticity of the Hypothalamoneurohypophysial System

  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

1. The adult hypothalamoneurohypophysial system (HNS) undergoes reversible morphological changes in response to physiological stimulation.

2. In the hypothalamus, stimulation of neurohormone secretion results in reducedastrocytic coverage of oxytocinergic somata and dendrites so that their surfaces becomedirectly juxtaposed. Concurrently, there is a significant increase in the number of GABAergic, glutamatergic, and noradrenergic synapses impinging on the neurons.

3. In the neurohypophysis, stimulation induces retraction of pituicyte processes fromthe perivascular area and enlargement and multiplication of neurosecretory terminals.

4. These neuronal-glial and synaptic changes are reversible with cessation of stimulation, thus rendering the HNS an excellent model to study physiologically linked structuralneuronal plasticity in the adult CNS.

5. We still do not know the cellular mechanisms and factors underlying such plasticity.Recent studies indicate, however, that the adult HNS expresses molecular characteristicsnormally associated with histogenesis and/or tissue reorganization in developing or regenerating neural systems. They include expression of cell adhesion molecules such as the highlysialylated isoform of the neural cell adhesion molecule, PSA-NCAM, and the glycoproteins, F3 and tenascin-C.

6. The expression of PSA-NCAM and tenascin-C does not show striking differencesin terms of age, sex or physiological condition but that of F3 varies considerably withneurohypophysial stimulation.

7. We postulate that such molecular features allow magnocellular neurons and theirglia to undergo neuronal-glial and synaptic plasticity throughout life, provided the properstimulus intervenes.

8. Thus, in the hypothalamic nuclei, centrally released oxytocin acting in synergy with steroids can induce such plasticity, while adrenaline, acting through β-adrenergic mechanisms, does so in the neurohypophysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  • Bartsch, U., Bartsch, S., Dorries, U., and Schachner, M. (1992). Immunohistological localization of tenascin in the developing and lesioned adult mouse optic nerve. Eur. J. Neurosci. 4:338–352.

    Google Scholar 

  • Beagley, G. H., and Hatton, G. I. (1992). Rapid morphological changes in supraoptic nucleus and posterior pituitary induced by a single hypertonic saline injection. Brain Res. Bull. 28:613–618.

    Google Scholar 

  • Bonfanti, L., Olive, S., Poulain, D. A., and Theodosis, D. T. (1992). Mapping of the distribution of polysialylated neural cell adhesion molecule throughout the central nervous system of the adult rat: An immunohistochemical study. Neuroscience 49:419–436.

    Google Scholar 

  • Bonfanti, L., Poulain, D. A., and Theodosis, D. T. (1993). Putative factors implicated in the structural plasticity of the hypothalamo-neurohypophysial system. Regul. Peptides 45:165–170.

    Google Scholar 

  • Brümmendorf, T., Wolff, J. M., Frank, R., and Rathjen, F. G. (1989). Neural cell adhesion molecule F11: Homology with fibronectin type III and immunoglobulin type C domains. Neuron 2:1351–1361.

    Google Scholar 

  • Carlin, R. K., and Siekevitz, P. (1983). Plasticity in the central nervous system: do synapses divide? Proc. Natl. Acad. Sci. USA 80:3517–3521.

    Google Scholar 

  • Chang, S., Rathjen, F. G., and Raper, J. A. (1987). Extension of neurites on axons is impaired by antibodies against specific neural cell surface glycoproteins. J. Cell Biol. 104:355–362.

    Google Scholar 

  • Chapman, D. B., Theodosis, D. T., Montagnese, C., Poulain, D. A., and Morris, J. F. (1986). Osmotic stimulation causes structural plasticity of neurone-glia relationships of the oxytocin but not vasopressin secreting neurones in the hypothalamic supraoptic nucleus. Neuroscience 17:679–686.

