Skip to main content
Log in

Behavioral Characterization of Mice Lacking the A3 Adenosine Receptor: Sensitivity to Hypoxic Neurodegeneration

  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

1. The potential neuroprotective actions of the A3 adenosine receptor (A3AR) were investigated using mice with functional deletions of the A3AR (A3AR−/−) in behavioral assessments of analgesia, locomotion, tests predictive of depression and anxiety, and the effects of mild hypoxia on cognition and neuronal survival.

2. Untreated A3AR−/− mice were tested in standard behavioral paradigms, including activity in the open field, performance in the hot-plate, tail-flick, tail-suspension, and swim tests, and in the elevated plus maze. In addition, mice were exposed repeatedly to a hypoxic environment containing carbon monoxide (CO). The cognitive effects of this treatment were assessed using the contextual fear conditioning test. After testing, the density of pyramidal neurons in the CA1, 2, and 3 subfields of the hippocampus was determined using standard histological and morphometric techniques.

3. A3AR−/− mice showed increased locomotion in the open field test, elevated plus maze (number of arm entries) and light/dark box (number of transitions). However, they spent more time immobile in two different tests of antidepressant activity (Swim and tail suspension tests). A3AR−/− mice also showed evidence of decreased nociception in the hot-plate, but not tail-flick tests. Further, A3AR−/− mice were more vulnerable to hippocampal pyramidal neuron damage following episodes of carbon monoxide (CO)-induced hypoxia. One week after exposure to CO a moderate loss of pyramidal neurons was observed in all hippocampal subfields of both wild-type (A3AR+/+) and A3AR−/− mice. However, the extent of neuronal death in the CA2–3 subfields was less pronounced in A3AR+/+ than A3AR−/− mice. This neuronal loss was accompanied by a decline in cognitive function as determined using contextual fear conditioning. These histological and cognitive changes were reproduced in wild-type mice by repeatedly administering the A3AR-selective antagonist MRS 1523 (5-propyl-2-ethyl-4-propyl-3-(ethylsulfanylcarbonyl)-6-phenylpyridine-5-carboxylate 1 mg/kg i.p.).

4. These results indicate that pharmacologic or genetic suppression of A3AR function enhances some aspects of motor function and suppresses pain processing at supraspinal levels, while acting as a depressant in tests predictive of antidepressant action. Consistent with previous reports of the neuroprotective actions of A3AR agonists, A3AR−/− mice show an increase in neurodegeneration in response to repeated episodes of hypoxia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Appel, E., Kazimirsky, G., Ashkenazi, E., Kim, S. G., Jacobson, K. A., and Brodie, C. (2001). Roles of BCL-2 and caspase 3 in the adenosine A3 receptor-induced apoptosis. J. Mol. Neurosci. 17:285–292.

    Google Scholar 

  • Brand, A., Vissiennon, Z., Eschke, D., and Nieber, K. (2001). Adenosine A(1) and A(3) receptors mediate inhibition of synaptic transmission in rat cortical neurons. Neuropharmacology 40:85–95.

    Google Scholar 

  • Cerniway, R. J., Yang, Z., Jacobson, M. A., Linden, J., and Matherne, G. P. (2001). Targeted deletion of A3 adenosine receptors improves tolerance to ischemia-reperfusion injury in mouse myocardium. Am. J. Physiol. 281:H1751-H1758.

    Google Scholar 

  • Di Iorio, P., Kleywegt, S., Ciccarelli, R., Traversa, U., Andrew, C. M., Crocker, C. E., Werstiuk, E. S., and Rathbone, M. P. (2002). Mechanisms of apoptosis induced by purine nucleosides in astrocytes. Glia 38:179.

    Google Scholar 

  • Dunwiddie, T. V., Diao, L., Kim, H. O., Jiang, J.-l., and Jacobson, K. A. (1997). Activation of hippocampal adenosine A3 receptors produces a heterologous desensitization of A1 receptor mediated responses in rat hippocampus. J. Neurosci. 17:607–614.

    Google Scholar 

  • El Yacoubi, M., Ledent, C., Parmentier, M., Bertorelli, R., Ongini, E., Costentin, J., and Vaugeois, J. M. (2001). Adenosine A2A receptor antagonists are potential antidepressants: Evidence based on pharmacology and A2A receptor knockout mice. Br. J. Pharmacol. 134:68–77.

    Google Scholar 

  • Feoktistov, I., Goldstein, A. E., Ryzhov, S., Zeng, D., Belardinelli, L., Voyno-Yasenetskaya, T., and Biaggioni, I. (2002). Differential expression of adenosine receptors in human endothelial cells: Role of A2B receptors in angiogenic factor regulation. Circ. Res. 90:531–538.