    Google Scholar 

  • Crossin, K. L. (1994). Functional role of cytotactin/tenascin in morphogenesis: A modest proposal. Perspect. Dev. Neurobiol. 2:21–32.

    Google Scholar 

  • Crowley, W. R., and Armstrong, W. E. (1992). Neurochemical regulation of oxytocin secretion in lactation. Endocr. Rev. 13:33–65.

    Google Scholar 

  • Doherty, P., Ashton, F. A., Moore, S. E., and Walsh, F. S. (1991). Morphoregulatory activities of NCAM and N-cadherin can be accounted for by G-protein dependent activation of L-and N-type neuronal calcium channels. Cell 67:21–33.

    Google Scholar 

  • Edelman, G. M., and Crossin, K. L. (1991). Cell adhesion molecules: Implications for a molecular histology. Annu. Rev. Biochem. 60:155–190.

    Google Scholar 

  • El Majdoubi, M., Poulain, D. A., and Theodosis, D. T. (1996). The glutamatergic innervation of oxytocin and vasopressin-secreting neurons in the rat supraoptic nucleus and its contribution to lactation-induced synaptic plasticity. Eur. J. Neurosci. 8:101–113.

    Google Scholar 

  • El Majdoubi, M., Poulain, D. A., and Theodosis, D. T. (1997). Lactation-induced plasticity in the supraoptic nucleus augments axo-dendritic and axosomatic GABAergic and glutamatergic synapses: An ultrastructural analysis using the dissector method. Neuroscience 80:1137–1147.

    Google Scholar 

  • Erickson, H. P. (1993). Tenascin-C, tenascin-R and tenascin-X: A family of talented proteins in search of functions. Curr. Opin. Cell Biol. 5:869–876.

    Google Scholar 

  • Erickson, H. P., and Bourdon, M. A. (1989). Tenascin: An extracellular matrix protein prominent in specialized embryonic tissues and tumors. Annu. Rev. Cell Biol. 5:71–92.

    Google Scholar 

  • Faissner, A., and Kruse, J. (1990). J1/tenascin is a repulsive substrate for central nervous system neurons. Neuron 5:627–637.

    Google Scholar 

  • Faissner, A., Scholze, A., and Götz, B. (1994). Tenascin glycoproteins in developing neural tissues: Only decoration? Perspect. Dev. Neurobiol. 2:53–66.

    Google Scholar 

  • Gennarini, G., Rougon, G., Vitiello, F., Corsi, P., DiBenedettta, C., and Goridis, C. (1989). Identification and cDNA cloning of a new member of the L2/HNK-1 family of neural surface glycoproteins. J. Neurosci. Res. 22:1–12.

    Google Scholar 

  • Gennarini, G., Durbec, P., Boned, A., Rougon, G., and Goridis, C. (1992). Transfected F3/F11 neuronal cell surface protein mediates intercellular adhesion and promotes neurite outgrowth. Neuron 6:595–606.

    Google Scholar 

  • Gies, U., and Theodosis, D. T. (1994). Synaptic plasticity in the rat supraoptic nucleus during lactation involves GABA innervation and oxytocin neurons: A quantitative immunocytochemical analysis. J. Neurosci. 14:2861–2869.

    Google Scholar 

  • Hatton, G. I., and Tweedle, C. D. (1982). Magnocellular peptidergic neurons in hypothalamus: Increases in membrane apposition and number of specialized synapses from pregnancy to lactation. Brain Res. Bull. 8:197–204.

    Google Scholar 

  • Kiss, J. Z., Wang, C., and Rougon, G. (1993). Nerve-dependent expression of high polysialic acid neural cell adhesion molecule in neurohypophysial astrocytes of adult rats. Neuroscience 53:213–222.

    Google Scholar 

  • Laywell, E. D., Dörries, U., Bartsch, U., Faissner, A., Schachner, M., and Steindler, D. A. (1992). Enhanced expression of the developmentally regulated extracellular matrix molecule tenascin following adult brain injury. Proc. Natl. Acad. Sci. USA 89:2634–2638.

    Google Scholar 

  • Leedy, M. G., Beattie, M. S., and Bresnahan, J. C. (1987). Testosterone-induced plasticity of synaptic inputs to adult mammalian motoneurons. Brain Res. 424:386–390.

    Google Scholar 

  • Lisman, J. E., and Harris, K. M. (1993). Quantal analysis and synaptic anatomy—integrating two views of hippocampal plasticity. Trends Neurosci. 16:141–147.

    Google Scholar 

  • Luckman, S. M., and Bicknell, R. J. (1991). Morphological plasticity that occurs in the neurohypophysis following activation of the magnocellular neurosecretory system can be mimicked in vitro by beta-adrenergic stimulation. Neuroscience 39:701–709.

    Google Scholar 

  • Meeker, R. B., Swanson, D. J., Greenwood, R. S., and Hayward, J. N. (1993). Quantitative mapping of glutamate presynaptic terminals in the supraoptic nucleus and surrounding hypothalamus. Brain Res. 600:112–122.

    Google Scholar 

  • Michaloudi, H. C., El Majdoubi, M., Poulain, D. A., Papadopoulos, G. C., and Theodosis, D. T. (1997). The noradrenergic innervation of identified hypothalamic neurons and its contribution to lactation-induced synaptic plasticity. J. Neuroendocrinol. 9:17–23.

    Google Scholar 

  • Montagnese, C., Poulain, D. A., Vincent, J. D., and Theodosis, D. T. (1987). Structural plasticity in the rat supraoptic nucleus during gestation, post-partum lactation and suckling-induced pseudogestation and lactation. J. Endocrinol. 115:97–105.

    Google Scholar 

  • Montagnese, C., Poulain, D. A., and Theodosis, D. T. (1990). Influence of ovarian steroids on the ultrastructural plasticity of the adult supraoptic nucleus induced by central administration of oxytocin. J. Neuroendocrinol. 2:225–231.

    Google Scholar 

  • Morris, R. J., Beech, J. N., Barber, P. C., and Raisman, G. (1985). Early stage of purkinje cell maturation demonstrated by thy-1 immunohistochemistry on postnatal rat cerebellum. J. Neurocytol. 14:427–452.

    Google Scholar 

  • Nörenberg, U., Wille, H., Wolff, J. M., Frank, R., and Rathjen, F. G. (1992). The chicken neural extracellular matrix molecule restrictin: Similarity with EGF-, fibronectin type III-, and fibrinogen-like motifs. Neuron 8:849–863.

    Google Scholar 

  • Olive, S., Rougon, G., Pierre, K., and Theodosis, D. T. (1995). Expression of a glycosyl phosphatidylinositol-anchored adhesion molecule, the glycoprotein F3, in the adult rat hypothalamo-neurohypophysial system. Brain Res. 689:271–280.

    Google Scholar 

  • Olmos, G., Naftolin, F., Perez, J., Tranque, P. A., and Garcia-Segura, L. M. (1989). Synaptic remodeling in the rat arcuate nucleus during the estrous cycle. Neuroscience 32:663–667.

    Google Scholar 

  • Perlmutter, L. S., Tweedle, C. D., and Hatton, G. I. (1985). Neuronal/glial plasticity in the supraoptic dendritic zone in response to acute and chronic dehydration. Brain Res. 361:225–232.

    Google Scholar 

  • Persohn, E., and Schachner, M. (1987). Immunoelectron microscopic localization of the neural cell adhesion molecules L1 and N-CAM during postnatal development of the mouse cerebellum. J. Cell Biol. 105:569–576.

    Google Scholar 

  • Pesheva, P., Drossmeier, R., Spiers, E., and Schachner, M. (1991). Divalent cations modulate the inhibitory substrate properties of murine glia-derived J-160 and J-180 extracellular matrix glycoproteins for neuronal adhesion. Eur. J. Neurosci. 3:356–365.