    Google Scholar 

  • Fishman, P., Madi, L., Bar-Yehuda, S., Barer, F., Del Valle, L., and Khalili, K. (2002). Evidence for involvement of Wnt signaling pathway in IB-MECA mediated suppression of melanoma cells. Oncogene 21:4060–4064.

    Google Scholar 

  • Fredholm, B. B., IJzerman, A. P., Jacobson, K. A., Klotz, K. N., and Linden, J. (2001). International Union of Pharmacology. XXV. Nomenclature and classification of adeonsine receptors. Pharmacol. Rev. 53:527–552.

    Google Scholar 

  • Gimenez-Llort, L., Fernandez-Teruel, A., Escorihuela, R. M., Fredholm, B. B., Tobena, A., Pekny, M., and Johansson, B. (2002). Mice lacking the adenosine A1 receptor are anxious and aggressive, but are normal learners with reduced muscle strength and survival rate. Eur. J. Neurosci. 16:547–550.

    Google Scholar 

  • Guo, Y., Bolli, R., Bao, W., Wu, W.-J., Black, R. G. Jr., Murphree, S. S., Salvatore, C. A., Jacobson, M. A., and Auchampach, J. A. (2001). Targeted deletion of the adenosine A3 receptor confers resistance to myocardial ischemic injury and does not prevent early preconditioning. J. Mol. Cell Cardiol. 33:825–830.

    Google Scholar 

  • Harrison, G. J., Cerniway, R. J., Peart, J., Berr, S. S., Ashton, K., Regan, S., Paul, Matherne, G., and Headrick, J. P. (2002). Effects of A(3) adenosine receptor activation and gene knock-out in ischemic-reperfused mouse heart. Cardiovasc Res. 53:147.

    Google Scholar 

  • Ishimaru, H., Nabeshima, T., Katon, A., Suzuki, H., Fukuta, T., and Kameyama, T. (1991). Effect of successive carbon monoxide exposures on delayed neuronal death in mice under the maintenance of normal body temperature. Biochem. Biophys. Res. Commun 179:836–840.

    Google Scholar 

  • Jacobson, K. A. (1998). Adenosine A3 receptors: Novel ligands and paradoxical effects. Trends Pharmacol. Sci. 19:184–191.

    Google Scholar 

  • Jacobson, K. A., Nikodijevic, O., Shi, D., Gallo-Rodriguez, C., Olah, M. E., Stiles, G. L., and Daly, J. W. (1993). A role for central A3-adenosine receptors: Mediation of behavioral depressant effects. FEBS Lett. 336:57–60.

    Google Scholar 

  • Jacobson, K. A., Park, K.-S., Jiang, J.-L., Kim, Y.-C., Olah, M. E., Stiles, G. L., and Ji, X.-D. (1997). Pharmacological characterization of novel A3 adenosine receptor-selective antagonists. Neuropharmacology 36:1157–1165.

    Google Scholar 

  • Kustova, Y., Sung, E.-G., Morse, D., Sei, Y., and Basile, A. (1999). Histological evidence of neuronal degeneration in mice infected with LP-BM5 murine leukemia virus. Mol. Chem. Neuropathol. 35:39–59.

    Google Scholar 

  • Lasley, R. D., Narayan, P., Jahania, M. S., Partin, E. L., Kraft, K. R., and Mentzer, R. M. Jr. (1999). Species-dependent hemodynamic effects of adenosine A3-receptor agonists IB-MECA and Cl-IB-MECA. Am. J. Physiol. 276:H2076-H2084.

    Google Scholar 

  • Macek, T. A., Schaffhauser, H., and Conn, P. J. (1998). Protein kinase C and A3 adenosine receptor activation inhibit presynaptic metabotropic glutamate receptor (mGluR) function and uncouple mGluRs from GTP-binding proteins. J. Neurosci. 18:6138–6146.

    Google Scholar 

  • Maurice, T., Hiramatsu, M., Kameyama, T., Hasegawa, T., and Nabeshima, T. (1994). Behavioral evidence for a modulating role of sigma ligands in memory processes. II. Reversion of carbon monoxide-induced amnesia. Brain Res. 647:57–64.

    Google Scholar 

  • Maurice, T., Phan, V. L., Noda, Y., Yamada, K., Privat, A., Nabeshima, T. (1999). The attenuation of learning impairments induced after exposure to CO or trimethyltin in mice by sigma (sigma) receptor ligands involves both sigma1 and sigma2 sites. Br. J. Pharmacol. 127:335–342.

    Google Scholar 

  • Nabeshima, T., Katon, A., Ishimaru, H., Yoneda, Y., Ogita, K., Murase, K., Ohtsuka, H., Inari, K., Fukuta, T., and Kameyama, T. (1991). Carbon monoxide-induced delayed amnesia, delayed neuronal death and change in acetylcholine concentration in mice. J. Pharmacol. Exp. Ther. 256: 378–384.