    Google Scholar 

  • Pesheva, P., Gennarini, G., Goridis, C., and Schachner, M. (1993). The F3/F11 cell adhesion molecule mediates the repulsion of neurons by the extracellular matrix glycoprotein J1-160/180. Neuron 10:69–82.

    Google Scholar 

  • Pindzola, R. R., Doller, C., and Silver, J. (1993). Putative inhibitory extracellular matrix molecules at the dorsal root entry zone of the spinal cord during development and after root and sciatic nerve lesions. Dev. Biol. 156:34–48.

    Google Scholar 

  • Pow, D. V., Perry, V. H., Morris, J. F., and Gordon, S. (1989). Microglia in the neurohypophysis associate with and endocytose terminal portions of neurosecretory neurons. Neuroscience 33:567–578.

    Google Scholar 

  • Reichardt, L. F., and Tomaselli, K. (1991). Extracellular matrix molecules and their receptors: Functions in neural development. Annu. Rev. Neurosci. 14:531–570.

    Google Scholar 

  • Rougon, G. (1993). Structure, metabolism and cell biology of polysialic acids. Eur. J. Cell Biol. 61:197–207.

    Google Scholar 

  • Ruoslathi, E. (1988). Fibronectin and its receptors. Annu. Rev. Biochem. 57:375–413.

    Google Scholar 

  • Rutishauser, U., and Jessell, T. M. (1988). Cell adhesion molecules in vertebrate neural development. Physiol. Rev. 68:819–857.

    Google Scholar 

  • Schuch, U., Lohse, M., and Schachner, M. (1989). Neural cell adhesion molecules influence second messenger systems. Neuron 3:13–20.

    Google Scholar 

  • Seki, T., and Arai, Y., (1993). Distribution and possible roles of the highly polysialylated neural cell adhesion molecule (NCAM-H) in the developing and adult central nervous system. Neurosci. Res. 17:265–290.

    Google Scholar 

  • Stent, G. S. (1973). A physiological mechanism for Hebb's postulate of learning. Proc. Natl. Acad. Sci. USA 70:997–1001.

    Google Scholar 

  • Takeichi, M. (1988). The cadherins: Cell-cell adhesion molecules controlling animal morphogenesis. Development 102:639–655.

    Google Scholar 

  • Theodosis, D. T., and Poulain, D. A. (1984). Evidence for structural plasticity in the supraoptic nucleus of the rat hypothalamus in relation to gestation and lactation. Neuroscience 11:183–193.

    Google Scholar 

  • Theodosis, D. T., and Poulain, D. A. (1989). Neuronal-glial and synaptic plasticity in the adult rat paraventricular nucleus. Brain Res. 484:361–366.

    Google Scholar 

  • Theodosis, D. T., and Poulain, D. A. (1993). Activity-dependent neuronal-glial and synaptic plasticity in the adult mammalian hypothalamus. Neuroscience 57:501–535.

    Google Scholar 

  • Theodosis, D. T., Poulain, D. A., and Vincent, J. D. (1981). Possible morphological bases for synchronisation of neuronal firing in the rat supraoptic nucleus during lactation. Neuroscience 6:919–929.

    Google Scholar 

  • Theodosis, D. T., Chapman, D. B., Montagnese, C., Poulain, D. A., and Morris, J. F. (1986a). Structural plasticity in the hypothalamic supraoptic nucleus at lactation affects oxytocin-but not vasopressin-secreting neurones. Neuroscience 17:661–678.

    Google Scholar 

  • Theodosis, D. T., Montagnese, C., Rodriguez, F., Vincent, J. D., and Poulain, D. A. (1986b). Oxytocin induces morphological plasticity in the adult hypothalamoneurohypophysial system. Nature 322:738–740.

    Google Scholar 

  • Theodosis, D. T., Paut, L., and Tappaz, M. L. (1986c). Immunocytochemical analysis of the GABAergic innervation of oxytocin-and vasopressin-secreting neurones in the rat supraoptic nucleus. Neuroscience 19:207–222.

    Google Scholar 

  • Theodosis, D. T., Rougon, G., and Poulain, D. A. (1991). Retention of embryonic features by an adult neuronal system capable of plasticity: Polysialylated N-CAM in the hypothalamo-neurohypophysial system. Proc. Natl. Acad. Sci. USA 88:5494–5498.

    Google Scholar 

  • Theodosis, D. T., Olive, S., and Rougon, G. (1993). F3/F11 cell surface molecule expression in the adult hypothalamo-neurohypophysial system. Soc. Neurosci. Abstr. 19:690.

    Google Scholar 

  • Theodosis, D. T., El Majdoubi, M., Gies, U., and Poulain, D. A. (1995a). Activity-dependent synaptic plasticity of the adult oxytocinergic system involves excitatory glutamatergic and inhibitory GABAergic afferents inputs. Adv. Exp. Med. Biol. 395:155–171.

    Google Scholar 

  • Theodosis, D. T., Pierre, K., Cadoret, M. A., Allard, M., Faissner, A., and Poulain, D. A. (1995b). Glial cells in the normal adult rat hypothalamo-neurohypophysial system continue to express the extracellular glucoprotein, tenascin-C. Soc. Neurosci. Abstr. 21:1313.

    Google Scholar 

  • Theodosis, D. T., Pierre, K., Cadoret, M. A., Allard, M., Faissner, A., and Poulain, D. A. (1997). Expression of high levels of the extracellular matrix glycoprotein, tenascin-C, in the normal adult hypothalamoneurohypophysial system. J. Comp. Neurol. 379:386–398.

    Google Scholar 

  • Tiveron, M.-C., Barboni, E., Rivero, F. B. P., Gormley, A. M., Seeley, P. J., Grosveld, F., and Morris, R. J. (1992). Selective inhibition of neurite outgrowth on mature astrocytes by Thy-1 glycoprotein. Nature 355:745–748.

    Google Scholar 

  • Tweedle, C. D., and Hatton, G. I. (1984). Synapse formation and disappearance in adult rat supraoptic nucleus during different hydration states. Brain Res. 309:373–376.

    Google Scholar 

  • Tweedle, C. D., and Hatton, G. I. (1987). Morphological adaptability at neurosecretory axonal endings on the neurovascular contact zone of the rat neurohypophysis. Neuroscience 20:241–246.

    Google Scholar 

  • Van Den Pol, A. N., Wuarin, J.-P., and Dudek, F. E. (1990). Glutamate, the dominant excitatory transmitter in neuroendocrine regulation. Science 250:1276–1278.

    Google Scholar 

  • Williams, A. F., and Barclay, A. N. (1988). The immunoglobulin superfamily: Domains for cell surface recognition. Annu. Rev. Immunol. 6:381–405.

    Google Scholar 

  • Wittkowski, W., and Brinkman, H. (1974). Changes in extent of neuro-vascular contacts and number of neuro-glial synaptoid contacts in the pituitary posterior lobe of dehydrated rats. Anat. Embryol. 146:157–165.

    Google Scholar 

  • Zisch, A. H., D'Alessandri, L., Ranscht, B., Falchetto, R., Winterhalter, K. H., and Vaughan, L. (1992). Neuronal cell adhesion molecule contactin/F11 binds to tenascin via its immunoglobulin-like domains. J. Cell Biol. 119:203–213.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Theodosis, D.T., El Majdoubi, M., Pierre, K. et al. Factors Governing Activity-Dependent Structural Plasticity of the Hypothalamoneurohypophysial System. Cell Mol Neurobiol 18, 285–298 (1998). https://doi.org/10.1023/A:1022577105819

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022577105819

Navigation