    Google Scholar 

  • Okada, M., Kawata, Y., Murakami, T., Wada, K., Mizuno, K., Kondo, T., and Kaneko, S. (1999). Differential effects of adenosine receptor subtypes on release and reuptake of hippocampal serotonin. Eur. J. Neurosci. 11:1–9

    Google Scholar 

  • Parsons, M., Young, L., Lee, J.-E., Jacobson, K. A., and Liang, B. T. (2000). Distinct cardioprotective effects of adenosine mediated by differential coupling of receptor subtypes to phospholipases C and D. FASEB J. 14:1423–1431.

    Google Scholar 

  • Porsolt, R. D., Bertin, A., Blavet, N., Deniel, M., and Jalfre, M. (1979). Immobility induced by forced swimming in rats: Effects of agents which modify central catecholamine and serotonin activity. Eur. J. Pharmacol. 57:201–210.

    Google Scholar 

  • Ramkumar, V., Stiles, G. L., Beaven, M. A., and Ali, H. (1993). The A3 adenosine receptor is the unique adenosine receptor which facilitates release of allergic mediators in mast cells. J. Biol. Chem. 268:16887–16890.

    Google Scholar 

  • Rivkees, S. A., Thevananther, S., and Hao, H. (2000). Are A3 adenosine receptors expressed in the brain? Neuroreport 11:1025–1030.

    Google Scholar 

  • Sajjadi, F. G., Takabayashi, K., Foster, A. C., Domingo, R. C., and Firestein, G. S. (1996). Inhibition of TNF-alpha expression by adenosine: role of A3 adenosine receptors. J. Immunol. 156:3435–3442.

    Google Scholar 

  • Salvatore, C. A., Tilley, S. L., Latour, A. M., Fletcher, D. S., Koller, B. H., and Jacobson, M. A. (2000). Disruption of the A3 adenosine receptor gene in mice and its effect on stimulated inflammatory cells. J. Biol. Chem. 275:4429–4434.

    Google Scholar 

  • Shepherd, R. K., Linden, J., and Duling, B. R. (1996). Adenosine-induced vasoconstriction in vivo. Role of the mast cell and A3 adenosine receptor. Circ. Res. 78:627–634.

    Google Scholar 

  • Sterneck, E., Paylor, R., Jackson-Lewis, V., Libbey, M., Przedborski, S., Tessarollo, L., Crawley, J., and Johnson, P. (1998). Selectively enhanced contextual fear conditioning in mice lacking the transcriptional regulator CCAAT/enhancer binding protein sigma. Proc. Natl. Acad. Sci. U.S.A. 95:10908–10913.

    Google Scholar 

  • Steru, L., Chermat, R., Thierry, B., and Simon, P. (1985). The tail suspension test: A new method for screening antidepressants in mice. Psychopharmacology 85:367–370.

    Google Scholar 

  • Talukder, M. A., Morrison, R. R., Jacobson, M. A., Jacobson, K. A., Ledent, C., and Mustafa, S. J. (2002). Targeted deletion of adenosine A(3) receptors augments adenosine-induced coronary flow in isolated mouse heart. Am. J. Physiol. Heart. Circ. Physiol. 282:H2183-H2189.

    Google Scholar 

  • van Schaick, E. A., Jacobson, K. A., Kim, H. O., IJzerman, A. P., and Danhof, M. (1996). Hemodynamic effects and histamine release elicited by the selective adenosine A3 receptor agonist 2-Cl-IB-MECA in conscious rats. Eur. J. Pharmacol. 308:311–314.

    Google Scholar 

  • von Lubitz, D. K. J. E., Lin, R. C.-S., Popik, P., Carter, M. F., and Jacobson, K. A. (1994). Adenosine A3 receptor stimulation and cerebral ischemia. Eur. J. Pharmacol. 263:59–67.

    Google Scholar 

  • Yaar, R., Lamperti, E. D., Toselli, P. A. Ravid, K. (2002). Activity of the A3 adenosine receptor gene promoter in transgenic mice: Characterization of previously unidentified sites of expression. FEBS Lett. 532:267–272.

    Google Scholar 

  • Zhao, Z., Makaritsis, K., Francis, C. E., Gavras, H., and Ravid, K. (2000). A role for A3 adenosine receptor in determining tissue levels of cAMP and blood pressure: Studies in knock-out mice. Biochem. Biophys. Acta 1500:280–290.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fedorova, I.M., Jacobson, M.A., Basile, A. et al. Behavioral Characterization of Mice Lacking the A3 Adenosine Receptor: Sensitivity to Hypoxic Neurodegeneration. Cell Mol Neurobiol 23, 431–447 (2003). https://doi.org/10.1023/A:1023601007518

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023601007518

Navigation